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Solved and Unsolved Problems
Michael Th. Rassias (Institute of Mathematics, University of Zürich, Switzerland)

The calculus was the first achievement of modern

mathematics and it is difficult to overestimate its

importance. I think it defines more unequivocally than

anything else the inception of modern mathematics;

and the system of mathematical analysis, which is its

logical development, still constitutes the greatest

technical advance in exact thinking.

John von Neumann (1903–1957)

The column in this issue is devoted to fundamentals of mathematical

analysis.

Mathematical analysis (or simply analysis) is an enormous field

and arguably one of the most central in all of mathematics, appearing

in the most abstract of research as well as an extremely wide range

of applicable areas like physics, engineering, finance, sociology and

biology, to name just a few.

In mathematics, in principle, one can study two categories

of structures and phenomena: discrete1 and continuous. Generally

speaking, the study of the continuous lies at the heart of analysis. The

origin of analysis as an independent field of mathematics traces back

to the 17th century, with the discovery of the differential by Isaac

Newton, and Gottfried Wilhelm Leibniz playing a central role in its

genesis. We must note, though, that several important mathemati-

cal concepts of analysis were introduced even earlier. For example,

the concept of an integral traces back to Eudoxus (ca. 390–337 BC)

and Archimedes (ca. 287–212 BC). Some of the central generative

discoveries of analysis arose from the effort to answer fundamental

questions in disciplines such as astronomy, optics and engineering,

as well as from the effort to determine mathematical methods for

the calculation of areas, volumes, centres of gravity, etc., for both

theoretical and practical applications.

Since analysis, as mentioned above, is a vast field of mathemat-

ics with several subfields, we shall devote future individual columns

to subfields like real analysis, complex analysis, harmonic analysis,

etc.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

187. Let (an)n≥1, (bn)n≥1 and (cn)n≥0 be sequences such that

an > 0, bn > 0 and cn > 0 for n ≥ 1 and:

(G1) c0 = 0 and cn is increasing,

(G2) cn+1 − cn is decreasing for n ≥ 0,

(G3) ck

(
ak+1

ak

− 1

)
≥ cn

(
bn+1

bn

− 1

)
for 1 ≤ k < n.

Given a function f , let

An =
1

cn−1

n−1∑
k=1

f

(
ak

bn

)
, n ≥ 2.

Then, if f is real, convex increasing and non-negative on an inter-

val [D, E] that includes all the points
ak

bn
for k < n, prove that An

increases with n.

(Shoshana Abramovich, University of Haifa, Israel)

188. For a function f : R → R and a positive integer n, we

denote by f n the function defined by f n(x) = ( f (x))n.

(a) Show that if f : R→ R is a function that has an antiderivative

then f n : R → R satisfies the intermediate value property for

any n ≥ 1.

(b) Give an example of a function f : R → R that has an an-

tiderivative and for which f n : R → R has no antiderivatives

for any n ≥ 2.

(Dorin Andrica, Babesş Bolyai University, Cluj-Napoca,

Romania)

189.

(a) Let { fn}
∞
n=1

be an increasing sequence of continuous real-

valued functions on a compact metric space X that converges

pointwisely to a continuous function f . Show that the conver-

gence must be uniform.

(b) Show by a counterexample that the compactness of X in (a) is

necessary.

(c) Determine whether (a) remains valid if the sequence { fn}
∞
n=1

is

not monotone.

(W. S. Cheung, University of Hong Kong, Pokfulam, Hong Kong)

190. Let {an} be a sequence of positive numbers. In the ratio test,

we know that the condition

lim
n→∞

an+1

an

= 1

is not sufficient to determine whether the series

∞∑
n=1

an is conver-

gent or divergent. For example, if an = 1/n then

an+1

an

=
n

n + 1
= 1 −

1

n + 1
= 1 −

n + 1

(n + 1)2

and if an = 1/n2 then

an+1

an

=
n2

(n + 1)2
= 1 −

2n + 1

(n + 1)2
.

Hence, the coefficient a in the expression 1 − an+1

(n+1)2 plays an im-

portant role in the convergence of
∑

an. In this question, we would

like to study it more closely.

Let a be a non-negative real number and let {an} be a sequence

with an > 0, satisfying

an+1

an

≤ 1 −
an + 1

(n + 1)2
(1)

for all n ≥ n0 := [|2 − a|] + 1, where [x] is the integral part of x.

(i) Show that if a > 0 then

lim
n→∞

an = 0.

If a = 0, for any λ > 0, find an example such that

lim
n→∞

an = λ.
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(ii) Show that if a > 1 then

∞∑
n=1

an

is convergent. Is this still true when a = 1?

(Stephen Choi and Peter Lam, Simon Fraser University,

Burnaby B.C., Canada)

191. Show that for any a, b > 0, we have

1

2

(
1 −

min {a, b}

max {a, b}

)2
≤

b − a

a
− ln b + ln a ≤

1

2

(
max {a, b}

min {a, b}
− 1

)2
.

(Silvestru Sever Dragomir, Victoria University,

Melbourne City, Australia)

192. Let a, b, c, d ∈ R with bc > 0. Calculate

lim
n→∞

(
cos a

n
sin b

n
c

n
cos d

n

)n
.

(Ovidiu Furdui, Technical University of Cluj-Napoca,

Cluj-Napoca, Romania)

II Open Problems: Some questions related to the

Heisenberg uncertainty principle, by Larry Guth

(Massachusetts Institute of Technology, Department

of Mathematics, Cambridge, Massachusetts, USA)

The Heisenberg uncertainty principle is a fundamental idea in

Fourier analysis. It loosely says that f and f̂ cannot both be con-

centrated into small regions. When I was a student, I thought of

the Heisenberg uncertainty principle as a single inequality, which

was proven almost a hundred years ago. But this idea that f and

f̂ cannot both be concentrated into small regions can be made pre-

cise in many ways. So there are many cousins of the Heisenberg

uncertainty principle. In a recent paper, Jean Bourgain and Semyon

Dyatlov proved a striking new variant of the Heisenberg uncertainty

principle called the fractal uncertainty principle – see [BD] for the

original paper and [D] for an expository survey paper. After look-

ing at that paper and talking with Semyon, I have been wondering

about different variations of the Heisenberg uncertainty principle. I

think there is probably a great deal that we don’t know yet about the

Heisenberg uncertainty principle and here are some questions in that

spirit.

Some of the questions seem cleanest in the setting of functions

on ZN – the integers modulo N. Suppose that

f : ZN → C.

Recall that f̂ : ZN → C is defined by

f̂ (m) =
1

N

∑
n∈ZN

f (n)e−2πi mn
N .

Then, we have the Fourier inversion theorem

f (n) =
∑

m∈ZN

f̂ (m)e2πi mn
N .

Suppose that f is supported in a set X ⊂ ZN and f̂ is supported in

Y ⊂ ZN . What can we say about X and Y? One classical version

of the Heisenberg uncertainty principle says that |X||Y | ≥ N. On the

other hand, if |X| + |Y | > N then there is always a non-zero function

f so that f is supported in X and f̂ is supported in Y . The set of all

such functions is a linear subspace of L2(ZN) defined by 2N−|X|−|Y |

equations, and if |X|+ |Y | > N then the dimension of this subspace is

at least 1. In the case when N is prime, we have a complete charac-

terisation. The result was proven independently by Tao [T], by Biro

and by Meshulam (see [T] for more references).

Theorem 1 Suppose that N is prime and X,Y ⊂ ZN . Then, there is

a non-zero function f with the support of f in X and the support of

f̂ in Y if and only if |X| + |Y | > N.

On the other hand, if N is composite then the situation is quite

different because of the subgroups of ZN . For instance, if N = M2 is

a square and if f is the characteristic function of the multiples of M

then the support of f has cardinality M and the support of f̂ is also

a subgroup of cardinality M. This saturates the bound |X||Y | ≥ N.

193*. For each N, give a complete characterisation of possible

pairs X,Y ⊂ ZN admitting a non-zero function f with the support

of f in X and the support of f̂ in Y .

Theorem 1 gives the result when N is prime. The square of a prime

could be a good next case. I believe the state of the art is in a paper

of Meshulam [M].

It would also be interesting to prove more quantitative versions

of the Heisenberg uncertainty principle. Instead of asserting that

there is no function f so that f is supported in X and f̂ is sup-

ported in Y , it would be nice to say that there is no function f so

that f is concentrated in X and f̂ is concentrated in Y . For any sets

X,Y ⊂ ZN , define

H(X,Y) := max
f :� f �

L2 (ZN )
=1
� f �L2(X)� f̂ �L2(Y).

Based on the examples above, we expect that H(X,Y) could be big

in cases related to subgroups of ZN and probably also in cases re-

lated to approximate subgroups of ZN such as arithmetic progres-

sions. It would be interesting to better understand what happens

in other cases that are far from these. One class of examples is

random examples.

194*. Suppose 0 < α < 1 and suppose that X,Y ⊂ ZN are in-

dependent random subsets chosen uniformly among all subsets of

cardinality Nα. Estimate the expected value of H(X,Y).

For this question, I think it would even be interesting to find a

conjecture.

In additive combinatorics, there are several ways of saying that a

set X is far from being an approximate subgroup. One such way

uses the idea of additive energy. Recall that the energy of X is

defined by

E(X) :=
∣∣∣{(x1, x2, x3, x4) ∈ X4 : x1 + x2 = x3 + x4

}∣∣∣.
If X is a subgroup of ZN then there is a unique choice of x4 for

each x1, x2, x3 and so E(X) = |X|3, which is the maximum possible

value of E(X). On the other hand, if X is a random subset of ZN of

cardinality Nα then E(X) ∼ |X|3Nα−1
+ |X|2.

195*. Given |X|, |Y |,E(X), E(Y), what is the maximum possible

size of H(X,Y)?

There are a lot of parameters in this question, so let me highlight

one particular case that seems interesting to me.
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196*. Suppose that |X| = |Y | ≤ 2N1/2 but E(X), E(Y) ≤ |X|2.1.

Estimate the maximum possible value of H(X,Y).
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III Solutions

179. Let p = p1 p2 · · · pn and q = q1q2 · · · qn be two permuta-

tions. We say that they are colliding if there exists at least one

index i so that |pi−qi | = 1. For instance, 3241 and 1432 are collid-

ing (choose i = 3 or i = 4), while 3421 and 1423 are not colliding.

Let S be a set of pairwise colliding permutations of length n. Is it

true that |S | ≤
(

n

⌊n/2⌋

)
?

(Miklós Bóna, Department of Mathematics, University of

Florida, Gainesville, FL 32608, USA)

Solution by the proposer. Yes. Let p ∈ S , let q ∈ S and let p′ (resp.

q′) denote p (resp. q) modulo 2. As p and q are colliding, there is

no index i so that p′i = q′i . Therefore, if we consider all elements

of S modulo 2, we get a set of |S | different vectors of length n that

have only zeros and ones as coordinates, and in which the number

of zeros is ⌊n/2⌋. The number of such vectors is
(

n

⌊n/2⌋

)
, hence that

number is an upper bound for |S |. This proof is due to János Körner

and Claudia Malvenuto.

Remark: It is not known if the presented upper bound is optimal,

though empirically it is for n ≤ 7. �

Also solved by Mihaly Bencze (Brasov, Romania), Souvik Dey

(Kolkata, India), Jim K. Kelesis (Athens, Greece), Panagiotis T. Kra-

sopoulos (Athens, Greece), Alexander Vauth2 (Lübbecke, Germany).

180. Let us say that a word w over the alphabet {1, 2, · · · , n}

is n-universal if w contains all n! permutations of the symbols

1, 2, . . . , n as a subword, not necessarily in consecutive positions.

For instance, the word 121 is 2-universal as it contains both 12

and 21, while the word 1232123 is 3-universal. Let n ≥ 3. Does

an n-universal word of length n2 − 2n + 4 exist?

(Miklós Bóna, Department of Mathematics, University of

Florida, Gainesville, FL 32608, USA)

Solution by the proposer. Yes. Write down n copies of 1 and, be-

tween two consecutive copies of 1, insert any permutation of the set

{2, 3, · · · , n}. This is a string of n2 − n + 1 entries. Call the strings

between two consecutive copies of 1 segments. Now remove n − 3

entries as follows. Let 1 < i < n− 1. Moving left to right, remove an

entry j from the ith segment. Then, in segment i − 1, move the entry

j of that segment into the last position. In segment i + 1, move the

entry j of that segment into the first position. The result is a string

with the desired length that contains all permutations of length n.

This construction is due to S. P. Mohanty.

Remark: While this construction is optimal for n ≤ 7, it is not opti-

mal in general. For n ≥ 13, one can construct an n-universal word of

length ⌈n2 − 7n
3
+

19
3
⌉. �

Also solved by Mihaly Bencze (Brasov, Romania), Jim K. Kelesis

(Athens, Greece), Sotirios E. Louridas (Athens, Greece), Socratis

Varelogiannis (Paris, France).

181. Given natural numbers m and n, let [m]n be the collection

of all n-letter words, where each letter is taken from the alphabet

[m] = {1, 2, . . . ,m}. Given a word w ∈ [m]n, a set S ⊆ [n] and

i ∈ [m], let w(S , i) be the word obtained from w by replacing the

jth letter with i for all j ∈ S . The Hales–Jewett theorem then says

that for any natural numbers m and r, there exists a natural num-

ber n such that every r-colouring of [m]n contains a monochro-

matic combinatorial line, that is, a monochromatic set of the form

{w(S , 1),w(S , 2), . . . ,w(S ,m)} for some S ⊆ [n]. Show that for

m = 2, it is always possible to take S to be an interval in this

theorem, while for m = 3, this is not the case.

(David Conlon, Mathematical Institute, University of Oxford,

Oxford, UK)

Solution by the proposer. For the m = 2 case, consider the following

r + 1 words of length r:

w0 =111 . . . 11,

w1 =111 . . . 12,

w2 =111 . . . 22,

.

..

wr−1 =122 . . . 22,

wr =222 . . . 22.

That is, wi is 1 for the first r − i letters and 2 from then on. By the

pigeonhole principle, since there are r + 1 words but only r colours,

two of these words, say wi and wj with i < j, receive the same colour.

But then, taking S = [r − j + 1, r − i], we see that wi = wi(S , 1) and

wj = wi(S , 2), as required.

For m = 3, given a word w, let n(w) be the number of consecu-

tive pairs of letters in w that differ from one another and let χ be the

3-colouring of the words in [3]n given by χ(w) = n(1w1) (mod 3),

where 1w1 is the (n + 2)-letter word formed by adding a single 1

before and after w. Suppose now that the words in [3]n have been

coloured with χ and there is a monochromatic combinatorial line de-

fined by a word w ∈ [3]n and an interval S ⊆ [n]. Suppose also that

the letter in w that immediately precedes S is a, while the letter that

immediately follows S is b (note that we added the dummy 1’s above

so that these are always defined). If now, for example, a = 1 and

b = 2, it is easy to check that χ(w(S , 1)) � χ(w(S , 3)), since chang-

ing . . . 1|11 . . . 1|2 . . . to . . . 1|33 . . . 3|2 . . . adds one to the number of

consecutive pairs of letters that differ from one another. Therefore,

this case cannot occur. Similarly, one can easily verify that none of

the other possible choices of a and b can occur. Therefore, S cannot

have been an interval. �

Also solved by Mihaly Bencze (Brasov, Romania), Socratis Varelo-

giannis (Paris, France).

182. (A) Let A1, A2, . . . be finite sets, no two of which are dis-

joint. Must there exist a finite set F such that no two of A1 ∩ F,

A2 ∩ F, . . . are disjoint?

(B) What happens if all of the Ai are the same size?

(Imre Leader, Department of Pure Mathematics and

Mathematical Statistics, University of Cambridge,

Cambridge, UK)
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Solution by the proposer. (A) No. Just make the Ai meet “further and

further to the right”. For example, take the sets

{2, 4, 5}, {1, 3, 5, 6}, {2, 4, 6, 7}, {1, 3, 5, 7, 8}, {2, 4, 6, 8, 9}, . . .

(B) There does have to be such a set. We fix one set A in our fam-

ily and group the other sets according to how they intersect A – so

we write F(I) for the sets in our family that intersect A equal I (for

each non-empty subset I of A). More precisely, let us write G(I) for

the family formed by each set in F(I) but with I removed. So, to be

done, we would like that for each I and J (disjoint subsets of A),

there exists a finite set on which all of G(I) meet all of G(J).

This looks a lot like the original statement. So, instead, we prove

the stronger statement “for any r and s, if we have some r-sets and

some s-sets and each of the r-sets meets each of the s-sets then there

is a finite set on which each r-set meets each s-set”. And the above

argument does prove this, by induction on, say, r + s. �

Also solved by John N. Daras (Athens, Greece), Souvik Dey (Kol-

kata, India), Jean Moulin-Ollagnier (Palaiseau, France), Alexander

Vauth (Lübbecke, Germany).

183. The following is from the 2012 Green Chicken maths con-

test between Middlebury and Williams Colleges. A graph G is

a collection of vertices V and edges E connecting pairs of ver-

tices. Consider the following graph. The vertices are the integers

{2, 3, 4, . . . , 2012}. Two vertices are connected by an edge if they

share a divisor greater than 1; thus, 30 and 1593 are connected by

an edge as 3 divides each but 30 and 49 are not. The colouring

number of a graph is the smallest number of colours needed so

that each vertex is coloured and if two vertices are connected by

an edge then those two vertices are not coloured the same. The

Green Chicken says the colouring number of this graph is at most

9. Prove he is wrong and find the correct colouring number.

(Steven J. Miller, Department of Mathematics and Statistics,

Williams College, Williamstown, MA, USA)

Solution by the proposer. The colouring number is at least 10, as the

vertices 2, 4, 8, 16, 32, . . . , 1024 = 210 are all connected to each

other, and thus we need at least 10 colours. Why? This is a complete

graph with 10 vertices, and its colouring number is 10. As this sub-

graph of our graph has colouring number 10, the entire graph has

colouring number at least 10.

We can get a very good lower bound easily. Instead of looking at

powers of 2, we can look at the even numbers. There are 1006 even

numbers and each even number is connected to every other. Thus,

we have a complete graph with 1006 vertices, implying the colour-

ing number is at least 1006.

It’s easy to see the colouring number is at most

2012 − π(2012) + 1, where π(2012) is the number of primes at most

2012. Why? We can colour all the primes the same colour, as none

are connected to any other. That’s our plus 1; the 2012 − π(2012)

comes from a trivial bounding, using a different colour for each

remaining vertex.

Interestingly, our lower bound is the answer: the colouring num-

ber is 1006. To see this, choose 1006 colours and colour each even

number with one of these colours, never using the same colour twice.

Note we have to do this, as no two even numbers can share a colour.

We are left with colouring the odd numbers 3, 5, 7, 9, . . . , 2011. We

colour the vertex 2k+1 with the colour of vertex 2k. Note 2k+1 and

2k can’t share a factor d greater than 1 and are thus not connected. (If

they shared a factor, it would have to divide their difference, which

is 1.) Since vertex 2k is the only vertex that has the colour we want

to use for vertex 2k + 1, we see that we have a valid colouring. We

showed the colouring number must be at least 1006; since we’ve

found a colouring that works with 1006 colours, we know this must

be the answer. �

Also solved by Mihaly Bencze (Brasov, Romania), Jim K. Kele-

sis (Athens, Greece), Panagiotis T. Krasopoulos (Athens, Greece),

Alexander Vauth (Lübbecke, Germany), Socratis Varelogiannis

(Paris, France).

184. There are n people at a party. They notice that for every two

of them, the number of people at the party that they both know is

odd. Prove that n is an odd number.3

(Benny Sudakov, Department of Mathematics, ETH Zürich,

Zürich, Switzerland)

Solution by the proposer. Let G be a graph whose vertices are the

people at the party and two are connected if they know each other.

Then this graph has the property that every pair of vertices have an

odd number of common neighbours. Let Nv be the set of neighbours

of some vertex v and let G[Nv] be the subgraph of G induced by this

set. Then, all degrees of G[Nv] are odd, since these are exactly the

number of common neighbours that v has with its neighbours. Since

the sum of the degrees of the vertices in G[Nv] is twice its number

of edges (an even number) we have that |Nv| is even. Therefore, all

vertices in G have even degree.

Consider now the adjacency matrix A of G over the field with

two elements (addition and multiplications are modulo 2). This is an

n by n symmetric matrix whose rows and columns are indexed by

the vertices of G and auv = 1 if u, v are adjacent and 0 otherwise.

Note that the sum of the columns of A is 0 (modulo 2), since every

row has an even number of 1’s. Therefore, A does not have full rank.

Consider B = A2. It is easy to check that the diagonal of B consists

of the degrees of the vertices (modulo 2) of G and buv is the number

of common neighbours of u and v (modulo 2). Therefore, A2 has 0’s

on the diagonal and 1’s everywhere else. When n is even, such a ma-

trix has full rank, since it has a non-zero determinant (which is easy

to compute). Since A does not have full rank, neither does A2. This

implies that n is odd. �

Also solved by Mihaly Bencze (Brasov, Romania), Jim K. Kelesis

(Athens, Greece), Jean Moulin-Ollagnier (Palaiseau, France).

Notes

1. For the “Solved and Unsolved Problems” column devoted to dis-

crete mathematics, the reader is referred to Issue 105, September

2017, EMS Newsletter, p. 55.

2. Alexander Vauth made the interesting remark that this problem

has also been affirmatively proven in the paper: Körner, J., and

Malvenuto, C., Pairwise colliding permutations and the capacity

of infinite graphs, SIAM Journal on Discrete Mathematics, 20(1)

(2006), 203-212.

3. This problem appeared a long time ago in the Tournament of the

Towns.

We would like you to submit solutions to the proposed problems and

ideas on the open problems. Send your solutions by email to Michael

Th. Rassias, Institute of Mathematics, University of Zürich, Switzer-

land, michail.rassias@math.uzh.ch.

We also solicit your new problems with their solutions for the next

“Solved and Unsolved Problems” column, which will be devoted to

probability theory.




