On the Interior Regularity of Weak Solutions to Nonlinear Elliptic Systems of Second Order

J. Daně̌erek

. Es wird die $C^{1, \alpha}$-Regularität der schwachen Lösung (mit dem. Gradienten im BMO-Raum) cines nichtlinearen elliptischen Systems partieller Differentialgleichungen zweiter Ordnung - untersucht. Das Problem ist unter der Vóraussetzung lösbar, daß das System die verallgemeinerte Liouvillesche Bedingung im BMO-Raum statt wie gewöhnlich im L^{∞}.Raum erfüllt. Zum Schluß wird gezeigt, daß die Liouvillesche Bedingung im Fall des \mathbf{R}^{2} gilt.
ИИсследуется $C^{\text {®a- регулярность слабого решения (с градиентом в ВМО-пространстве) }}$ нелинейной эллиптической системы дифференцпальных уравнений второго порядка. Проблема положительно разрсшима в предположении, что система удовлетворяет обобщенному условию Лиувилля в ВМО-пространстве вместо как обычно в L^{∞}-пространстве. В конце доказано, что условие Лиувилля выпольнено в случае \mathbf{R}^{2}.
The interior $C^{1, a}$-regularity for a weak solution (with gradient in the BMO-space) of a nonlinear second order elliptic system is investigated. The positive answer is obtained on the assumption that the elliptic system satisfy the generalized Liouville condition considered in the BMO-space instead of the usually used L^{∞}-space. Finally it is proved that the Liouville condition holds in the case of \mathbf{R}^{2}.

0. Introduction

In this paper, which is a modified version of the thesis [4], we prove regularity for a weak-solution (with gradient in the BMO-space) of the-following nonlinear elliptic system ($i=1, \ldots, N$):

$$
\begin{equation*}
-D_{a}^{-} a_{i}{ }^{a}(x, u, D u)+a_{i}(x, u, D u)=-D_{a} f_{i}{ }^{a}(x)+f_{i}(x), \tag{0.1}
\end{equation*}
$$

- where x belongs to a bounded open set Ω of $\mathbf{R}^{n}, n \geqq 3, u: \Omega \rightarrow \mathbf{R}^{N}, N>1, u(x)$ $=\left(u^{1}(x), \ldots, u^{N}(x)\right)$ is a vector-valued function, $D u=\left(D_{1} u, \ldots, D_{n} u\right), D_{a}=\partial / \partial x_{a}$; we will use the summation convention over repeated indices:

In $[6-9,12]$ the so-called Liouville condition (L) is formulated in terms of the space L^{∞}. On' the other hand, the proof of L^{∞}-boundedness of the gradient of a weak solution for the system (0.1) has not yet been achieved in reasonably wide extent and the possibility of this proof is questionable.

The following definition is a generalized form of the Liouville property from [7, 8] and reads as follows.

Definition 0.1 : The system (0.1) satisfies the Liouville property (L) if for every $x^{0} \in \Omega$ and every $u \in \mathbf{R}^{N}$ the only solutions v in \mathbf{K}^{n} to

$$
\begin{equation*}
-D_{a} a_{i}{ }^{4}\left(x^{0}, u, D v(x)\right)=0, \quad(i=1, \ldots, N) \tag{0.2}
\end{equation*}
$$

with $\dot{D} v \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$ are polynomials of at most first degree.

The main result of this paper is the fact that if system (0.1) has property (L), then$D u$ is locally Hölder continuous in Ω. To this effect it represents a generalization of [7,8]. Because it is easier to verify that the gradient of the solution is an element of the BMO-space ($L^{\infty} \varsubsetneqq \mathrm{BMO}$), the generalization reached in this paper has a fundamental meaning. The approach stated in this paper has been used in [15], which deals with quasilinear parabolic systems.

1. Notations and definitions

In the sequel Ω will be-a bounded open set of \mathbf{R}^{n} with Lipschitz boundary $\partial \Omega$. The meaning of $\Omega_{0} \subset \subset \Omega$ is that the closure of Ω_{0} is contained in Ω, i.e. $\bar{\Omega}_{0} \subset \Omega$. For the sake of simplification we denote by $|\cdot|$ and (\cdot, \cdot) the norm and scalar product in \mathbf{R}^{n} as well as in \mathbf{R}^{N} and $\mathbf{R}^{n N}$. If $x \in \mathbf{R}^{n}$ and r is a positive real number, we set $B(x, r)$ $=\left\{y \in \mathbf{R}^{n}:|y-x|<r\right\}, \Omega(x, r)=\Omega \cap B(x, r)$ and $Q(x, r)$ will be the cube in \mathbf{R}^{n} with the center in the point x and length of the side r.

By $\mathscr{P}_{k}, k \geqq 0$ integer, we denote the set of all vector-valued polynomials $P=\left(P^{1}\right.$; \ldots, P^{N}) with real coefficients defined on \mathbf{R}^{n} such that the degree of P^{i} is less than k for each $i=1, \ldots, N$.

Beside the usually used Hölder and Sobolev spaces (for detailed information see, e.g., $[3,6,12]$) we will use the following ones.

Definition 1.1 (Campanató-Morrey spaces): Let $\lambda \in[0, n], p \in[1, \infty)$. The space $L^{p, \lambda}(\Omega)$ is the subspace of such functions $f \in L^{p}(\Omega)$ for which

$$
\begin{equation*}
\|f\|_{L p, k(\Omega)}=\left\{\sup _{x \in \bar{\Omega}, r>0} r_{\Omega(x, r)} r^{-1} \mid f(\hat{y}) \|^{p} d y\right\}^{1 / p}<\infty . \tag{1.1}
\end{equation*}
$$

Let k be a non-negative integer and $\lambda \in[0, n+(k+1) p]$. The space $\mathscr{L}_{k}^{p, \lambda(\Omega)}$ is the subspace of such functions $f \in L^{p}(\Omega)$ for which

$$
\begin{equation*}
\|f\|_{q_{k} p, \alpha(\Omega)}=\|f\|_{L_{p}(\Omega)}+[f]{\overline{q_{t} p}, \lambda(\Omega)}<\infty, . \tag{1.2}
\end{equation*}
$$

where

$$
[f]{Y_{k} p, \lambda(\widehat{\Omega})}=\left\{\sup _{x \in \bar{D}, r>0}\left[r^{-2} \inf _{P \in \mathscr{P}_{k}} \int_{\Omega(x, r)}|f(y)-P(y)|^{p} d y\right]\right\}^{1 / p}
$$

With the norms (1.1) and (1.2), $L^{p, \lambda}(\Omega)$ and $\mathscr{L}_{k}{ }^{p, \lambda}(\Omega)$ are Banach spaces. We will work mainly with the spaces $L^{2, \lambda}, \mathscr{L}_{0}^{2, \lambda^{\prime}}$ and $\mathscr{L}_{1}^{2, \lambda}$; instead of $\mathscr{L}_{0}^{2, \lambda}$ we will usually write $\mathscr{L}^{2,2}$.

In our considerations we make use of the fact that for each function $u \in \mathscr{L}_{k}{ }^{2, \lambda}(\Omega)$, each $x^{0} \in \Omega, 0<r \leqq \operatorname{diam} \Omega$, there exists one and only one polynomial $P \in \mathscr{P}_{k}$, $P(x)=P\left(x, x^{0}, r, u\right)$ such that

$$
\inf _{P \in \mathscr{P}_{k}} \int_{Q_{\left(x^{0}, r\right)}}|u(x)-P(x)|^{2} d x=\int_{\Omega\left(x^{0}, r\right)}\left|u(x)-P\left(x, x^{0}, r, u\right)\right|^{2} d x
$$

For $k=1$ we will write this polynomial P in the form

$$
\begin{align*}
\overline{P\left(x, x^{0}, r, u\right)} & =b^{0}\left(x^{0}, r, u\right)+\sum_{\alpha=1}^{n} \overline{b^{\alpha}}\left(x^{0}, r, u\right)\left(x_{\alpha}-x_{\alpha}{ }^{0}\right) \\
& =b^{0}\left(x^{0}, r, u\right)+\left(b\left(x^{0}, r, u\right),\left(x-x^{0}\right)\right) \tag{1.3}
\end{align*}
$$

and for $k=0^{\prime}$ it equals the constant

$$
u_{x^{0}, r}=\underset{B\left(x^{0}, r\right)}{f} u(y) d y=\left(\text { meas } B\left(x^{0}, r\right)\right)^{-1} \int_{B\left(x^{0}, r\right)} u(y) d y,
$$

where meas $B\left(x^{0}, r\right)$ means the n-dimensional Lebesgue measure. Denote further $U\left(x^{0}, r\right)=f_{B\left(x^{0}, r\right)}\left|u(y)-u_{x, r}\right|^{2} d y$, and define, $\mathrm{BMO}\left(\mathbf{R}^{n}\right)$ as the set of all measurable functions u on \mathbf{R}^{n} for which the set $u=\left\{U(x, r): x \in \mathbf{R}^{n}, r>0\right\}$ is bounded, setting $\|u\|_{\mathbf{B M O}\left(\mathbf{R}^{n}\right)}=\sup u$.

At last, let $H^{1 .(\lambda)}(\Omega), \lambda \in[0, n]$ be the Banach space of all functions $u \in H^{1}(\Omega)$, $D_{\mathrm{a}} u \in \mathscr{L}^{2, \lambda}(\Omega)$ with norm

$$
\|u\|_{H_{1,(\alpha)(\Omega)}}=\|u\|_{L^{\prime}(\Omega)}+\sum_{\alpha=1}^{n}\left\|D_{\mathrm{a}} u\right\|_{y^{2, R(\Omega)}}
$$

Proposition 1.1: We have the following important properties of the spaces defined above:
(a) $L^{2, \lambda}(\Omega)=\mathscr{L}^{2, \lambda}(\Omega) ; \lambda \in[0, n)$,
(b) $\mathscr{L}^{2, \lambda}(\Omega)=\mathscr{L}_{1}^{2, \lambda}(\Omega), \lambda \in[0, n+2)$,
(c) $\mathscr{L}^{2, n}(\Omega) \subset L^{2, \lambda_{1}}(\Omega) \subset L^{2, \lambda_{z}}(\Omega), 0 \leqq \lambda_{2}<\lambda_{1}<n$,
(d) $L^{2, n}(\Omega)=L^{\infty}(\Omega) \subsetneq \mathscr{L}^{2, n}(\Omega)$,
(e) $\mathscr{L}^{p, n}(\Omega)=\mathscr{L}^{s, n}(\Omega)=\operatorname{BMO}(\Omega)$ for all $\dot{p}, s \in[1, \infty), \Omega$ being a cube,
(f), $H^{1,(n)}(\Omega) \subset C^{0, \gamma}\left(\Omega_{0}\right)$ for each $\Omega_{0} \subset \subset \Omega, \gamma \in(0,1)$ and
$\|\cdot\|_{c 0, \gamma\left(\Omega_{0}\right)} \leqq c\left(n, \gamma, \operatorname{diam} \Omega, \operatorname{dista}\left(\Omega_{0}, \partial \Omega\right)\right)\|\cdot\|_{H 1,(n)(\Omega)}$.
For the proofs and more detailed information about the Campanato-Morrey spaces see, e.g., $[1-3,6,12]$. In the sequel we will denote all important constants by the symbol \mathscr{C} and other'ones by c.

A function $u \in H^{1}(\Omega)$ is called weak solution of (0.1) in Ω if

$$
\begin{align*}
& \int_{\Omega} a_{i}{ }^{a}(x, u, D u) D_{a} \varphi^{i}(x) d x+\int_{\Omega} a_{i}(x, u, D u) \varphi^{i}(x) d x \\
& =\int_{\Omega} f_{i}{ }^{a}(x) D_{a} \varphi^{i}(x) d x+\int_{\Omega} f_{i}(x) \varphi^{i}(x) d x \quad \text { for all } \varphi \in C_{0}^{\infty}(\Omega) \tag{1.4}
\end{align*}
$$

where $a_{i}{ }^{\alpha}, a_{i}, f_{i}{ }^{\alpha}, f_{i}$ are functions fulfilling for each ${ }^{\prime}(x, u, p) \in \Omega \times \mathbf{R}^{N} \times \mathbf{R}^{n \grave{N}}$ with $|u| \leqq L$ the following conditions:

$$
\begin{align*}
& a_{i}{ }^{a}, a_{i} \in C^{1}\left(\Omega \times \mathbf{R}^{N} \times \mathbf{R}^{n N}\right), \tag{1.5}\\
& \left|a_{i}{ }^{\alpha}(x, u, p)\right|,\left|a_{i}(x, u, p)\right| \leqq \mathscr{C}_{1}(L)(1+|p|), \tag{1.6}\\
& \left|\partial a_{i}{ }^{a}(x, u, p) / \partial p_{j}{ }^{\beta}\right|,\left|\partial a_{i}(x, u, p) / \partial p_{j}{ }^{\beta}\right| \leqq \mathscr{C}_{1}(L), \tag{1.7}\\
& \left.\begin{array}{l}
\left|\partial a_{i}{ }^{\alpha}(x, u, p) / \partial u_{k}\right|,\left|\partial a_{i}{ }^{\alpha}(x, u, p) / \partial x_{s}\right| \\
\left|\partial a_{i}(x, u, p) / \partial u_{k}\right|,\left|\partial a_{i}(x, u, p) / \partial x_{s}\right|
\end{array}\right\} \leqq \mathscr{C}_{1}(L)(1+|p|), \tag{1.8}\\
& \left.\partial a_{i}{ }^{\alpha} \dot{x}, u, p\right) / \partial p_{i}{ }^{\beta} \text { is uniformly continuous on } \Omega \times \mathbf{R}^{N} \times \mathbf{R}^{n N} \text {, } \tag{1.9}\\
& \partial a_{i}{ }^{\alpha}(x, u, p) / \partial p_{1}{ }^{\beta} \rightarrow d_{i j}^{\alpha \beta}(x, u) \text { as }|p| \rightarrow \infty, \quad \text { for all }(x ; u) \in \Omega \times \mathbf{R}^{N} \text { (1.10) } \\
& f_{i}^{a} \in H^{1, q}(\Omega), \quad f_{i} \in H^{1 . q / 2}(\Omega) ; \quad \bar{q}>n^{\prime}, \tag{1.11}\\
& \sum\left\|f_{i}\right\|_{H 1 . q(\Omega)}+\sum\left\|f_{i}\right\|_{H 1 . q / 2(\Omega)} \leqq \mathscr{C}_{2}, \tag{1.12}\\
& \partial a_{i}{ }^{\alpha}(x, u, p) / \partial p_{1}^{\beta} \eta_{a}{ }^{4} \eta \beta^{i} \geqq \nu(L)|\eta|^{2} \\
& \text { for all } \eta \in \mathbf{R}^{n N},(x, u, p) \in \Omega \times \mathbf{R}^{N} \times \mathbf{R}^{n N} . \tag{1.13}
\end{align*}
$$

It is known that $u \in H_{10 c}^{2}(\Omega)$ if the function u fulfiles the conditions stated above (see, e.g., [3]).

2. The results

Principal result of this paper is the following theorem.
Theorem 2.1: Let $u \in H^{1,(n)}(\Omega)$ be a weak solution of the system (0.1) and suppose that the conditions. $(1.5)-(1.13)$ hold: If the system (0.1) has the Liouville property (L), then $u \in C_{\text {loc }}^{1,1-n / q}(\Omega)$.

There arise two natural questions:

1. Do there exist systems of the form (0.1) with weak solutions in the space $H^{1,(n)}(\Omega)$?
2. Under which assumptions has the system of the form (0.1) the Liouville property (L)?

A partial answer on the first question is given in [5]. The problem of the $H^{1 .(\lambda)}$ regularity of weak solutions is studied in detail in [3]. The second question is positively answered in the case of $n=2$ and $N>1$ by the following

Proposition 2.2: Let the system (0.1) satisfy conditions (1.5)-(1.8), (1.11)-(1.13) and let $n=2$. Then it has property (L).

In the case $n \geqq 3, N>1$ some conditions under which linear elliptic systems with L^{∞}-coefficients, quasilinear or nonlinear systems, respectively; have property (L) are shown in [11], [13] and [10], respectively. From [14] it follows that there are nonlinear elliptic systems without property (L).

3. Lemmas

The following two lemmas concern the estimate of the coefficients of the polynomials from (1.5).

Lemma 3.1 [1: pp. 140-144]: Let $P \in \mathscr{P}_{k}, s \in[1, \infty)$ and E be a measurable subset of the ball $B\left(x^{0}, r\right) \subset \mathbf{R}^{n}$ satisfying the condition meas $E \geqq A r^{n}, A$ a positive constant. Then there is a constant $c=c(n, k, s, A)$ such that for each multiindex α we have

$$
\left.\left|\left[D_{\mathrm{a}} P(x)\right]_{x=\left.x_{0}\right|^{8}} \leqq\left(\dot{c} / r^{n+|a| s}\right) \int_{E}\right| P(x)\right|^{8} d x
$$

Lemma 3.2 [1: pp. 146]: Let $u \in \mathscr{L}_{1}^{2, n+2}(\Omega)$. Then there exists a constant $c=c(n)$ such that for every $x \in \Omega$ and for all' $r, r_{0}, 0<r \leqq r_{0} \leqq \operatorname{diam} \Omega$, we have

$$
\begin{aligned}
\left|b^{0}\left(x, r_{0}\right)-b^{0}(x, r)\right| & \leqq c r_{0}[u]_{y_{2}, n+2(\Omega)} \\
\left|b^{\alpha}\left(x, r_{0}\right)-b^{\alpha}(x, r)\right| & \leqq c\left(1+\ln \left(r_{0} \mid r\right)\right)[u]_{y_{2}, n+2(\Omega)}
\end{aligned}
$$

for all $\alpha=1, \ldots, n$, where b^{0}, b^{a} are defined in (1.3).
Another important result needed for the proof of Theorem 2.1 is the following
Proposition 3.3 [2: pp. 373]: Let- Ω be convex. Then there is a constant $c=c(n$, $\operatorname{diam} \Omega$, meas $\Omega)$ such that for each $\lambda . \in[0, n+2]$ we have

$$
\begin{aligned}
& H^{1,(\lambda)}(\Omega) \subset \mathscr{L}_{1}^{2, \lambda+2}(\Omega), \\
& \|u\|_{\dot{L}_{2}, \dot{\lambda}+2(\Omega)} \leqq c\|u\|_{H 1 .(\lambda)(\dot{\Omega})} \quad \text { for all } u \in H^{1,(\lambda)}(\Omega) .
\end{aligned}
$$

Now we presént a fundamental result concerning the partial regularity of weak solutions to the quasilinear elliptic systems of the type

$$
\begin{equation*}
D_{a}\left[A_{i j}^{\alpha \beta}(x,-u) D_{\beta} u^{i}\right]+A_{i j}^{\beta}(x ; u) D_{\beta} u^{j}=-D_{a} g_{i}^{\alpha}+g_{i} \tag{3.1}
\end{equation*}
$$

Assume that the coefficients $A_{i j}^{a \beta}$ are-uniformly continuous, $A_{i j}^{\beta}$ are continuous in $\Omega \times \mathbf{R}^{N}, g_{i}{ }^{a} \in L^{q}(\Omega), g_{i} \in L^{q / 2}(\Omega), q>n$ and that ($c, \mu>0$ constants)

$$
\begin{aligned}
& \sum_{i, j, \alpha, \beta}\left|A_{i j}^{\alpha \beta}\right|+\sum_{i, j, \beta}\left|A_{i j}^{\beta}\right|+\sum_{i, \alpha}\left\|g_{i}^{\alpha}\right\|_{L^{a}}+\sum_{i}\left\|g_{i}\right\|_{L Q / 2} \leqq c, \\
& A_{i j}^{\alpha \beta}(x, u) \xi_{a}^{i} \xi_{\beta^{j}} \geqq \mu|\xi|^{2} \quad \text { for all }(x, u) \in \Omega \times \mathbf{R}^{N}, \quad \xi \in \mathbf{R}^{n N} .
\end{aligned}
$$

Consider the solutions to the system (3.1) belonging to the space $H^{1} \cap \mathscr{L}^{2, n}(\Omega)$.
Proposition 3.4 [12: pp. 147-149]: Let u be a weak solution of the system (3.1). Suppose that $U(x, r) \rightarrow 0$ as $r \rightarrow 0+$ uniformly in each compact set $K \subset \Omega$. Then $u \in C_{10}^{0, \alpha}(\Omega)$ with $\alpha=1-n / q$ and the $a-p r i o r i$ estimate $\|u\|_{c 0, \alpha(K)} \leqq c_{1}(\mu, c, K$, $\operatorname{dist}(K$, $\partial \Omega)$) hólds.

4. Proof of the results

Let $\Omega_{0} \subset \subset \Omega, x^{0} \in \Omega_{0}$ be fixed, $R_{0}=\min \left\{1, \operatorname{dist}\left(\Omega_{0}, \partial \Omega\right)\right\}$. For $R \in\left(0, R_{0}\right)$ and $u \in H H^{1,(n)}(\Omega)(u$ is a weak solution of the system (0.1)) we define

$$
\begin{align*}
& y=y(x)=\left(x-x^{0}\right) / R \tag{4.1}\\
& u_{R}(y)=\left(u\left(x^{0}+R y\right)-b^{0}\left(x^{0}, R\right)-R\left(b\left(x^{0}, R\right), y\right)\right) / R \tag{4.2}
\end{align*}
$$

where $b^{0}\left(x^{0}, R\right)=b^{0}\left(x^{0}, R, u\right) \in \mathbf{R}^{N}$ and $b\left(x^{0}, R\right)=b\left(x^{0}, R, u\right) \in \mathbf{R}^{n_{N}}$ are the coefficients of the polynomial $P\left(x, x^{0}, R, u\right)$ from (1.3) since $u \in \mathscr{L}_{1}^{2 . n+2}\left(B\left(x^{0}, R\right)\right)$ for each $B\left(x^{0}, R\right) \subset \Omega$ due to Proposition 3.3. From (4.1) it can be seen that for each $a>0$ there exists $R(a) \in\left(0, R_{0}\right]$ such that for all $R \in(0,-R(a))$ we have $B(0,2 a \sqrt{n}) \subset O_{R}$ (O_{R}. is the image of Ω through the transformation (4.1)). From (4.2) it follows that there exists̀a constant $c>0$ such that for each $r>0, y^{0} \in \mathbf{R}^{n}$ and all $R \in\left(0, R\left(y^{0}\right)\right)$ ($R\left(y^{0}\right)=R_{0}$ in the case $y^{0}=0$) we have

$$
\begin{equation*}
\int_{B\left(y^{0}, r\right)}\left|D u_{R}(y)-\left(D u_{R}\right)_{y^{0}, \cdot,}\right|^{2} d y \leqq c[D u]_{\varphi 2, n(\Omega)} r^{n} \tag{4.3}
\end{equation*}
$$

and the equation (1.4) has the following form:

$$
\begin{align*}
& \int_{o_{R}} a_{i}{ }^{\alpha}\left(x^{0}+R y, b^{0}\left(x^{0}, R\right)+R u_{R}(y)+R\left(b\left(x^{0}, R\right), y\right), b\left(x^{0}, R\right)+D u_{R}(y)\right) D_{a} \psi^{i}(y) d y \\
& +\int_{o_{n}} R u_{i}\left(x^{0}-R y, b^{0}\left(x^{0}, R\right)+R u_{R}(y)+R\left(b\left(x^{0}, R\right), y\right), b\left(x^{0}, \stackrel{R}{R}\right)+D u_{R}(y)\right) \psi^{i}(y) d y \\
& =\int_{o_{R}} f_{i}^{\alpha}\left(x^{0}+R y\right) D_{a} \psi^{i}(y) d y+\int_{O_{R}} R f_{i}\left(x^{0}+R y\right) \psi^{i}(y) d y \quad \text { for all } \psi \in C_{0}^{\infty}\left(O_{R}\right) \tag{4.4}
\end{align*}
$$

As previously said, $u \in H_{\mathrm{loc}}^{2}(\Omega)$ and with respect to (4.2) also $u_{R} \in H_{\mathrm{loc}}^{2}\left(O_{R}\right)$. Then it follows that $v_{R}=D_{\gamma} u_{R}$ satisfies the equation in variations

$$
\begin{align*}
& \int_{o_{R}}\left(\partial a_{i}{ }^{\alpha} / \partial p_{i}^{\beta} D_{\beta} v_{R}^{j}+R \partial a_{i}{ }^{\alpha} / \partial u^{k}\left(b_{k}{ }^{\gamma}+\dot{v}_{R}^{k}\right)+R \partial a_{i}{ }^{\alpha} / \partial x_{\gamma}\right) D_{a} \psi^{i} d y \\
& +\int_{0_{R}}\left(R \partial a_{i} / \partial p_{j}{ }^{\beta} D_{\beta} v_{R}^{j}+R^{2} \partial a_{i} / \partial u^{k}\left(b_{k}{ }^{\gamma}+v_{R}^{k}\right)+R^{2} \partial a_{i} / \partial x_{y}\right) \psi^{i} d y \\
& \rightleftharpoons \int_{D_{R}}\left(R \partial f_{i} / \partial x_{\gamma} D_{a} \psi^{i}+R^{2} \partial f_{i} / \partial x_{i}\right) \psi^{i} d y \quad \text { for all } \psi \in C_{0}^{\infty}\left(O_{R}\right) \tag{4.5}
\end{align*}
$$

In what follows we are going to prove that for each $a>0$ the set $\mathcal{A}_{0}=\left\{u_{R}\right.$: $0<R<R(a)\}$ is bounded in $H^{2}(B(0, a))$ by a constant depending only on a. For this reason it is enough to prove the boundedness of sets \mathscr{A}_{0} and $\mathscr{A}_{2}=\left\{D^{2} u_{R}: 0<R\right.$ $<R(a)\}$ in $L^{2}(B(0, a))$. The set $\mathscr{M}_{\mathrm{i}}=\left\{D u_{R}: 0<R<R(a)\right\}$ is then bounded according to the Gagliardo-Nirenberg Theorem (sce, e.g., [3: pp. 25]).

First, let us prove the boundedness of \mathscr{A}_{2}. For $a>0$ denote $B(a)=B(0, a)$. Further choose $\eta \in C_{0}^{\infty}(B(2 a))$ such that $0 \leqq \eta \leqq 1, \eta=1$ on $B(a)$ and $|D \eta| \leqq c / a$. Substituting for ψ in the equation (4.5) the function $\psi(y)=\eta^{2}\left[v_{R}(y)-\left(v_{R}\right)_{0,2}\right]$, we have for each $\varepsilon>0$ from thé assumptions (1.7), (1.8), (1.11)-(1.13), Young's inequality, Proposition 1.1 and properties of the function η that

$$
\begin{align*}
& \nu(L) \int \eta^{2}\left|D v_{R}\right|^{2} d y \\
& \text { B(0. 2a) } \\
& \leqq \underset{B(0,2 a)}{ } \eta^{2}\left|D v_{R}\right|^{2} d y+c(\varepsilon, L) a_{B(0,2 a)}^{-2}\left|v_{R}-\left(v_{R}\right)_{0,2 a}\right|^{2} d y, \\
& +c(\varepsilon, L)\left\{R^{2}\left(1+\left|b\left(x^{0}, R\right)\right|^{2}\right) \int_{B(0,2 a)}\left|\dot{D} u_{R}\right|^{2} d y+\underset{B(0,2 a)}{R^{2}} \int_{X}\left|\dot{D} u_{R}\right|^{4} d y\right. \\
& \left.\therefore+R^{2}\left(1+\left|b\left(x^{0}, R\right)\right|^{2}+\left|b\left(x^{0} ; \underline{R}\right)\right|^{4}\right) a^{n}+R_{B(0,2 a)}^{2}|D \tilde{f}|^{2} d y+R_{B(0,2 a)}^{4}|D \tilde{f}|^{2} d y\right\}, \tag{4.6}
\end{align*}
$$

here $\tilde{f}=\left(f_{i}^{\alpha}\right), \tilde{f}=\left(f_{i}\right), L=L\left(\operatorname{dist}\left(\Omega_{0}, \partial \Omega\right), \operatorname{diam} \Omega ;\|u\|_{H^{1}(n)(\Omega)}\right) ;$ in the case $q<4$ it is necessary to replace the last integral in (4.6) by $R^{q} \int|D f|^{q / 2} d y$. Choosing $\varepsilon>0$ in (4.6) small enough, we obtain

$$
\begin{aligned}
& \int_{B(0, a)}\left|D v_{R}\right|^{2} d y \\
& \leqq c(L)\left\{\begin{array}{l}
a^{-2} \int_{B(0,2 a)}\left|v_{R}-\left(v_{R}\right)_{0,2 a}\right|^{2} d y+\dot{R^{2}(1}+\underset{-}{\left.\left|b\left(x^{0}, R\right)\right|^{2}\right)} \int_{B(0,2 a)}\left|D u_{R}\right|^{2} d y
\end{array}\right. \\
& +R^{2} \int\left|D u_{R}\right|^{4} d y+R^{2}\left(1+\left|b\left(x^{0}, R\right)\right|^{2}+\left|b\left(x^{0}, R\right)\right|^{4}\right) a^{i j}
\end{aligned}
$$

$$
\begin{aligned}
& =c(L)\{A+B+C+D+E+F\} .
\end{aligned}
$$

Estimate now the individual terms in brackets. Since $D u \in \mathscr{L}^{2, n}(\Omega)$, we have

$$
A=a^{-2} \vec{R}_{B\left(x^{0}, 2 a R\right)}\left|\partial u / \partial x_{y}-\left(\partial u / \partial x_{y}\right)_{x^{0}, 2 a R}\right|^{2} d x \leqq c[D u]_{y 2, n(\Omega)} a^{n-2}
$$

Further from Lemma 3.1, Lemma 3.2 and the fact that $D u \in L^{2, \lambda}(\Omega)$ for each $\lambda \in[0, n)$ (according to Proposition 1.1/(c)) wé obtain

$$
\begin{aligned}
B & =\left(1+\left|b\left(x^{0}, R\right)\right|^{2}\right) R^{-n+2} \int_{B\left(x^{0}, 2 a R\right.}^{\prime}\left|D u-b\left(x^{0}, R\right)\right|^{2} d x \\
& \leqq c\left[R^{\lambda+2-n}\left(1+\left|b\left(x^{0}, R\right)\right|^{2}\right) a^{\lambda}+R^{2}\left(\left|b\left(x^{0}, R\right)\right|^{2}+\left|b\left(x^{0}, R\right)\right|^{4}\right)\right] a^{n} \\
& \leqq c\left(\lambda, R_{0}\right)\left(1+\ln ^{4} R\right) R^{\lambda+2-n}\left(a^{\lambda}+a^{n}\right)\|u\|_{H 1,(n)(\Omega)} \\
& \leqq c\left(\bar{\lambda}, \dot{R}_{0},\|u\|_{H 1,(n)(\Omega)}\right)\left(a^{\lambda}+a^{n}\right),
\end{aligned}
$$

where $\dot{i} \in(n-2, n)$ is arbitrary. In estimating the term C we use the fact that $D u \in L^{8, \mu}(Q)$ for each cube $Q \subset \Omega, s \in[1, \infty), \mu \in[0, n)$ (see Proposition 1.1/(c)) and we proceed analogously as in the estimation of term B and obtain $C \leqq c\left(\lambda, R_{0}\right.$, $\left.\|u\|_{H(1, n)(\Omega)}\right) a^{\lambda}$, where $\lambda \in(n-2, n)$ is arbitrary. From Lemma 3.2 it follows that D $\leqq c\left(R_{0}\right) a^{n}$ and from the assumptions (1.11), (1.12) we have $E \leqq c\left(R_{0}, \mathscr{C}_{2}\right) \dot{a}^{n(1-2 / q)}$, $F \leqq \hat{c}\left(R_{0}, \mathscr{C}_{2}\right) a^{n(1-4 / q)}$ in case $q>4$ and $F \leqq c\left(R_{0}, \mathscr{C}_{2}\right)$ in case $q \leqq 4$. From these estimates it then follows

$$
\int_{B(0, a)}\left|D v_{R}\right|^{2} d y \leqq c\left(\mathscr{C}_{2}, R_{0}, \operatorname{diam} \Omega,\|u\|_{H 1,(n)(\Omega)}, a\right) \leqq c(a)
$$

for each $R \in(0, R(a))$. Hence $\int_{B(0, a)}\left|D^{2} u_{R}\right|^{2} d y \leqq c(a)$ for any $R \in(0, R(a))$ and the boundedness of the set \mathscr{M}_{2} is proved.

Now we are going to prove the boundedness of \mathscr{M}_{0}. From Lemma 3:2, Propósition 3.3 and (4.1), (4.2) we have

$$
\begin{aligned}
\int_{B(0, a)}\left|u_{R}(y)\right|^{2} d y= & R^{-n-2} \int_{B\left(x^{0}, a R\right)}\left|u(x)-b^{0}\left(x^{0}, R\right)-\left(b\left(x_{0}^{0}, R\right),\left(x-x^{0}\right)\right)\right|^{2} d x \\
\leqq & 2 a^{n+2}(a R)^{-n-2} \int_{B\left(x^{0}, a R\right)^{\prime}}\left|u(x)-b^{0}\left(x^{0}, a R\right)-\left(b\left(x^{0}, a R\right),\left(x-x^{0}\right)\right)\right|^{2} d x \\
& +2 R^{-n-2} \int_{B\left(x^{0}, a R\right)} \mid b^{0}\left(x^{0}, a R\right)-b^{0}\left(x^{0}, R\right) \\
& +\left.\left(\left(b\left(x^{0}, a R\right)-b\left(x^{0}, R\right)\right),\left(x-x^{0}\right)\right)\right|^{2} d x \\
\because \quad & c[u]_{Y_{1} 2, n+2\left(B\left(x_{0}, a R\right)\right)}\left(1+\ln ^{2} a\right) \max \left\{a^{n}, a^{n+2}\right\} \leqq[D u]_{Y 2, n(\Omega)} c(a)
\end{aligned}
$$

Hence $\int\left|u_{R}(y)\right|^{2} d y \leqq c(a)$ for any $R \in(0, R(a))$ and the boundedness of \mathcal{M}_{0} in $H^{2}(B(0, a))$ is proved.

Compactness of the imbedding of $H^{2}(B(0, a))$ into $H^{1}(B(0, a))$ allows us to choose a sequence $\dot{R}_{k} \rightarrow 0$ such that $u_{R_{k}} \rightarrow z$ in $H^{1}(B(0, a))$. Using the diagonal process we get a subsequence (we use the same notation for it) such that -

$$
\begin{equation*}
\lim _{k \rightarrow \infty} u_{R_{k}}=\dot{z} \text { in } H_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right), \quad \lim _{k \rightarrow \infty} D u_{R_{k}}=D z, \text { a.e. in } \mathbf{R}^{n} \tag{4.7}
\end{equation*}
$$

According to (4.3) we obtain that there exists a constant $c>0$ such that for each $y^{0} \in \mathbf{R}^{n}, r>0$ there holds

$$
\begin{equation*}
\int_{B\left(y^{0} \cdot r\right)}\left|D z(y)-(D z)_{\nu^{\circ} \cdot r}\right|^{2} d y \leqq c[D u]_{Y 2 . n(\Omega)} r^{n} . \tag{4.8}
\end{equation*}
$$

Further we deduce from (4.4) the equation for the limit function z. For passing to the limit in equation (4.4) the behaviour of $\sup \left\{b\left(x^{0}, R_{k}\right):-k=1,2, \ldots\right\}$ is important. Remember for the following considerations that $R b\left(x^{0}, R\right) \rightarrow 0, b^{0}\left(x^{0}, R\right) \rightarrow B^{0} \in \mathbf{R}^{N}$ as $R \rightarrow 0+$ exist due to Lemma 3.2 and from the definition of u_{R} follows boundedness of the set $\left\{u_{R}: R>0\right\}$ by a constant independent of R.
(a) Let $\sup \left\{\left|b\left(x^{0}, R_{k}\right)\right|: k=1,2, \ldots\right\}$ be a finite number. In this case there exists a subsequence (we use the same notation for it) $\left\{b\left(x^{0}, R_{k}\right)\right\}$ such that $b\left(x^{0}, R_{k}\right) \rightarrow B \in \mathbf{R}^{n N}$ as $k \rightarrow \infty$. According to (1.6), (1.12), (4.7) and the Vitali Convergence Theorem we can pass to the limit with $k \rightarrow \dot{\infty}$ in the equation (4.4) (for the fixed function ψ). We see that the second integral on the left-hand side and the integrals on the right-hand side in (4.4) tend to zero. Thus we obtain that $B+D z(y)$ is a weak solution of the system

$$
\int_{\mathbf{R}^{n}} a_{i}{ }^{a}\left(x^{0}, B^{0}, B+D z\right) D_{a} \psi^{i} d y=0 \quad \text { for all } \psi, \in H_{0}^{i}\left(\mathbf{R}^{n}\right)
$$

Now from the Liouville property of the system (1.4) it follows that z is a polynomial of at most first degree.
(b) Let $\sup \left\{\left|b\left(x^{0}, R_{k}\right)\right|: k=1,2, \ldots\right\}$ be infinite. In this case we can suppose $\left|b\left(x^{0}, R_{k}\right)\right| \rightarrow \infty$ as $k \rightarrow \infty$. Denoting in the sequel $b_{k}=b\left(x^{0}, R_{k}\right), b_{k}{ }^{0}=b^{0}\left(x^{0}, R_{k}\right)$, $u_{k}(y)=u_{R_{k}}(y), w_{k}(y)=R_{k}\left(u_{R_{k}}(y)+\left(b\left(x^{0}, R_{k}\right), y\right)\right)$ we can rewrite equation (4.4) as follows:

$$
\int_{\mathbf{R}^{n}}\left[a_{i}^{\alpha}\left(x^{0}+R_{k} y, b_{k}^{0}+w_{k}(y), b_{k}+D u_{k}(y)\right)-\dot{a}_{i}^{\alpha}\left(x^{0}+R_{k} y, b_{k}^{0}+w_{k}(y), b_{k}\right)\right.
$$

$$
+a_{i}^{\alpha}\left(x^{0}+R_{k} y, b_{k}^{0}+w_{k}(y), b_{k}\right)-a_{i}^{\alpha}\left(x^{0}+R_{k} y, b_{k}^{0}, b_{k}\right)
$$

$$
\left.+a_{i}^{\alpha}\left(x^{0}+R_{k} y, \dot{b}_{k}{ }^{0}, b_{k}\right)-a_{i}^{\alpha}\left(x^{0}, b_{k}{ }^{0}, b_{k}\right)\right] D_{a} \psi^{i}(y) d \dot{y}
$$

$$
+R_{\mathbf{R}^{n}} \int_{i} a_{i}\left(x^{0}+R_{k} y, b^{0}+w_{k}(y), b_{k}+D u_{k}(y)\right) \psi^{i}(y) d y
$$

$$
=\int_{\mathbf{R}^{n}} f_{i}^{a}\left(x^{0}+R_{k} y\right) D_{a} \psi^{i}(y) d y+R_{k} \int_{\mathbf{R}^{n}} f_{i}\left(x^{0}+R_{k} y\right) \psi^{i}(y) d y \quad \text { for all } \psi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)
$$

Using the theorem on the mean value in the integrals from the previous system we can rewrite this system in the following form:

$$
\begin{aligned}
& \int_{\mathbf{R}^{n}} \int_{0}^{1} \partial a_{i}^{\alpha} / \partial p_{j}^{\beta}\left(x^{0}+R_{k} y, b_{k}^{0}+w_{k}(y), b_{k}+t D u_{k}(y)\right) D_{\beta} u_{k}^{j}(y) D_{a} \psi^{i}(y) d t d y \\
& +R_{k} \int_{\mathbf{R}^{n}}^{1} \int_{0}^{1} \partial a_{i}^{\alpha} / \partial u^{s}\left(x^{0}+R_{k} y, b_{k}^{0}+t u_{k}(y), b_{k}\right) w_{k}{ }^{\beta}(y) D_{a} \psi^{i}(y) d t d y \\
& +R_{k} \int_{\mathbf{R}^{n}} \int_{0}^{1} \partial a_{i}^{\alpha} / \partial x_{y}\left(x^{0}+t R_{k} y, b_{k}^{0}, b_{k}\right) y_{y} D_{a} \psi^{i}(y) d t d y \\
& +R_{k} \int_{\mathbf{R}^{n}} a_{i}\left(x^{0}+R_{k} y, b_{k}^{0}+w_{k}(y), b_{k}+D u_{k}(y)\right) \psi^{i}(y) d y \\
& =\int_{\mathbf{R}^{n}} f_{i}^{\alpha}\left(x^{0}+R_{k} y\right) D_{a} \psi^{i}(y) d y+R_{k} \int_{\mathbf{R}^{n}}^{j} f_{i}\left(x^{0}+R_{k} y\right) \psi^{i}(y) d y \quad \text { for all } \psi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)
\end{aligned}
$$

Taking into account (1.7), (1.9), (1.10), (1.12), (4.7) we can pass in the previous equation to the limit with $k \rightarrow \infty$ (for the fixed function ψ) and we have that the second, third and fourth integral in the left-hand side and the integrals on the right-hand side tend to zero. Due to (1.10) and the assumption $\left|b\left(x^{0}, R_{k}\right)\right| \rightarrow \infty$ as $k \rightarrow \infty$, we obtain that the function z satisfies the equation

$$
\int_{\mathbf{R}^{n}} d_{i j}^{\alpha \beta}\left(x^{0}, B^{0}\right) D_{\beta} z^{i} D_{a} \psi^{i} d y=0 \quad \text { for all } \psi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)
$$

It is a linear elliptic system with the same constant of ellipticity and constant coefficients and by means of (4.8) we have that $D z \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$. In this case z is a polynomial at most first degree again.

Returning to the x-coordinates, we prove that for each $x^{0} \in \Omega_{0}$ there exists a sequence $R_{k} \rightarrow 0$ such that

$$
\begin{equation*}
\lim _{R_{k} \rightarrow 0} \underset{B\left(x^{0} . R_{k}\right)}{ } \mid D u(x)-(D u)_{x^{0},\left.R_{k}\right|^{2}} d x=0 . \tag{4.9}
\end{equation*}
$$

We have

$$
\begin{gathered}
\underset{B\left(x^{0} \dot{R}_{k}\right)}{f}\left|D u(x)-(D u)_{x^{0}, R_{k}}\right|^{2} d x=\int_{B(0,1)}\left|D u_{R_{k}}(y)-\left(D u_{R_{k}}\right)_{0.1}\right|^{2} d y \\
\quad \leqq \cdot \int_{B(0,1)}\left|D u_{R_{k}}-t\right|^{2} d y \quad \text { for all } t \in \mathbf{R}^{n N}
\end{gathered}
$$

Now we put $t=D z$ ($D z$ is a constant) and, passing to the limit, we see that (4.9) holds.

Now let us consider the equation in variations for the system (1.4) in Ω_{0}. If we denote by v_{γ} the derivative $D_{\gamma} u$, we get as before that .

$$
\begin{aligned}
& \int_{\Omega_{0}}\left(\partial a_{i}^{\alpha} / \partial p_{j}^{\beta} D_{\beta} v_{\gamma}^{j}+\partial a_{i}^{\alpha} / \partial u^{k} v_{\gamma}^{k}+\partial a_{i}^{\alpha} / \partial x_{y}\right) D_{a} \varphi^{i} d x \\
& +\int_{\Omega_{0}}\left(\partial a_{i} / \partial p_{1}^{\beta} D_{\beta} v_{\gamma}^{j}+\partial a_{i} / \partial u^{k} v_{\gamma}^{k}+\partial a_{i} / \partial x_{\gamma}\right) \varphi^{i} d x \\
& =\int_{\Omega_{0}}\left(\partial f_{i}^{\alpha} / \partial x_{\gamma} D_{a} \varphi^{i}+\partial f_{i} / \partial x_{\gamma} \varphi^{i}\right) d x \quad \text { for all } \varphi \in C_{0}^{\infty}\left(\Omega_{0}\right), \quad \gamma=1, \ldots, n
\end{aligned}
$$

Set
$A_{i j}^{\alpha \beta}(x, v)=\partial a_{i}{ }^{\alpha} / \partial p_{i}^{\beta}(x, u(x), v), \quad A_{i j}^{\beta}(x, v)=\partial a_{i} / \partial p_{j}{ }^{\beta}(x, u(x), v)$,
$g_{i}{ }^{\alpha \nu}(x)=-\partial a_{i}{ }^{\alpha} / \partial u^{k}(x, u(x), D u(x)) v_{\gamma}{ }^{k}(x)-\partial a_{i}{ }^{\alpha} / \partial x_{y}(x, u(x), D u(x))+\partial f_{i}^{\alpha} / \partial x_{y}(x)$,
$\dot{g}_{i}{ }^{\gamma}(x)=-\partial a_{i} / \partial u^{k}(x, u(x), D u(x)) v_{y}^{k}(x)-\partial a_{i} / \partial x_{y}(x, u(x), D u(x))+\partial f_{i} / \partial x_{y}(x)$.
From the assumption of the theorem it follows that $A_{i}^{\alpha \beta}$ are uniformly continuous and bounded in $\Omega_{0} \times \mathbf{R}^{n N}, A_{i j}^{\beta}$ are continuous and bounded in $\Omega_{0} \times \mathbf{R}^{n N}, g_{i}{ }^{\alpha y} \in L^{q}\left(\Omega_{0}\right)$ and $g_{i}^{y} \in L^{a / 2}\left(\Omega_{0}\right)$. Then the system (4.10) can be rewritten as

$$
\begin{aligned}
& \int_{\Omega_{0}} \delta_{\theta_{y}}\left[A_{i j}^{\alpha \beta}(x, v) D_{\beta} v_{\gamma}^{j} D_{a} \varphi_{\theta}{ }^{i}+A_{i j}^{\beta}(x, v) D_{\beta} v_{\gamma}^{j} \varphi_{\theta}{ }^{i}\right] d x, \\
& =\int_{\Omega_{0}}\left[g_{i}^{\alpha \theta}(x) D_{a} \varphi_{\theta}{ }^{i}+g_{i}{ }^{\theta}(x) \varphi_{0}{ }^{i}\right] d x \quad \text { for all } \varphi \in C_{0}^{\infty},\left(\Omega_{0}\right) .
\end{aligned}
$$

Thus v is a solution of a quasilinear system of the type (3.1) for which partial regularity (Proposition 3.4) holds ((4.9) guarantees that the assumption of Proposition 3:4 is satisfied)

Proof of Proposition 2.2: Let $v \in H_{\mathrm{loc}}^{1}\left(\mathbf{R}^{2}\right)$ with $D v \in \operatorname{BMO}\left(\mathbf{R}^{2}\right)$ be a weak solution in \mathbf{R}^{2} of

$$
\int_{\mathbf{R}^{2}} a_{\mathrm{i}}{ }^{\alpha}\left(x^{0}, u, D v\right) D_{a} \varphi^{\mathbf{i}}(x) d x=0 \quad \text { for all } \varphi \in C_{0}^{\infty}\left(\mathbf{R}^{2}\right)
$$

The equation in variations is

$$
\begin{equation*}
\int_{\mathbf{R}^{2}} \partial a_{i}^{a} / \partial p_{l}^{\beta}\left(x^{0}, u, D v\right) D_{\beta} v_{y}^{j} D_{a} \varphi^{i} d x=0 \quad \text { for all } \varphi \in C_{0}^{\infty}\left(\mathbf{R}^{2}\right), \tag{4.11}
\end{equation*}
$$

where $v_{\nu}=D_{\gamma} v$. Now we prove that $D v_{y} \in L^{2}\left(\mathbf{R}^{2}\right)$. Let $y^{0} \in \mathbf{R}^{2}, T>0$ be an arbitrary constant. Setting $\varphi^{i}=\eta^{2}\left(v_{r^{i}}^{i}-\left(v_{r}{ }^{i} \nu_{\nu^{0} .2 T}\right), \eta \in C_{0}^{\infty}\left(B\left(y^{0}, 2 T\right)\right), 0 \leqq \eta \leqq 1, \eta=1\right.$ in $B\left(y^{0}, T\right),\left|D_{\eta}\right| \leqq c / T$ in equation (4.11), we get, $\int\left|D v_{y}\right|^{2} d x \leqq c$ for $\gamma=1, \ldots, n$,

$$
B\left(\boldsymbol{\nu}^{0} \cdot T\right)
$$

where c is independent of y^{0} and I. It is known that a sequence $\left\{\varphi_{k}\right\} \subset C_{0}^{\infty}\left(\mathbf{R}^{2}\right)$ exists such that $D \varphi_{k} \rightarrow D v_{y}$ in $L^{2}\left(\mathbf{R}^{2}\right)$ and therefore from (4.11) we have

$$
\int_{\mathbf{R}^{\mathbf{1}}} \partial a_{\mathbf{i}^{\alpha}} / \partial p_{i}{ }^{\beta}\left(x^{0}, u, D v\right) D_{\beta} v_{\gamma}^{j} D_{\mathrm{a}} v_{\gamma}^{i} d x=0
$$

and together with the condition of ellipticity (1.13) gives the result

REFERENCES

[1] Campanato, S.: Proprieta di una famiglia di spazi funzionali, Ann. Scuola Nor. Sup. Pisa 18 (1964,) $137-160$.
[2] Campanato, S.: Equazioni ellittiche del II^{0} ordine e spazi $\mathscr{L}(2, \lambda)$. Ann. Mat. Pura Appl. 69 (1965), $321-381$.
[3] Campanato, S.: Sistemi ellittici in forma divergenza. Regolarita all'interno. Pisa: Scuola Normale Superiore 1980.
[4] Dañěčec, J.: Regularita slabých řešení nelineárnich eliptických systémů. 'Thesis. Praha::-Mat.-Fyz. Fakulta Univ. Carol. 1984.
[5] Daně̌ek, J.: Regular̃ity for nonlinear elliptic šystems of second order. Comment. Math. Univ. Carolinae 27 (1986), 755-764.
[6] Graquista, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton: University Press 1983.
[7] Giaquinta, M., and J. Nečas: On the regularity of weak solutions tó nonlinear elliptic systems via Liouville's property. Comment. Math. Univ. Carolinac $\mathbf{2 0}$ (1979), 111-121.
[8] Glaquinta, M., and J. NeC̆as: On the rëgularity of weak solutions to nonlinear elliptic systems of partial differential equations. J. Reine-Angew. Math. 316 (1980), 140-159.
[9] Glaquinta, M.; Nečas, J., John, O., and J. Stará: On the regularity up to the boundary . for second order nonlinear elliptic systems: Pac. J. Math. 99 (1982), 1-17.
[10] Кошелев, А. И.: О точных условиях гладкости решений эллиптичесних систем и , теореме Лиувилля. Докл. Акал. Наук СССР 265 (1982), 1309-1311.
[11] Merer, M. : Liouville theorems for nondiagonal elliptic system in arbitrary dimensions Math. Z. 176(1981), 123-133.
[12] Nečas, J.: Introduction to the theory of nonlinear elliptic equations (Teubner-Texte zur Mathematik: Band $\overline{5} 2$). Leipzig: G. B. Teubner Verlagsges. 1983.
[13] Nečas, Ј., и О: А. ОлЕйник: Теоремы Лиувилля для эллиптических систем. Докл. Акад. Наук СССР 252 (1980), 1312-1316.
[14] Nečas, J.; John, O., and J. Stará: Counterexample to the regularity of weak solution of elliptic systems. Comment. Math. Univ. Carolinae 21 (1980), 145-154.
[15] Staráá, J., Danéček, J., and O. John : Liouville type condition and the interior regularity of quasilinear parabolic system (the case of BMO-solutions). Comment. Math. Univ. Carolinae 28 (1987), 103-109.

Manuskripteingang: 26.09. 1988; in revidierter Fassung: 06. 12. 1989.

VERFASSER:

Josef Dancéer
Katedra matematiky, fakulta stavební
Vysoké učenítechnické Brno
Barvicova 85
CS-66237 Brno

