Error Estimates for Finite-Element Solutions of Elliptic Boundary Value Problems in Non-Smooth Domains

A.-M. Sändig

Es werden Fehlerabschätzungen in verschiedenen Normen (nämlich in $W^{m,2}(\Omega)$ und $L^p(\Omega)$, $2 \leq p \leq \infty$) von standarden Finite-Element-Lösungen von elliptischen Randwertproblemen in beschränkten Gebieten im \mathbb{R}^N mit konischen Punkten oder nichtüberschneidenden Kanten betrachtet.

Rассматриваются оценки погрешности в различных нормах (а именно в $W^{m,2}(\Omega)$ и $L^p(\Omega)$, $2 \leq p \leq \infty$) от стандартных конечно-элементных решений эллиптических граничных проблем в ограниченных областях в \mathbb{R}^N с коническими точками или непересекающими ребрами.

Error estimates in different norms (namely in $W^{m,2}(\Omega)$ and $L^p(\Omega)$, $2 \leq p \leq \infty$) of standard Finite-Element Solutions of elliptic boundary value problems in bounded domains in \mathbb{R}^N with conical points or non-intersecting edges are considered.

0. Introduction

Boundary value problems are difficult to treat numerically when they are defined in domains with non-smooth boundaries or when the type of the boundary conditions changes. In this situation standard techniques lose accuracy near the resulting singularities and global pollution takes place. The reason for the appearance of this effect is the lower regularity of the solutions of such problems in comparison with those having smooth boundaries. Therefore we first study the regularity of the solutions of elliptic boundary value problems in domains with conical points or non-intersecting edges in the framework of weighted Sobolev spaces using results of V. A. Kondrat'jev [5–7] and V. G. Maz'ja and B. A. Plamenevskij [9–12]. We formulate under which conditions these regularity results are valid for weak solutions of the boundary value problem, too. We introduce standard "Finite-Element" spaces and prove error estimates in different norms, namely in $W^{m,2}(\Omega)$ and $L^p(\Omega)$, $2 \leq p \leq \infty$, using essentially the above-mentioned regularity results for the weak solutions of the boundary value problems. The investigation of non-symmetric bilinear forms is included. Results of H. Blum [1] and M. Dobrowolski [3] are special cases.

1. The boundary value problems

1.1 The domains. (i) An infinite cone $K \subset \mathbb{R}^N$ with the vertex O is defined by its surface equation

$$x_N^{2p} = \sum_{i_1 + \cdots + i_N = 2p} a_{i_1 \cdots i_N} x_1^{i_1} \cdots x_{N-1}^{i_{N-1}} + q(x),$$

where $\sum_{i_1 + \cdots + i_N = 2p} a_{i_1 \cdots i_N} x_1^{i_1} \cdots x_{N-1}^{i_{N-1}} \geq 0$, q is a smooth function such that $|q(x)| = o((x_1^2 + \cdots + x_{N-1}^2)^p)$, $p > 0$ and $x = (x_1, \cdots, x_N)$.
(ii) Let Ω be an open subset of \mathbb{R}^N with the compact closure $\bar{\Omega}$ whose boundary $\partial \Omega$ is an $(N - 1)$-dimensional manifold. $0 \in \partial \Omega$ is a conical point if there is a neighbourhood $U(0)$ of 0 such that $U(0) \cap \Omega$ is diffeomorphic to a cone K intersected with the unit ball. The interception of K with the unit sphere is a domain G with a smooth boundary ∂G. If $N = 2$, then the conical points are corner points (with the angle $\omega_0 = \pi$).

(iii) $D \subset \mathbb{R}^N$, $N \geq 3$, is a dihedral angle if $D = K \times \mathbb{R}^{N-2}$, where $K = \{y \in \mathbb{R}^2 : 0 < r < \infty, 0 < \omega < \omega_0\}$ is an infinite cone with the sides $\gamma^+ = \{y \in \mathbb{R}^2 : \omega = \omega_0\}$ and $\gamma^- = \{y \in \mathbb{R}^2 : \omega = \omega_0\}$. The faces of D are $\Gamma^\pm = \gamma^\pm \times \mathbb{R}^{N-2}$ and the edge of D is $M_D = \{(0, 0)\} \times \mathbb{R}^{N-2}$.

(iv) Let $\Omega \subset \mathbb{R}^N$, $N \geq 3$, be a bounded domain with the $(N - 1)$-dimensional boundary $\partial \Omega$. Ω is a domain with non-intersecting $(N - 2)$-dimensional edges $M_1, \ldots, M_{T-1} \subset \partial \Omega$ if $M = M_1 \cup \cdots \cup M_{T-1}$ divides $\partial \Omega$ in smooth disjoint connected components $\Gamma_1, \ldots, \Gamma_T$ (the faces) such that $\partial \Omega = M \cup \Gamma_1 \cup \cdots \cup \Gamma_T$ and if there is a neighbourhood of each point of M in which Ω is diffeomorphic to an N-dimensional dihedral angle D.

1.2 The differential operators. We consider the linear differential operators

$$A(x, D_x) = \sum_{|\gamma| \leq m} (-1)^{|\gamma|} \partial^\gamma (a_{\gamma}(x) D_{x}^\gamma) = \sum_{|\gamma| \leq m} a_{\gamma}(x) D_{x}^\gamma$$

and

$$B_j(x, D_x) = \sum_{|\gamma| \leq m_j} b_{j,\gamma}(x) D_{x}^\gamma \quad (x \in \partial \Omega \setminus M; j = 1, \ldots, m),$$

where M is the set of conical points or the set of edges. We denote

$$D_{x}^\gamma = (-1)^{|\gamma|} \frac{\partial^{|\gamma|}}{\partial x_1^{\gamma_1} \cdots \partial x_N^{\gamma_N}} \quad (x \in \Gamma_q; q = 1, \ldots, T),$$

where the coefficients $b_{j,\gamma}$ are smooth on Γ_q. Assume that A are smooth in $\bar{\Omega}$ and those of B_j are smooth on the sides or faces of $\partial \Omega$. If $N = 2$, the change of the type of the boundary conditions is admissible, also for $\omega_0 = \pi$. If $N \geq 3$ and Ω is a domain with non-intersecting edges, we write instead of (1.2)

$$B_j(q)(x, D_x) = \sum_{|\gamma| \leq m_j} b_{j,\gamma}(x) D_{x}^\gamma \quad (x \in \Gamma_q; q = 1, \ldots, T),$$

where the coefficients $b_{j,\gamma}$ are smooth on Γ_q. Assume that A is elliptic and (B_1, \ldots, B_m) or $(B_1(q), \ldots, B_m(q))$ are normal systems on $\partial \Omega \setminus M$ which cover A. We denote by

$$A(x, D_x) = \{A(x, D_x), B_1(x, D_x), \ldots, B_m(x, D_x)\},$$

$$A(x, D_x) = \{A(x, D_x), B_1(q)(x, D_x), \ldots, B_m(q)(x, D_x)\}_{q=1}^T$$

the operators defined by (1.1) and (1.2) or by (1.1) and (1.2'), respectively.

1.3 The spaces. We introduce the linear spaces mapping by the operators $A(x, D_x)$:

(i) The space $V^{k,p}(\Omega, \beta(\cdot))$ is the closure of the set $C^\infty_0(\Omega) = \{u \in C^\infty(\bar{\Omega}) : \text{supp} u \cap M = \emptyset\}$ with respect to the norm

$$\|u; V^{k,p}(\Omega, \beta(\cdot))\| = \left(\sum_{|\gamma| \leq k} \int_{\partial \Omega} \tau^{p(\beta(\zeta) - k + |\gamma|)} |D^\gamma u|^p \, d\zeta \right)^{1/p},$$

where $\tau = r(x) = \text{dist}(x, M) = |x - \zeta|$, $\zeta \in \partial \Omega$, $\beta = \beta(\cdot)$ is a smooth function defined on M. ζ is uniquely determined if x is sufficiently close to M, $\beta = \beta(\cdot) = \text{const}$ if M consists of one conical point only.
(ii) Let Ω be a domain with a single conical point 0. Then the factor space
\[V^{k-l,p}(\partial \Omega, \beta) = V^{k,p}(\Omega, \beta)/V_0^{k,p}(\Omega, \beta) \] (1.5)
is the space of traces, where $V^{k,p}(\Omega, \beta)$ is the closure of the set $C^{\infty}_c(\Omega)$ with respect to the norm (1.4). Let Ω be a domain with non-intersecting edges and the faces Γ_q. The space of traces on Γ_q of functions from $V^{k,p}(\Omega, \beta(\cdot))$ is the factor space
\[V^{k-l,p}(\Gamma_q, \beta(\cdot)) = V^{k,p}(\Omega, \beta(\cdot))/V_0^{k,p}(\Gamma_q, \beta(\cdot)) \] (1.6)
where $V_0^{k,p}(\Omega, \Gamma_q, \beta(\cdot))$ is the closure of $C^{\infty}_c(\Omega)$ with respect to the norm (1.4).

1.4 The boundary value problems. (i) Let $\mathcal{A}(x, D_x)$ be given by (1.3) or (1.3'); and let $l \geq 0$ be an integer. We consider the operators
\[\mathcal{A}(x, D_x) : V^{l,p}(\Omega) \rightarrow V^{l,p}(\Omega) \times \prod_{j=1}^m V^{2m+l-m_j-l/p,p}(\partial \Omega, \beta) \] (1.7)
or, in the second case,
\[\mathcal{A}(x, D_x) : V^{l,p}(\Omega, \beta(\cdot)) \rightarrow V^{l,p}(\Omega, \beta(\cdot)) \times \prod_{q=1}^T \prod_{j=1}^m V^{2m+l-m_j-l/p,p}(\Gamma_q, \beta(\cdot)) \] (1.7')
That means we consider the "classical" problem: investigate the solvability, uniqueness and regularity of
\[A(x, D_x) u(x) = f(x) \text{ in } \Omega, \quad B_j(x, D_x) u(x) = g_j(x) \text{ on } \partial \Omega \] (1.8)
or
\[A(x, D_x) u(x) = f(x) \text{ in } \Omega, \quad B_j^{(q)}(x, D_x) u(x) = g_j^{(q)}(x) \text{ on } \Gamma_q \] (1.8')
or, especially, of
\[A(x, D_x) u(x) = f(x) \text{ in } \Omega, \quad B_j(x, D_x) u(x) = 0 \text{ on } \partial \Omega \] (1.9)
or
\[A(x, D_x) u(x) = f(x) \text{ in } \Omega, \quad B_j^{(q)}(x, D_x) u(x) = 0 \text{ on } \Gamma_q \] (1.9')
in the above-mentioned weighted Sobolev spaces.

(ii) Assume that the boundary value problem (1.9) or (1.9') can be formulated as a weak problem: find a solution $u \in V$ such that, for a given $f \in V^*$,
\[a(u, v) = \int_{\partial \Omega} \sum_{|\beta| \leq m} a_{\beta}(x) \partial^\beta u \partial^\beta v \, dx = (f, v) \quad \forall v \in V \] (1.10)
and investigate the regularity if f is from a subspace of V^*. V is a subspace of $W^{m,2}(\Omega)$ which is determined by the essential boundary conditions of (1.9) or (1.9'); V^* is its dual space and the relation (1.10) guarantees that the non-essential boundary conditions are satisfied. $W^{m,2}(\Omega)$ denotes the usual Sobolev space.

2. Solvability and regularity results

We formulate without proofs solvability and regularity results of V. A. Kondrat'ev, V. G. Maz'ya and B. A. Plamenevskij. We investigate when these regularity results are also valid for weak solutions u of (1.10).

2.1 Solvability and regularity results for domains with conical points. Let Ω be a bounded domain with a single conical point 0. For simplicity, we assume that there is a ball-neighbourhood of 0 where Ω coincides with the cone K.
(i) First we consider a special boundary value problem in K, which is generated by the principal parts of the operators (1.1) and (1.2) with frozen coefficients at $0 (j = 1, \ldots, m)$:

$$A_0(0, D_z) u(x) = \sum_{|a|=2m} a_{a}(0) D^a u(x) = f(x) \quad \text{in } K,$$

$$B_{0j}(0, D_z) u(x) = \sum_{|a|=m} b_{j,a}(0) D^a u(x) = g_{j}(x) \quad \text{on } \partial K.$$

Introducing polar coordinates (r, ω), setting $r = e^\lambda$ and using the complex Fourier transform $\int e^{-i\lambda f(r)} \, dr = \hat{f}(\lambda)$, we obtain a boundary value problem with parameter λ in the domain $G = \Omega \cap \text{"sphere of the ball-neighbourhood"}$:

$$L(\omega, D_w, \lambda) \hat{u}(\lambda, \omega) = \hat{f}(\lambda, \omega) \quad \text{for } \omega \in G,$$

$$M_j(\omega, D_w, \lambda) \hat{u}(\lambda, \omega) = \hat{g}_j(\lambda, \omega) \quad \text{for } \omega \in \partial G (j = 1, \ldots, m),$$

where $A_0(0, D_z) = r^{-2m} L(\omega, D_w, rD_z)$, $B_{0j}(0, D_z) = r^{-m} M_j(\omega, D_w, rD_z)$. The corresponding operator $\mathfrak{G}_0(\lambda) = (L(\omega, D_w, \lambda), M_j(\omega, D_w, \lambda))_{j=1}^{m}$ maps $W^{2m+1,p}(G)$ into $W^{1,p}(G) \times \prod_{j=1}^{m} W^{2m+1-l-m_{j-1},p}(G)$.

(ii) The distribution of the generalized eigenvalues of $\mathfrak{G}_0(\lambda)$ plays an important role both for the solvability and for the regularity of problem (1.8). The following theorems were proved by V. A. Kondrat'ev [5: Theorem 3.2] for $p = 2$ and by V. G. Maz'Ja and B. A. Plamenevskii [10: Theorem 6.1] for $p \neq 2$.

Theorem 1: $\mathfrak{G}(x, D_z)$ defined by (1.7) is a Fredholm operator if and only if no eigenvalue of $\mathfrak{G}_0(\lambda)$ lies on the line $\text{Im } \lambda = \beta + N/p - 2m - 1$.

Theorem 2: If no eigenvalue of $\mathfrak{G}_0(\lambda)$ is situated in the strip $\beta_1 + N/p - 2m - l \leq \text{Im } \lambda \leq \beta + N/p - 2m - l$, then the solution $u \in V^{1,2m,p}(\Omega, \beta)$ of (1.9) is contained in $V^{1,2m,p}(\Omega, \beta_1)$, too, provided $f \in V^{1,p}(\Omega, \beta) \cap V^{1,p}(\Omega, \beta_1)$. Here l and l_1 are non-negative integers.

If eigenvalues λ_j of $\mathfrak{G}_0(\lambda)$ lie in the strip $h_1 = \beta_1 + N/p - 2m - l < \text{Im } \lambda < \beta + N/p - 2m - l = h$ (but not on the lines $\text{Im } \lambda = h$, $\text{Im } \lambda = -h_1$), then the following expansion holds near 0:

$$\eta \eta = \sum_{h_1 < \text{Im } \lambda < h} \sum_{\mu=0}^{[h-h_1]} \frac{1}{\mu!} P_{\mu}(\log r) + w,$$

where η is an appropriate cut-off function, $\eta \in V^{1,2m,p}(\Omega, \beta_1), [h-h_1]$ is the biggest integer which is less than $h-h_1$, P_{μ} are polynomial functions with coefficients depending on ω.

2.2 Solvability and regularity results for domains with edges. Let Ω be a bounded domain with the only edge M. We consider a point $z_0 \in M$ and assume for simplicity that Ω coincides in a ball-neighbourhood of z_0 with a dihedral angle $D = K \times M$. We take in this neighbourhood the coordinate system $x = (y, z) = (y_1, y_2, z_1, \ldots, z_{N-2})$, $y \perp z$, $y \in K$, $z \in M$.

(i) We start with a special boundary value problem in D, which is generated by the principal parts of the operators \mathfrak{A} and $\mathfrak{B}^{(q)}$ defined by (1.1) and (1.2'), $q = 1, 2$:

$$A_0(z_0, D_z) u(x) = A_0(z_0, D_y D_z) u(x)$$

$$= \sum_{|a|=2m} a_a(z_0) D_y^{a_1} D_z^{a_2} u(x) = f(x) \quad \text{in } D,$$
\[
B_{j}^{+}(z_{0}, D_{j}) u(x) = B_{j}^{-}(z_{0}, D_{j} D_{j}) u(x) = \sum_{|a|=m_{j}+1} b_{j}^{+}(z_{0}) D_{j}^{a} D_{j}^{a} u(x) = g_{j}(x) \text{ on } \Gamma^{\pm}.
\]

Here \(\pm \) is used instead of \(q = 1, 2 \), \(\Gamma^{\pm} \) are the faces of \(D, j = 1, \ldots, m \). After appropriate transformations we get a two-dimensional boundary value problem with parameters in the cone \(K \), namely

\[
A_{0}(z_{0}, D_{0}, \theta) \hat{u} = \hat{f} \quad \text{in } K,
\]

\[
B_{j}^{\pm}(z_{0}, D_{j}, \theta) \hat{u} = \hat{g}_{j} \quad \text{on } \partial K, \theta \in S^{N-3}.
\]

Here \(S^{N-3} \) is the sphere of the unit ball in \(\mathbb{R}^{N-2} \). We denote

\[
\mathcal{A}_{0}(z_{0}, \theta) = \{ A_{0}(z_{0}, D_{0}, \theta), B_{j}^{\pm}(z_{0}, D_{j}, \theta) \}_{j=1,...,m},
\]

\[
\mathcal{A}_{0}(z_{0}, \lambda) = \{ L(\omega, D_{0}, \lambda), M_{j}^{\pm}(\omega, D_{j}, \lambda) \}_{j=1...,m},
\]

where

\[
A_{0}(z_{0}, D_{0}, \theta) = r_{z_{0}}^{-2m} L(\omega, D_{0}, r_{z_{0}} D_{r_{z_{0}}}),
\]

\[
B_{j}^{\pm}(z_{0}, D_{j}, \theta) = r_{z_{0}}^{-m_{j}+1} M_{j}^{\pm}(\omega, D_{j}, r_{z_{0}} D_{r_{z_{0}}})
\]

and \(r_{z_{0}} = |x - z_{0}| \). We have

\[
\mathcal{A}_{0}(z_{0}, \lambda) : W^{2m,2}(G) \to L^{q}(G) \times C^{m} \times C^{n}, \quad (2.1)
\]

where \(G = \{ \omega : 0 < \omega < w_{0} \} \), for \(l = 0 \), \(p = 2 \).

(i) The following properties of \(\mathcal{A}_{0}(z_{0}, \theta) \) and \(\mathcal{A}_{0}(z_{0}, \lambda) \) determine the solvability and regularity of problem (1.9):

\[
\text{ker } \mathcal{A}_{0}(z_{0}, \theta) \text{ and coker } \mathcal{A}_{0}(z_{0}, \theta) \text{ are trivial for all } \theta \in S^{N-3} \}
\]

and for all \(z_{0} \in M_{0} \).

\[
\text{The line Im } \lambda(z_{0}) = \beta(z_{0}) + 1 - 2m \text{ does not contain eigenvalues of } \mathcal{A}_{0}(z_{0}, \lambda) \text{ for all } z_{0} \in M. \quad (2.2)
\]

We introduce the eigenvalues \(\lambda_{-}(z_{0}) \) and \(\lambda_{+}(z_{0}) \) of \(\mathcal{A}_{0}(z_{0}, \lambda) \) by the property:

\[
\text{The strip } \text{Im } \lambda_{-}(z_{0}) < \beta(z_{0}) + 1 - 2m < \text{Im } \lambda_{+}(z_{0}) \text{ is free of eigenvalues of } \mathcal{A}_{0}(z_{0}, \lambda). \quad (2.3)
\]

\[
\text{Theorem 3: The conditions (2.2) and (2.3) are necessary and sufficient that the operator of the problem (1.8'),}
\]

\[
\mathcal{A}(x, D_{x}) : V^{1+2m,p}(\Omega, \beta(\cdot) + 1 - 2/p + l). \to V^{l,p}(\Omega, \beta(\cdot) + 1 - 2/p + l) \times \prod_{j=1}^{m} V^{l+2m-m_{j}+1/p,p}
\]

\[
	imes \left(\Gamma_{j}, \beta(\cdot) + 1 - 2/p + l \right), \quad (2.5)
\]

is a Fredholm operator for any \(p \in (1, \infty), l = 0, 1, 2, \ldots \).

\[
\text{Theorem 4: Let } \beta = \beta(z) \text{ and } \beta_{i} = \beta_{i}(z) \text{ be smooth functions defined on the edge } \]

\(M \subseteq \partial \Omega \text{ and let } u \in V^{1+2m,p}(\Omega, \beta(\cdot) + 1 - 2/p + l) \) be a solution of problem (1.9), where the right-hand side \(f \in V^{1,p}(\Omega, \beta_{i}(\cdot) + 1 - 2/p_{1} + l_{1}) \). Assume that the conditions (2.2) and (2.3) are valid and that \(\text{Im } \lambda_{-}(z) < \beta(z) + 1 - 2m < \text{Im } \lambda_{+}(z) \) for all \(z \in M \).

Then \(u \in V^{1+2m,p}(\Omega, \beta_{i}(\cdot) + 1 - 2/p_{1} + l_{1}) \), too.
If eigenvalues $\lambda_i(z)$ of $A_0(z, \lambda)$ lie in the strip $h_1(z) = \beta_1(z) + 1 - 2m < \text{Im} \lambda_i(z) < \beta(z) + 1 - 2m = h(z)$ (but not on the lines $\text{Im} \lambda = h_1(z)$ and $\text{Im} \lambda = h(z)$), then an expansion similar as for conical points holds:

$$u(x) = \sum_{r \in J} c_r(x) u_r(x) + w(x),$$

provided $\text{Im} \lambda_i(z) - 1 < \beta_1(z) + 1 - 2m < \text{Im} \lambda_i(z)$ for every $z \in \mathbb{M}$, λ_i have a constant multiplicity and $\lambda_i(z) = \lambda_j(z)$ for $z \in \mathbb{M}$ and $i \neq j$. Here γ is a multiindex, c_r is a cut-off function with $c_r(x) = 1$ near \mathbb{M}, u_r are singular functions, c_r are the coefficients and $w \in V^{1+2m, p}_1(\Omega, \beta_1) + 1 - 2/p_1 + 1 + \varepsilon)$. Here $\varepsilon > 0$ is a real number.

2.3 Regularity results for weak solutions in domains with conical points. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with the single conical point $0 \in \partial \Omega$. Assume in the following that the weakly formulated boundary value problem (1.10) has a uniquely defined solution $u \in V \subset W^{m, 2}(\Omega)$, or more precisely, that the Lax-Milgram theorem holds, i.e.

$$|a(u, v)| \leq c_1 \|u\|_{W^{m, 2}(\Omega)} \|v\|_{W^{m, 2}(\Omega)} \quad \text{for all } u, v \in V,$$

$$|a(u, u)| \geq c_2 \|u\|_{W^{m, 2}(\Omega)}^2 \quad \text{for all } u \in V.$$ (2.6) (2.7)

In order to be able to use the Regularity Theorem 2 we demand that for certain right-hand sides the solutions u of (1.10) are contained in a reasonable weighted space, namely:

(R) If $f \in L^2(\Omega)$, then $u \in V \cap V^{2m, 2}(\Omega, m)$.

Lemma 1: If the line $\text{Im} \lambda = N/2 - m$ is free of eigenvalues of $A_0(\lambda)$ and $m \leq N/2$ or the Dirichlet problem is given, then the property (R) is valid.

Proof: Let

$$W^{m, 2}(\Omega, \delta) = \left\{ f : \|f\|_{W^{m, 2}(\Omega, \delta)} = \left(\sum_{|\alpha| \leq m} \int_{\Omega} r^{2\delta} |D^\alpha f|^2 \, dx \right)^{1/2} < \infty \right\}.$$

The following imbeddings hold [4: Corollary 3.1]:

$$V \subset W^{m, 2}(\Omega) \subset W^{m, 2}(\Omega, \delta) \quad \text{for } \delta \geq 0,$$

$$\mathcal{W}^{m, 2}(\Omega, \delta) \subset L^2(\Omega, \delta - m) \quad \text{for } \delta > m - N/2.$$

It follows from [5: Theorem 3.3] that for $f \in L^2(\Omega)$ (even for $f \in L^2(\Omega, \delta + m)$) the solution u of (1.10) is contained in $V^{2m, 2}(\Omega, \delta + m)$. Analogously to (2.4) we introduce the eigenvalues λ_- and λ_+ of $A_0(\lambda)$ as follows for $\beta = m$:

The strip $\text{Im} \lambda_- < N/2 - m < \text{Im} \lambda_+$ is free of eigenvalues of $A_0(\lambda)$.

(2.8)

We now choose $\delta > 0$ so small that $\text{Im} \lambda_- < -m + N/2 + \delta < \text{Im} \lambda_+$. Theorem 2 yields the assertion for $m \leq N/2$. The assertion for the Dirichlet problem follows immediately since $W^{m, 2}(\Omega) = V \subset V^{m, 2}(\Omega, 0) \subset L^2(\Omega, -m)$.

Remark 1: The condition $m \leq N/2$ of Lemma 1 can be weakened by the condition: There is a $\delta \geq 0$ with $\delta > m - N/2$ and $-m + N/2 + \delta < \text{Im} \lambda_+$.

Lemma 2: Assume that the line $\text{Im} \lambda = -m + N/2$ is free of eigenvalues of $A_0(\lambda)$ and the property (R) holds. Then there is a uniquely determined solution $u \in V^{2m, p}(\Omega, \text{Im} \lambda_-- N/p + 2m + \varepsilon)$ of (1.10) for every $f \in L^p(\Omega, \text{Im} \lambda_-- N/p + 2m + \varepsilon)$,
$1 < p < \infty$, where $\varepsilon > 0$ is a small real number, and
\[\|u; V^{2m,p}(Q, \text{Im} \lambda - N/p + 2m + \varepsilon)\| \leq C \|f; L^p(Q, \text{Im} \lambda - N/p + 2m + \varepsilon)\|. \] (2.9)

Proof: The Regularity Theorem 2 and the Lax-Milgram Theorem imply that for every $f \in L^p(\Omega) \cap L^p(\Omega, \text{Im} \lambda - N/p + 2m + \varepsilon)$ there is a uniquely determined solution $u \in V^{2m,p}(\Omega, \text{Im} \lambda - N/p + 2m + \varepsilon)$ of (1.10). Since $L^p(\Omega) \cap L^p(\Omega, \text{Im} \lambda - N/p + 2m + \varepsilon)$ is dense in $L^p(\Omega, \text{Im} \lambda - N/p + 2m + \varepsilon)$, this follows immediately from the definition of the weighted spaces in Subsection 1.3 and the operator (2.5) is a Fredholm operator we get the assertion.

Remark 2: Lemma 2 is valid for all $f \in L^p(\Omega)$ provided $\text{Im} \lambda - N/p + 2m \geq 0$. In this case we have $\|u; V^{2m,p}(\Omega, \text{Im} \lambda - N/p + 2m + \varepsilon)\| \leq C \|f; L^p(\Omega)\|$. However, if $\text{Im} \lambda - N/p + 2m < 0$, $N/p - 2m < 1$ and the suppositions of Lemma 2 are satisfied, then there exists a uniquely determined solution $u \in V^{2m,p}(\Omega, 0)$ of (1.10) for every $f \in L^p(\Omega)$ and $\|u; V^{2m,p}(\Omega, 0)\| \leq c \|f; L^p(\Omega)\|$. Indeed, if $\text{Im} \lambda = N/p + 2m \geq 0$, then $L^p(\Omega) \subset L^p(\Omega, \text{Im} \lambda - N/p + 2m + \varepsilon)$. If $\|f; L^p(\Omega)\| \leq N/p - 2m < 1$ then Remark 2 works and $\text{Im} \lambda < 0$, then the assertion follows from the asymptotic expansion given in Theorem 2.

Lemma 3: Assume that the line $\text{Im} \lambda = -m + N/2$ is free of eigenvalues of $\mathcal{A}_0(\lambda)$ and that the property (R) holds. If $f \in L^p(\Omega)$ and $\text{Im} \lambda < N/p$, $1 < p \leq \infty$, then the solution u of (1.10) is from $L^p(\Omega)$.

Proof: Assume that $1 < p < \infty$. If $N/p \leq N/2 - m$, then Remark 2 works and $u \in V^{2m,p}(\Omega, 2m)$ in the worst case. Since $V^{2m,p}(\Omega, 2m) \subset L^p(\Omega)$ we get the assertion. If $N/p > N/2 - m$, then the classical imbedding theorem yields that $W^{m,2}(\Omega) \subset L^p(\Omega)$. If $p = \infty$ and therefore $\text{Im} \lambda < 0$, then the assertion follows from the asymptotic expansion given in Theorem 2.

2.4 Regularity results for weak solutions in domains with edges. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with the only edge M. Assume again that the weakly formulated boundary value problem (1.10) has a uniquely determined solution $u \in V \subset W^{m,2}(\Omega)$ for $f \in V^*$. Again we need the regularity condition:

(R) If $f \in L^p(\Omega)$, then $u \in V \cap V^{2m,2}(\Omega, m), \beta(z) = m$ for $z \in M$.

Lemma 4: If the line $\text{Im} \lambda = 1 - m$ is free of eigenvalues of $\mathcal{A}_0(z, \lambda)$ and if there is a real number δ with $\delta > m - 1$ and $-m + 1 + \delta < \text{Im} \lambda_*(z)$ for all $z \in M$ or if the Dirichlet problem is given, then the property (R) is valid. Especially, if $m = 1$ and the line $\text{Im} \lambda = 1 - m$ is free of eigenvalues of $\mathcal{A}_0(z, \lambda)$, then the property (R) is satisfied.

Proof: We first remark that J. Rossmann [14] proved the following result: if the line $\text{Im} \lambda = 1 - m$ is free of eigenvalues of $\mathcal{A}_0(z, \lambda)$ and the Gårding inequality is valid for the problem (1.10), then condition (2.2) is satisfied. Since our problem is even coercive, we can use this result. We now employ the same ideas as in the proof of Lemma 1. We have $u \in W^{m,2}(\Omega) \subset W^{m,2}(\Omega, \delta) \subset L^2(\Omega, \delta - m)$ for $\delta > m - 1$ (cf. [4: Corollary 3.1]). From [12: Theorem 10.2] it follows that $u \in V^{2m,2}(\Omega, m + \delta)$. Theorem 4 yields that $u \in V^{2m,2}(\Omega, m)$. If $m = 1$, then we choose δ sufficiently small.

Analogously to Lemma 2 and Remark 2 we are able to prove.

Lemma 5: Assume that the line $\text{Im} \lambda = 1 - m$ is free of eigenvalues of $\mathcal{A}_0(z, \lambda)$ for $z \in M$ and the property (R) holds. Then there is a uniquely determined solution $u \in V^{2m,p}(\Omega, \text{Im} \lambda_*(\cdot) - 2/p + 2m + \varepsilon(\cdot))$ of (1.10) for every $f \in L^p(\Omega)$.
+ \epsilon(z)\), \(1 < p < \infty\), where \(\epsilon(z) > 0\) are small real numbers and
\[
\|u; V^{2m,p}(\Omega, \text{Im} \lambda(-) - 2/p + 2m + \epsilon(\cdot))\| \leq C \|f; L^p(\Omega, \text{Im} \lambda(-) - 2/p + 2m + \epsilon(\cdot))\|.
\]

It is more suitable to work with a weight with a constant exponent in the following. Therefore we introduce:

Let \(z_0 \in M\) be such that \(\text{Im} \lambda_z(z) \leq \text{Im} \lambda_z(z_0)\) for all \(z \in M\). For this we write \(\text{Im} \lambda_z(z) \leq 1 - m < \text{Im} \lambda_z(z)\). Consequently the following Lemma 5' is weaker than Lemma 5.

Lemma 5' Assume that the line \(\text{Im} \lambda = 1 - m\) is free of eigenvalues of \(\mathcal{A}_0(z, \lambda)\) for all \(z \in M\) and that the property (R) holds. Then there is a uniquely determined solution \(u \in V^{2m,p}(\Omega, \text{Im} \lambda - 2/p + 2m + \epsilon)\) of (1.10) for every \(f \in L^p(\Omega, \text{Im} \lambda - 2/p + 2m + \epsilon), 1 < p < \infty\), where \(\epsilon > 0\) is a small real number and
\[
\|u; V^{2m,p}(\Omega, \text{Im} \lambda - 2/p + 2m + \epsilon)\| \leq C \|f; L^p(\Omega, \text{Im} \lambda - 2/p + 2m + \epsilon)\|.
\]

Remark 3 Lemma 5' is valid for all \(f \in L^p(\Omega)\) provided \(\text{Im} \lambda - 2/p + 2m + \epsilon \geq 0\). In this case we have
\[
\|u; V^{2m,p}(\Omega, \text{Im} \lambda - 2/p + 2m + \epsilon)\| \leq C \|f; L^p(\Omega)\|.
\]

Lemma 6 Assume that the line \(\text{Im} \lambda = 1 - m\) is free of eigenvalues of \(\mathcal{A}_0(z, \lambda)\) for all \(z \in M\) and that the property (R) holds. If \(f \in L^p(\Omega)\), then \(u \in L^p(\Omega)\) for \(1 < p < \infty\).

Proof: Since \(\text{Im} \lambda < 2/p\) and the assumptions of Remark 3 are satisfied, we get
\[
u \in V^{2m,p}(\Omega, \text{Im} \lambda - 2/p + 2m + \epsilon) \subset V^{2m,p}(\Omega, 2m) \subset L^p(\Omega)\]
provided \(\text{Im} \lambda - 2/p + 2m \geq 0\). In the other case we have \(u \in V^{2m,p}(\Omega, 0) \subset L^p(\Omega)\).

3. Finite element methods in domains with conical points

3.1 Finite-élément spaces

We shortly characterize the finite-element spaces which we use in the following (not only for domains with conical points). Let us consider a family of appropriate partitions \(\pi_h\) of the bounded domain \(\Omega \subset \mathbb{R}^N\) depending on the mesh size \(h\), \(\Omega = \bigcup \{\Omega_{e,h}; e = 1, \ldots, E_h\}\), \(\Omega_{e,h} \in \pi_h\). Assume the partition to be uniformly near the set \(M \subset \partial \Omega\) in the sense that there is a set \(U(h) = \{\Omega_{e,h}; e \in J_h\}, \Omega = U(h) \cup (\Omega \setminus U(h))\), such that
\[
M \subset U(h), \quad \text{dist} (x, M) \begin{cases} \leq c_1 h & \text{for } x \in U(h), \\ \geq c_2 h & \text{for } x \in \Omega \setminus U(h), \end{cases}
\]
where the constants \(c_1\) and \(c_2\) are independent of \(h\), \(J_h\) is an index set (see Fig. 1 for conical points and Fig. 2 for an edge).

Let \(\{S_h\}\) be a family of finite-dimensional spaces, \(S_h \subset V\), with the following properties:

1° **Local approximation:** for every \(u \in W^{m,p}(\Omega)\) and for all \(\Omega_{e,h} \in \pi_h\) there is an element \(I_h u \in S_h\) with
\[
\|u - I_h u; W^l,\ell(\Omega_{e,h})\| \leq C h^{m - l - \ell/(p - 1)} \|\nabla^m u; L^p(\Omega_{e,h})\|,
\]
where \(W^{m,p}(\Omega) \subset W^l,\ell(\Omega), 0 \leq l \leq m\) and \(1 \leq p, q \leq \infty\).
Error Estimates for Finite Element Solutions

2° Inverse inequality: for all \(u_h \in S_h \subseteq W_0^1, q(\Omega) \) and \(\Omega_{e,h} \in \tau_h \)

\[
\| \nabla u_h; L^p(\Omega_{e,h}) \| \leq C h^{N(1/q - 1/(q_0))} \| \nabla \tilde{u}_h; L^q(\Omega_{e,h}) \| , \quad 1 \leq q \leq \infty ,
\]

where \(\nabla \) denotes the field of all derivatives of the order \(l \). We refer to [2: Chap. 3], where these properties are considered. The local properties 1° and 2° imply global properties (see [8: Theorem 16.7]), namely

\[
\| u - I_h u; W^{1,p}(\Omega) \| \leq c h^{m-1} \| \nabla u; L^p(\Omega) \| \quad \text{for } p = q , \tag{3.2}
\]

\[
\| u - I_h u; W^{1,\infty}(\Omega) \| \leq c h^{m-1 - N/p} \| \nabla u; L^\infty(\Omega) \| \quad \text{for } q = \infty , \tag{3.3}
\]

\[
\| \nabla u_h; L^p(\Omega) \| \leq c h^{N(1/q - 1/(q_0))} \| \nabla \tilde{u}_h; L^q(\Omega) \| \quad \text{for } q_0 \leq q , u_h \in S_h . \tag{3.4}
\]

Definition 1: \(P_h u \in S_h \subseteq V \) is the finite-element solution of the problem (1.10) if

\[
a(P_h u, v) = (f, v) \quad \text{for all } v \in S_h .
\]

Since the Lax-Milgram Theorem is valid, Cea's lemma implies

\[
\| u - P_h u; W^{m,2}(\Omega) \| \leq C \inf_{u_h \in S_h} \| u - u_h; W^{m,2}(\Omega) \| . \tag{3.5}
\]

3.2 Error estimates in \(W^{m,2}(\Omega) \). The local approximation property 1° and the estimate (3.5) yield \(\| u - P_h u; W^{m,2}(\Omega) \| = O(h^m) \) for \(u \in W^{m,2}(\Omega) \). If \(u \notin W^{m,2}(\Omega) \), then we cannot expect such an estimate in general. Therefore let us characterize those conical or boundary points where the type of those boundary conditions changes which do not imply that \(u \in W^{m,2}(\Omega) \).

Definition 2: The point \(0_j \) from \(M \) is significantly singular if

\[
N/2 - 2m < \text{Im } \lambda_j . \tag{3.6}
\]

(\(\lambda_j \) is defined analogously to \(\lambda_- \) by (2.8)).

If this is valid and the assumptions of Lemma 2 are satisfied, we get: if \(f \in L^2(\Omega) \), then the solution \(u \) of the problem (1.10) is from \(V^{m,2}(\Omega) \), \(\text{Im } \lambda_j = N/2 + 2m + \varepsilon \) but not, in general, from \(V^{m,2}(\Omega, 0) \subseteq W^{m,2}(\Omega) \).

Example 1: We consider the Dirichlet problem \(\Delta u = -f \) in \(\Omega \), \(u = 0 \) on \(\partial \Omega \), where \(\Omega \) is a plane domain with the single conical point \(0 \) with the angle \(\omega_0 \). Since \(\lambda_- = -\pi/\omega_0 \), we have:

if \(-1 < -\pi/\omega_0 \), which means \(\omega_0 > \pi \), then \(0 \) is a significant singularity.

Theorem 5: Let \(a(., .) \) be a real bilinear form which satisfies the conditions of the Lax-Milgram Theorem (2.6) and (2.7). Assume that there is only one significant singularity \(0 \in \partial \Omega \), that the line \(\text{Im } \lambda = N/2 - m \) is free of eigenvalues of \(\mathcal{A}_0(\lambda) \) and that the
property (R) is valid. Let \(\{ S_h \} \) be a family of finite-element spaces with the properties 1° and 2°. Then the finite-element solution \(P_h u \in S_h \) approximates the solution \(u \) of (1.10) in the sense

\[
\| u - P_h u; W^{m,2}(\Omega) \| \leq C h^{1-\text{Im} \lambda - N/2 - m} \| f; L^2(\Omega) \|. \tag{3.7}
\]

Proof: We use the estimates (3.5) and get

\[
\| u - P_h; W^{m,2}(\Omega) \| \leq C \| u - I_h u; W^{m,2}(\Omega) \|
\leq C \left(\| u - I_h u; W^{m,2}(U(h)) \| + \| u - I_h u; W^{m,2} \times (\Omega \setminus U(h)) \| \right),
\]

where \(I_h u \) is defined by 1° and \(U(h) \) was introduced by (3.1). Property 1°, Lemma 2, and (3.1) yield for the first term

\[
\| u - I_h u; W^{m,2}(U(h)) \| \leq C \sum_{|\alpha|=m} \int_{U(h)} f^{2(\text{Im} \lambda - N/2 + m + \epsilon)} \| D^\alpha u \|^2 \, dx
\leq C \sum_{|\alpha|=m} \int_{U(h)} f^{2(\text{Im} \lambda - N/2 + m + \epsilon)} \| D^\alpha u \|^2 \, dx
\leq C h^{2(\text{Im} \lambda - N/2 + m + \epsilon)} \| u; V^{m,2}(\Omega, \text{Im} \lambda - N/2 + m + \epsilon) \|^2
\leq \cdots \| u; V^{m,2}(\Omega, \text{Im} \lambda - N/2 + m + \epsilon) \|^2
\leq \cdots \| f; L^2(\Omega, \text{Im} \lambda - N/2 + m + \epsilon) \|^2
\leq C h^{2(\text{Im} \lambda - N/2 + m + \epsilon)} \| f; L^2(\Omega) \|^2. \tag{3.8}
\]

Further we have for the second term, using again the estimate (2.9),

\[
\| u - I_h u; W^{m,2}(\Omega \setminus U(h)) \| \leq C h^{2m} \sum_{|\alpha|=2m} \int_{\Omega \setminus U(h)} f^{2(\text{Im} \lambda - N/2 + 2m + \epsilon)} \| D^\alpha u \|^2 \, dx
\leq C h^{2m} \sum_{|\alpha|=2m} \int_{\Omega \setminus U(h)} f^{2(\text{Im} \lambda - N/2 + 2m + \epsilon)} \| D^\alpha u \|^2 \, dx
\leq C h^{2(\text{Im} \lambda - N/2 - m + \epsilon)} \| u; V^{m,2}(\Omega, \text{Im} \lambda - N/2 + 2m + \epsilon) \|^2
\leq C h^{2(\text{Im} \lambda - N/2 - m + \epsilon)} \| f; V^2(\Omega) \|^2. \tag{3.9}
\]

Both estimates imply the assertion (3.7) ■

3.3 The Aubin-Nitsche trick

The Aubin-Nitsche trick allows to estimate the error \(u - P_h u \) in \(L^p(\Omega), 2 \leq p \leq \infty \). The essential idea is to introduce the adjoint problem to the weak problem (1.10).

Definition 3: Let \(a(\cdot, \cdot) \) be a real-bilinear form defined on \(V \times V \). The adjoint problem is: Find a solution \(u \in V \) of (1.10) such that \(a^*(u, v) = a(v, u) = g(v) \) for all \(v \in V, g \in V^* \).
Error Estimates for Finite Element Solutions

We need the following the regularity of the solution of the adjoint problem. Therefore we shortly formulate some results of V. G. Maz'ja and B. A. Plamenevskiij [10: § 3] without proofs, first for domains with a conical point 0.

Lemma 7: Let $\mathfrak{A}_0(\mu)$ be the operator determined by $a^*(\cdot, \cdot)$ and defined analogously to $\mathfrak{A}_0(\lambda)$. Then λ_0 is an eigenvalue of $\mathfrak{A}_0(\lambda)$ if and only if $\mu_0 = \lambda_0 + i(-2m + N)$ is an eigenvalue of $\mathfrak{A}_0(\mu)$.

Corollaries: (i) If the line $\text{Im} \frac{\lambda}{2} = -m + N/2$ is free of eigenvalues of $\mathfrak{A}_0(\lambda)$, then it is free of eigenvalues of $\mathfrak{A}_0(\mu)$, too. (ii) The imaginary parts of the eigenvalues of $\mathfrak{A}_0(\lambda)$ and $\mathfrak{A}_0(\mu)$ are situated symmetrically to the point $-m + N/2$.

Lemma 8: Let X be a Banach space with $V \subset X$ and X_1, X_2 a pair of Banach spaces with $|a(u, v)| \leq C \|u\|_{X_1} \|v\|_{X_2}$ for all $u, v \in V$ and $S_h \subset X_1 \cap X_2$. Then the finite element solution $P_h u$ approximates the solution u of the problem (1.10) in X in the sense

$$
\|u - P_h u; X\| \leq C \|u - P_h u; X_1\| \sup_{0 < g \in X^*} \{ |a(u - P_h u, v)| \leq C \|u - P_h u; X_2\| \|v\|_{X^*} \},
$$

where $a^*(u, v) = a(v, u^*) = (g, v)$ for $g \in X^*$ and $v \in V$, X^* is the dual space of X.

Proof: We have

$$
\|u - P_h u; X\| = \|u - P_h u; X^*\| = \sup_{0 < g \in X^*} \{ |a(u - P_h u, v)| \leq C \|u - P_h u; X_2\| \|v\|_{X^*} \}.
$$

Example 2: For $X = L^2(\Omega)$, $X_1 = W^{m,2}(\Omega) = X_2$ we get for the solution u of (1.10)

$$
\|u - P_h u; L^2(\Omega)\| \leq C \|u - P_h u; W^{m,2}(\Omega)\| \sup_{0 < g \in L^2(\Omega)} \{ |a(u - P_h u, v)| \leq C \|u - P_h u; W^{m,2}(\Omega)\| \|v\|_{L^2(\Omega)} \}.
$$

Assume that the assumptions of Theorem 5 are satisfied and that (R) is valid for $a^*(u, v)$, The estimate (3.7) for u and the estimates (3.8) and (3.9) for u_σ yield

$$
\|u - P_h u; L^2(\Omega)\| \leq C \|u - P_h u; W^{m,2}(\Omega)\| \sup_{0 < g \in L^2(\Omega)} \{ |a(u - P_h u, v)| \leq C \|u - P_h u; W^{m,2}(\Omega)\| \|v\|_{L^2(\Omega)} \}.
$$

provided $\text{Im} \lambda_+ - N/2 + 2m \geq 0$. From Corollary (iii) follows

$$
\|u - P_h u; L^2(\Omega)\| \leq C \|u - P_h u; L^2(\Omega)\| \sup_{0 < g \in L^2(\Omega)} \{ |a(u - P_h u, v)| \leq C \|u - P_h u; L^2(\Omega)\| \|v\|_{L^2(\Omega)} \}.
$$

If $\text{Im} \lambda_+ + N/2 < 0$, then it follows from Remark 2 that $u_\sigma \in V^{m,2}(\Omega_0, 0) \subset W^{m,2}(\Omega)$. The estimate (3.2) yields

$$
\|u_\sigma - I_h u_\sigma; W^{m,2}(\Omega)\| \leq C \|u - I_h u; V^{m,2}(\Omega, 0)\| \leq C \|g; L^2(\Omega)\|.
$$
Therefore we get
\[\|u - P_h u; L^2(\Omega)\| = C h^{-1} M_L + N/2 - \epsilon \|f; L^2(\Omega)\| \text{ for } -\text{Im }\lambda_+ + N/2 < 0.\]
For symmetric bilinear forms we have
\[\|u - P_h u; L^2(\Omega)\| \leq C h^{-1} M_L + N/2 - m - \epsilon \|f; L^2(\Omega)\|.\]

3.4 Error estimates in \(L^p(\Omega), \ 2 \leq p \leq \infty. \) We have seen in Subsection 3.3 that the Aubin-Nitsche trick yields very simply error estimates in \(L^2(\Omega). \) In order to get results in \(L^p(\Omega) \) for \(2 \leq p \leq \infty, \) we need more complicated investigations.

Theorem 6: Assume that the suppositions of Theorem 5 are satisfied, that \((R) \) is valid for \(a^*(\cdot, \cdot), \) that the right-hand side \(f \) of (1.10) lies in \(L^p(\Omega), \ 2 \leq p \leq \infty, \) \(\text{Im }\lambda_+ < N/p, \) that \(S_h \subset W^{m,p}(\Omega) \) for \(p < \infty \) and that \(S_h \subset L^m(\Omega) \) for \(p = \infty. \) Then the finite-element solution \(P_h u \in S_h \) approximates the solution \(u \) of (1.10) in the sense
\[\|u - P_h u; L^p(\Omega)\| \leq C \begin{cases} h^{-\text{Im }\lambda_+ + N/p - \epsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im }\lambda_+ + N/p < 0, \\ h^{-\text{Im }\lambda_+ + \text{Im }\lambda_- + m - \epsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im }\lambda_+ + \text{Im }\lambda_- + m \geq 0. \end{cases} \]
provided \(m \geq N/2, \) and \(\text{Im }\lambda_+ + m < 0 \) and \(2 \leq p \leq \infty, \) or \(\text{Im }\lambda_+ + m \geq 0 \) and \(2 \leq p < N/(\text{Im }\lambda_+ + m); \)
\[\|u - P_h u; L^p(\Omega)\| \leq C \begin{cases} h^{-\text{Im }\lambda_+ + N/p - \epsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im }\lambda_+ + \text{Im }\lambda_- + m < 0, \\ h^{-\text{Im }\lambda_+ + \text{Im }\lambda_- + m - \epsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im }\lambda_+ + \text{Im }\lambda_- + m \geq 0. \end{cases} \]
provided \(\text{Im }\lambda_+ + m \geq 0 \) and \(N/(\text{Im }\lambda_+ + m) \leq p \leq \infty, \) where \(\epsilon > 0 \) is a small real number.

Proof: (i) We remark that if \(m < N/2, \) then it follows from (3.6) that \(\text{Im }\lambda_+ + m > N/2 - m \geq 0. \) Therefore all cases are covered by the above assumptions.

(ii) We first consider the case \(m \geq N/2, \) \(\text{Im }\lambda_+ + m < 0, \) \(2 < p < \infty. \) We want to use Lemma 5 for \(X = L^p(\Omega), \) \(X_1 = W^{m,p}(\Omega) \) and \(X_2 = W^{m,q}(\Omega), \) where \(1/p + 1/q = 1. \) Let us verify the assumptions of Lemma 5. Since \(N/p > N/2 - m, \) the classical imbedding theorem yields that \(V \subset W^{m,p}(\Omega) \subset L^p(\Omega). \) Since \(\text{Im }\lambda_+ + m < 0, \) Lemma 2 yields that \(u \in V^{2m,p}(\Omega, \text{Im }\lambda_+ - N/p + m + \epsilon) \subset V^{m,p}(\Omega, \text{Im }\lambda_+ - N/p + m + \epsilon) \subset V^{m,q}(\Omega, 0) \subset W^{m,q}(\Omega). \) Since \(N/p - m < \text{Im }\lambda_+ \) and \(\text{Im }\lambda_- < N/p, \) we finally get from Lemma 2 that \(u_g \in W^{m,q}(\Omega) \) for \(g \in L^q(\Omega). \) Therefore Lemma 8 is applicable and we have
\[\|u - P_h u; L^p(\Omega)\| \leq C \|u - P_h u; W^{m,p}(\Omega)\| \sup_{g \in L^q(\Omega)} \frac{|u_g - I_h u_g; W^{m,q}(\Omega)|}{\|g; L^q(\Omega)\|}. \]

Let us estimate the first factor. It follows from (3.2) and (3.4) that
\[\|u - P_h u; W^{m,p}(\Omega)\| \leq \|u - I_h u; W^{m,p}(\Omega)\| + \|I_h u - P_h u; W^{m,p}(\Omega)\| \leq C\left(\|u - I_h u; W^{m,p}(U(h))\| + \|u - I_h u; W^{m,p}(\Omega \setminus U(h))\| \right) \]
\[+ h^{N/p - N/2} \|I_h u - P_h u; W^{m,2}(\Omega)\| \leq C\left(\|\nabla v; L^p(U(h))\| + h^m \|\nabla v; L^p(\Omega \setminus U(h))\| \right) \]
\[+ h^{N/p - N/2} \|I_h u - u; W^{m,2}(\Omega)\| + h^{N/p - N/2} \|u - P_h u; W^{m,2}(\Omega)\|. \]
Using Remark 2 and the relation (3.1) we have

\[
\| \nabla_m u; \; L^p(U(h)) \|^p = \sum_{|\alpha|=m} \int_{U(h)} r \frac{p(1m_\alpha - N/p + m + \epsilon)}{p(0 - N/p + m + \epsilon)} |D^\alpha u|^p \, dx
\]

and

\[
\| \nabla_{2m} u; \; L^p(\Omega \setminus U(h)) \|^p
\]

\[
= \sum_{|\alpha|=2m} \int_{(\Omega \setminus U(h))} h \frac{p(1m_\alpha - N/p + 2m + \epsilon)}{p(0 - N/p + 2m + \epsilon)} |D^\alpha u|^p \, dx
\]

\[
\leq C h^{-p(1m_\alpha - N/p + 2m + \epsilon)} \|u; \; V^{2m,p}(\Omega, \text{Im } \lambda - N/p + 2m + \epsilon)\|^p.
\]

(3.14)

Therefore we get

\[
\|u - P_h u; \; W^{m,p}(\Omega)\|
\]

\[
\leq C(h^{-p(1m_\alpha - N/p + m - \epsilon)} \|u; \; V^{2m,p}(\Omega, \text{Im } \lambda - N/p + 2m + \epsilon)\| + h^{N/p - 2m - 1m_\alpha} \|f; \; L^p(\Omega)\|)
\]

\[
\leq C h^{-p(1m_\alpha - N/p + m - \epsilon)} \|f; \; L^p(\Omega)\|.
\]

(3.16)

We now estimate the second factor of (3.13), having in mind that Im $\mu_\alpha - N/q + m + \epsilon < 0$, but Im $\mu_\alpha - N/q + 2m = -\text{Im } \lambda + N/p > 0$. Let us start with the case that $-\text{Im } \lambda + N/p > 0$. The estimate (3.2) and Remark 2 yield

\[
\| u_q - I_h u_q; \; W^{m,q}(\Omega) \| \leq C \| u_q - I_h u_q; \; W^{m,q}(\Omega \setminus U(h)) \| + h^{N/q - 2m} \| u_q; \; L^q(\Omega \setminus U(h)) \|
\]

\[
\leq C \| \nabla_{m} u_q; \; L^q(U(h)) \| + h^{N/q - 2m} \| \nabla_{2m} u_q; \; L^q(\Omega \setminus U(h)) \|
\]

\[
\leq C h^{-p(1m_\alpha - N/q + m - \epsilon)} \| u_q; \; V^{2m,q}(\Omega, \text{Im } \mu_\alpha - N/q + 2m + \epsilon)\| + h^{N/q - 2m} \| \nabla_{2m} u_q; \; L^q(\Omega \setminus U(h)) \|.
\]

An estimate similar to (3.15) implies

\[
\| u_g - I_h u_g; \; W^{m,q}(\Omega) \| \leq C h^{-p(1m_\alpha - N/q + 2m + \epsilon)} \| g; \; L^q(\Omega) \|
\]

\[
= C h^{N/q - 2m + \epsilon} \| g; \; L^q(\Omega) \|.
\]

(3.17)

We now assume that $\text{Im } \lambda + N/q + 2m = -\text{Im } \lambda + N/p < 0$. Since $\text{Im } \lambda + N/p > N/q$, we have that $N/q - 2m < \text{Im } \mu_\alpha$, and Remark 2 yields that $u_g \in V^{2m,q}(\Omega, 0)$ \hspace{1em} \subset \hspace{1em} $W^{m,q}(\Omega)$ and

\[
\| u_g - I_h u_g; \; W^{m,q}(\Omega) \| \leq C h^{N/q - 2m} \| g; \; L^q(\Omega) \|.
\]

(3.18)

The inequalities (3.13), (3.16)–(3.18) imply the estimate (3.11).

(iii) Let $\text{Im } \lambda + m \geq 0$ and $2 \leq p < N/(\text{Im } \lambda + m)$. Then we have again $N/p > N/2 - m$, $u \in V^{2m,p}(\Omega, \text{Im } \lambda - N/p + 2m + \epsilon) \subset V^{m,p}(\Omega, \text{Im } \lambda - N/p + m + \epsilon)$ \hspace{1em} \subset \hspace{1em} $W^{m,p}(\Omega)$ and $\text{Im } \lambda - N/p + 2m > N/2 - N/p \geq 0$. Therefore we can repeat all estimates of the case (ii).
(iv) Let \(\text{Im} \lambda - m \geq 0, N/(\text{Im} \lambda + m) \leq p < \infty \). We have
\[
\|u - P_hu; L^p(\Omega)\| \leq \|u - I_hu; L^p(\Omega)\| + \|I_hu - P_hu; L^p(\Omega)\|. \tag{3.19}
\]
We estimate the first term of the right-hand side using (3.2):
\[
\|u - I_hu; L^p(\Omega)\| \leq C \|u; L^p(\Omega)\|^p.
\]
Since \(\text{Im} \lambda - N/p + \epsilon < 0 \) and \(\text{Im} \lambda - N/p + 2m + \epsilon > 0 \) if \(\epsilon \) is sufficiently small and \(u \in V^m, p(\Omega), \text{Im} \lambda - N/p + 2m + \epsilon \subset L^p(\Omega); \text{Im} \lambda - N/p + \epsilon \), we get
\[
\|u; L^p(U(h))\|, \|u; L^p(\Omega \setminus U(h))\| \leq C h^{-(\text{Im} \lambda + N/p - \epsilon)} \|f; L^p(\Omega)\| \text{ similar to (3.14) and (3.15), and therefore}
\]
\[
\|u - I_hu; L^p(\Omega)\| \leq C h^{-\text{Im} \lambda + N/p - \epsilon} \|f; L^p(\Omega)\|. \tag{3.20}
\]
Using the inequality (3.4) for \(q_1 = N/(\text{Im} \lambda + m + \delta) \), where \(\delta > 0 \) is sufficiently small, we get for the second term of (3.19)
\[
\|I_hu - P_hu; L^p(\Omega)\| \leq C h^{N/p - (\text{Im} \lambda + m + \delta)} \|I_hu - P_hu; L^p(\Omega)\|.
\]
Since \(q_1 < N/(\text{Im} \lambda + m) \), we can apply estimate (3.20) and get
\[
\|I_hu - u; L^p(\Omega)\| \leq C h^{m + \delta - \epsilon} \|f; L^p(\text{Im} \lambda + m + \delta)(\Omega)\|.
\]
From (3.11) follows
\[
\|u - P_hu; L^p(\Omega)\| \leq C \left\{ \begin{align*}
&h^{m + \delta - \epsilon} \|f; L^p(\text{Im} \lambda + m + \delta)(\Omega)\|, &\text{for } -\text{Im} \lambda_+ + \text{Im} \lambda - m < 0, \\
h^{-\text{Im} \lambda + \text{Im} \lambda - \epsilon} \|f; L^p(\text{Im} \lambda + m + \delta)(\Omega)\|, &\text{for } -\text{Im} \lambda_+ + \text{Im} \lambda - m \geq 0.
\end{align*} \right.
\]
Since \(m < -\text{Im} \lambda - N/p \), we get
\[
\|I_hu - P_hu; L^p(\Omega)\| \leq C \left\{ \begin{align*}
&h^{N/p - \text{Im} \lambda - \epsilon} \|f; L^p(\Omega)\|, &\text{if } -\text{Im} \lambda_+ + \text{Im} \lambda - m < 0, \\
h^{N/p - 2\text{Im} \lambda - \text{Im} \lambda - m - \epsilon + \delta} \|f; L^p(\Omega)\|, &\text{if } -\text{Im} \lambda_+ + \text{Im} \lambda - m \geq 0.
\end{align*} \right.
\]
\[
\tag{3.21}
\]
Since here \(-\text{Im} \lambda_+ + m \geq 2 \text{Im} \lambda_+ + N/p + \text{Im} \lambda_+ - m \) in the second case, we get from (3.20), (3.21) the assertion (3.12).

(v) At last we consider the case \(p = \infty \). Here \(\text{Im} \lambda < 0 \). Let \(q_1 = N/(\text{Im} \lambda + m + \delta) \) as before, where \(\delta > 0 \) is so small that \(\text{Im} \lambda + \delta < 0 \). We take an \(\epsilon > 0 \) such that \(\text{Im} \lambda - N/q_1 + 2m + \epsilon = m - \delta + \epsilon \geq 0 \) and \(\text{Im} \lambda - N/q_1 + m + \epsilon = -\delta + \epsilon < 0 \). We have that \(N/q_1 < m \) and therefore it follows from Remark 2 and the classical imbedding theorem that \(u \in V^{m,q_1}(\Omega), \text{Im} \lambda - N/q_1 + 2m + \epsilon \subset V^{m,q_1}(\Omega, \text{Im} \lambda - N/q_1 + m + \epsilon) \subset V^{m,q_1}(\Omega) \subset W^{m,q_1}(\Omega) \subset L^\infty(\Omega) \). Using the estimates (3.3) and (3.4) we have
\[
\|u - P_hu; L^\infty(\Omega)\| \leq \|u - I_hu; L^\infty(\Omega)\| + \|I_hu - P_hu; L^\infty(\Omega)\| \leq \|u - I_hu; L^\infty(U(h))\| + \|u - I_hu; L^\infty(\Omega \setminus U(h))\| + \|I_hu - P_hu; L^\infty(\Omega)\| \leq C (h^{-m+N/q_1} \|\nabla m u; L^p(\Omega)\| + h^{2m-N/q_1} \|\nabla^2 m u; L^p(\Omega \setminus U(h))\| + h^{-N/p} \|I_hu - P_hu; L^p(\Omega)\|).
\]
where \(p \) is so large that \(N/p < \varepsilon \) and \(p > 2 \). Since \(\text{Im} \lambda_+ - N/p + 2m + \varepsilon > 0 \), it follows from Remark 2 that \(u \in V^{2m,p}(\Omega), \text{Im} \lambda_+ - N/p + 2m + \varepsilon \subseteq L^p(\Omega), \text{Im} \lambda_+ - N/p + \varepsilon \). The same ideas as were used in the estimates (3.14), (3.15) yield

\[
\|u - P_hu; L^\infty(\Omega)\| \leq C \ h^{-\text{Im} \lambda_+ - \varepsilon} \|f; L^p(\Omega)\| \tag{3.22}
\]

and

\[
\|u - P_hu; L^p(\Omega)\| \leq C \ h^{-\text{Im} \lambda_+ + N/p - \varepsilon} \|f; L^p(\Omega)\|. \tag{3.23}
\]

Moreover we demand that \(p \) is so large that \(-\text{Im} \lambda_+ + N/p < 0 \) provided \(-\text{Im} \lambda_+ < 0 \). We now apply the estimates (3.11) and (3.12) and get

\[
h^{-N/p} \|u - P_hu; L^p(\Omega)\|
\leq C \begin{cases} h^{-\text{Im} \lambda_+ - \varepsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im} \lambda_+ < 0, \\
 h^{-\text{Im} \lambda_+ + \text{Im} \lambda_+ - N/p - \varepsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im} \lambda_+ \geq 0 \end{cases} \tag{3.24}
\]

provided \(m \geq N/2 \) and \(\text{Im} \lambda_+ + m < 0 \) or \(\text{Im} \lambda_+ + m \geq 0 \) and \(2 \leq p < N/(\text{Im} \lambda_+ + m) \);

\[
h^{-N/p} \|u - P_hu; L^p(\Omega)\|
\leq C \begin{cases} h^{-\text{Im} \lambda_+ - \varepsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im} \lambda_+ + \text{Im} \lambda_+ + m < 0, \\
 h^{-2\text{Im} \lambda_+ + \text{Im} \lambda_+ - m - \varepsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im} \lambda_+ + \text{Im} \lambda_+ + m \geq 0 \end{cases} \tag{3.25}
\]

provided \(\text{Im} \lambda_+ + m \geq 0 \) and \(N/(\text{Im} \lambda_+ + m) \leq p < \infty \). Since \(-\text{Im} \lambda_+ + \text{Im} \lambda_+ = -\text{Im} \lambda_- \) in the second case of (3.24) and \(-2 \text{Im} \lambda_+ + \text{Im} \lambda_+ - m \leq -\text{Im} \lambda_- \) in the second case of (3.25), we get the inequalities (3.11) and (3.12) also for \(p = \infty \), inserting the estimates (3.22)–(3.25) in the above estimate of \(u - P_hu \) in \(L^\infty(\Omega) \).

Example 3: Let us consider the plane Dirichlet problem for the Laplace operator of Example 1. Assume there is only the corner point \(0 \in \partial \Omega \) with an angle \(\omega_0 > \pi \). The corresponding bilinear form \(a(\cdot, \cdot) \) is symmetric and therefore we have \(\mu_2 = \lambda_2 \) and \(\mu_4 = \lambda_4 \). Since \(\mu_2 = \lambda_2 + i(N - 2m) = \lambda_+ + i(-2) = \lambda_+ \) and \(\text{Im} \lambda_+ = -\text{Im} \lambda_- = \pi/\omega_0 \) in our case.

We consider the case \(p = \infty \). Since \(\lambda_+ + m = -\pi/\omega_0 + 2m > 0 \) and \(-\text{Im} \lambda_+ + \text{Im} \lambda_- + m = -2\pi/\omega_0 + 1 < 0 \) for \(\omega_0 < 2\pi \), the first estimate of (3.12) implies \(\|u - P_hu; L^\infty(\Omega)\| \leq Ch^{\text{Im} \lambda_- - 2} \|f; L^\infty(\Omega)\| \). If \(\omega_0 = 2\pi \), the second estimate of (3.12) yields \(\|u - P_hu; L^\infty(\Omega)\| \leq Ch^{3/2 - \varepsilon} \|f; L^\infty(\Omega)\| \).

Example 4: We investigate the plane Dirichlet problem for the biharmonic operator, i.e. \(\Delta^2 u = f \) in \(\Omega, u = \partial u/\partial n = 0 \) on \(\partial \Omega \). Let \(\Omega \) be a domain with the single corner point \(0 \) with an angle \(\omega_0 > 126^\circ \). The corresponding bilinear form \(a(\cdot, \cdot) \) is symmetric and consequently we have \(\mu_2 = \lambda_2 + i(N - 2m) = \lambda_+ + i(-2) = \lambda_+ \) and \(\text{Im} \lambda_+ = -\text{Im} \lambda_- = 2 \). H. Melzer and R. Rannacher [13] have calculated the numbers \(\text{Im} \lambda_- \) for angles \(\omega_0 \in (0, 2\pi] \). In our case we have then \(-3 \leq \text{Im} \lambda_- \leq -1.5 \) and consequently \(-0.5 \leq \text{Im} \lambda_+ \leq 1 \).

We consider the case \(p = \infty \). We divide it into two subcases.

1° \(\text{Im} \lambda_+ + m < 0 \), which means \(\omega_0 < 3\pi/2 \). Consequently, \(-\text{Im} \lambda_+ = 1 \text{ Im} \lambda_- + m < 0 \), and the first estimate of (3.11) yields \(\|u - P_hu; L^\infty(\Omega)\| \leq Ch^{-\text{Im} \lambda_+ - \varepsilon} \|f; L^\infty(\Omega)\| \) if \(\omega_0 < 3\pi/2 \).

2° \(\text{Im} \lambda_+ + m \geq 0 \), which means \(\omega_0 > 3\pi/2 \). Then \(-\text{Im} \lambda_+ + 1 \text{ Im} \lambda_- + m = 2(\text{Im} \lambda_- + m) \geq 0 \), and the second estimate of (3.12) yields \(\|u - P_hu; L^\infty(\Omega)\| \leq Ch^{-3\text{Im} \lambda_+ - 4\varepsilon} \|f; L^\infty(\Omega)\| \) if \(\omega_0 > 3\pi/2 \). Especially for \(\omega_0 = 2\pi \) we have \(\|u - P_hu; L^\infty(\Omega)\| \leq Ch^{1/2 - \varepsilon} \|f; L^\infty(\Omega)\| \).
4. Finite-element methods in domains with edges

We pick up the threads of Subsection 3.1. We assume for simplicity that the domain $\Omega \subset \mathbb{R}^N$, $N \geq 3$, has the only edge M. We take an analogous partition of Ω and introduce the set $U(h)$ in the same way as in (3.1). We deal with the family $\{S_h\}$ of finite-element spaces with the properties 1° and 2° of Subsection 3.1.

4.1 Error estimates in $W^{m,2}(\Omega)$. The quality of the error estimates depends essentially on the regularity of the solution u of (1.10). Therefore we first introduce the definition of a significantly singular edge, analogously to the Definition 2 of a significantly singular point.

Definition 4: The edge M is significantly singular if there is a point $z_1 \in M$ such that
\[
\lambda_1 - 2m < \text{Im } \lambda(z_1),
\]
where $\lambda(z_1)$ was defined by (2.4).

We denote $1m_{\lambda} = \sup \{\text{Im } \lambda(z_1); z_1 \in M\} = \text{Im } \lambda_0(z_0)$ as in Subsection 2.4. If (4.1) is valid and the assumptions of Lemma 5 are satisfied, then for every $f \in L^2(\Omega)$ the solution u of (1.10) is from $V^{2m,2}(\Omega, 1m_\lambda - 1 + 2m + \epsilon)$, but $V^{2m,2}(\Omega, 1m_\lambda - 1 + 2m + \epsilon) \subset V^{2m,2}(\Omega, 0) \subset W^{2m,2}(\Omega)$.

Example 5: We consider the Dirichlet problem $\Delta u = -f$ in Ω, $u = 0$ on $\partial \Omega$, where $\Omega \subset \mathbb{R}^3$ is a rotation-symmetric domain with an edge with constant interior angle $3\pi/2$. Then $1m_{\lambda} = -2/3$. The relation (4.1) is satisfied and M is significantly singular.

Theorem 7: Let $a(., .)$ be a real bilinear form which satisfies the conditions of the Lax-Milgram Theorem (2.6) and (2.7). Assume that there is only one significantly singular edge M, that the line $\text{Im } \lambda = 1 - m$ is free of eigenvalues of $\mathfrak{A}_0(z, \lambda)$ for $z \in M$ and that the property (R) is valid. Let $\{S_h\}$ be a family of finite-element spaces with the properties 1° and 2°. Then the finite-element solution $P_h u \in S_h$ approximates the solution u of (1.10) in the sense
\[
||u - P_h u; W^{m,2}(\Omega)|| \leq C h^{1 - \text{Im } \lambda - m + 1 - \epsilon} ||f; L^2(\Omega)||
\]
provided $f \in L^2(\Omega)$.

Proof: Using the ideas of the proof of Theorem 5 and the estimate (2.10) we get the assertion.

4.2 Error estimates in $L^p(\Omega)$, $2 \leq p \leq \infty$. The basic idea in Section 3 was to use the Aubin-Nitsche trick in order to get error estimates in $L^p(\Omega)$, $2 \leq p \leq \infty$. The inequality (3.10), the regularity of the weak solution \hat{u} of problem (1.10) and the regularity of the solution of the corresponding adjoint problem (see Definition 3) are the keys for these estimates. The regularity of the solution \hat{u} was discussed in Subsection 2.4. Let us now formulate some results about the regularity of the solution of the adjoint problem.

Lemma 9 [12: § 5]: Let $\mathfrak{A}_0^*(z, \mu)$ be the operator which is determined by $a^*(., .)$ and which is defined analogously to $\mathfrak{A}_0(z, \lambda)$ (cf. (2.1)). Then $\lambda_0(z)$ is an eigenvalue of $\mathfrak{A}_0(z, \lambda)$ iff $m_0(z) = \bar{\lambda}(z) + i(2 - 2m)$ is an eigenvalue of $\mathfrak{A}_0^*(z, \mu)$.

Corollaries: (i) If the line $\text{Im } \lambda = -m + 1$ is free of eigenvalues of $\mathfrak{A}_0(z, \lambda)$ for all $z \in M$, then it is free of eigenvalues of $\mathfrak{A}_0^*(z, \mu)$, too. (ii) The imaginary parts of the eigenvalues of $\mathfrak{A}_0(z, \lambda)$ and $\mathfrak{A}_0^*(z, \mu)$ are situated symmetrically to the point $-m + 1$ (cf. Fig. 3). (iii) Let $\lambda_{-} = \lambda_-(z_0)$ be an eigenvalue of $\mathfrak{A}_0(z_0, \lambda)$ given by Definition 4 and...
\[\lambda_+ = \lambda_+(z_0) \text{ an eigenvalue of } \mathcal{A}_0(z_0, \lambda) \text{ for which } \text{Im } \lambda_+ = \text{Im } \lambda_+(z) \leq \text{Im } \lambda_+(z) \text{ for all } z \in M. \text{ The corresponding eigenvalues of the adjoint problem are } \mu_- = \bar{\lambda}_+ + i(2 - 2m) \text{ and } \mu_+ = \bar{\lambda}_- + i(2 - 2m), \text{ and consequently we have } \text{Im } \mu_- = -\text{Im } \lambda_+ - 2m + 2 \text{ and } \text{Im } \mu_+ = -\text{Im } \lambda_- - 2m + 2. \]

Theorem 8: Assume that the suppositions of Theorem 7 are satisfied and that the property (R) holds for \(a^*(z, \cdot) \), too, that the right-hand side of (1.10) is from \(L^p(\Omega) \), \(2 \leq p \leq \infty \), that \(S_h \subset W^{m,p}(\Omega) \) for \(p < \infty \) and \(S_h \subset L^\infty(\Omega) \) for \(p = \infty \). Then the finite-element solution \(P_hu \in S_h \) approximates the solution \(u \) of (1.10) in the following way: If one of the conditions

\[a) \ m \geq \frac{N}{2}, \ \text{Im } \lambda_+ + m < 0, \ 2 \leq p < \infty, \]
\[b) \ m \geq \frac{N}{2}, \ \text{Im } \lambda_+ + m \geq 0, \ 2 \leq p < \frac{2}{\text{Im } \lambda_+ + m}, \]
\[c) \ m < \frac{N}{2}, \ 2 \leq p < \frac{2}{\text{Im } \lambda_+ + m} \leq \frac{2N}{N - 2m}, \]
\[d) \ m < \frac{N}{2}, \ 2 \leq p \leq \frac{2N}{N - 2m} < \frac{2}{\text{Im } \lambda_+ + m} \]

is fulfilled, then

\[||u - P_hu; L^p(\Omega)|| \]
\[\leq C \left\{ \begin{array}{ll}
 k^{N/p - N/2 - 1 - \varepsilon} ||f; L^p(\Omega)|| & \text{if } -\text{Im } \lambda_+ + 2/p < 0, \\
 k^{N/p - N/2 - 1 - \varepsilon} ||f; L^p(\Omega)|| & \text{if } -\text{Im } \lambda_+ + 2/p \geq 0.
\end{array} \right. \]

(4.3)

If \(2/(\text{Im } \lambda_+ + m) \leq p < \infty \) and one of the conditions

\[e) \ m \geq \frac{N}{2}, \ \text{Im } \lambda_+ + m \geq 0, \ f) \ m < \frac{N}{2}, \ \frac{2}{\text{Im } \lambda_+ + m} \leq \frac{2N}{N - 2m} \]

is fulfilled, then

\[||u - P_hu; L^p(\Omega)|| \]
\[\leq C \left\{ \begin{array}{ll}
 k^{N/p - N/2 - 1 - \varepsilon} ||f; L^p(\Omega)|| & \text{if } -\text{Im } \lambda_+ + \text{Im } \lambda_+ + m < 0, \\
 k^{N/p - N/2 - 1 - \varepsilon} ||f; L^p(\Omega)|| & \text{if } -\text{Im } \lambda_+ - \text{Im } \lambda_+ + m \geq 0.
\end{array} \right. \]

(4.4)

If

\[g) \ m < \frac{N}{2}, \ \frac{2N}{N - 2m} < \frac{2}{\text{Im } \lambda_+ + m} \]
\[\frac{2N}{N - 2m} \leq p < \infty, \]

then

\[||u - P_hu; L^p(\Omega)|| \]
\[\leq C \left\{ \begin{array}{ll}
 k^{N/p - N/2 - 1 - \varepsilon} ||f; L^p(\Omega)|| & \text{if } -\text{Im } \lambda_+ + 1 - 2m/N < 0, \\
 k^{N/p - N/2 - 1 - \varepsilon} ||f; L^p(\Omega)|| & \text{if } -\text{Im } \lambda_+ + 1 - 2m/N \geq 0.
\end{array} \right. \]

(4.5)

where \(\varepsilon > 0 \) is a small real number. If \(p = \infty \) and \(N(\text{Im } \lambda_+ + m)/2 < m \), then the corresponding estimates are valid, too.
Proof: Cases a) and b): It follows from the classical imbedding theorems that
\[V \subset W^{m,q}_2(\Omega) \subset L^p(\Omega) \] and from Remark 3 that \(u \in V^{2m,p}_q(\Omega, \mathbb{R}^n) \) for a sufficiently small \(\varepsilon > 0 \).

For the solution \(u_\varepsilon \) of the problem

\[a(\varphi, v) = (g, v), \quad g \in L^q(\Omega), \quad 1/p + 1/q = 1, \]

we have \(u_\varepsilon \in V^{2m,q}_2(\Omega) \) for \(2/q + m + \varepsilon \). From Remark 3 it follows that \(u \in V^{2m,p}_q(\Omega) \) for \(2/p + m + \varepsilon \). Therefore, Lemma 8 is applicable for \(X = L^p(\Omega) \) and we have

\[\| u - P_\varepsilon u \|_{L^p(\Omega)} \leq C \| u - P_\varepsilon u \|_{W^{m,p}_q(\Omega)}. \]

We estimate the first factor, using the inequalities (3.2) and (3.4):

\[\| u - I_h u \|_{W^{m,p}_q(\Omega)} \leq \| u - I_h u - P_\varepsilon u \|_{W^{m,p}_q(\Omega)} + \| P_\varepsilon u \|_{W^{m,p}_q(\Omega)} \]

\[\leq C \left(\| u - I_h u \|_{W^{m,p}_q(U(h))} + \| u - I_h u \|_{W^{m,p}_q(\Omega \setminus U(h))} \right) \]

\[= h^{N/p - N/2} \| I_h u - P_\varepsilon u \|_{W^{m,p}_q(\Omega)}. \]

Using the properties of \(U(h) \) we get, analogously to the proof of Theorem 6, that

\[\| u - I_h u \|_{W^{m,p}_q(\Omega)} \leq C h^{N/p - N/2} \| I_h u - P_\varepsilon u \|_{L^p(\Omega)}, \]

having in mind the inequality (2.10). Further it follows from (4.2) that

\[h^{N/p - N/2} \| I_h u - P_\varepsilon u \|_{W^{m,p}_q(\Omega)} \leq C h^{N/p - N/2 - 1/m + 1/p} \| f \|_{L^p(\Omega)}. \]

Since \(-\text{Im} \lambda_+ + 2/p + m > N/p - N/2 - \text{Im} \lambda_+ - m + 1 \), we get

\[\| u - P_\varepsilon u \|_{W^{m,p}_q(\Omega)} \leq C h^{N/p - N/2 - 1/m + 1/p} \| f \|_{L^p(\Omega)}. \]

We now estimate the second factor of (4.6). The estimate (3.2) and Remark 3 yield

\[\| u_\varepsilon - I_h u_\varepsilon \|_{W^{m,q}_2(\Omega)} \leq C \left\{ \begin{array}{ll}
\| g \|_{L^q(\Omega)} & \text{if } -\text{Im} \lambda_+ + 2/p < 0, \\
\| g \|_{L^q(\Omega)} & \text{if } -\text{Im} \lambda_+ + 2/p \geq 0.
\end{array} \right. \]

We have used that \(-\text{Im} \mu_+ - 2/q + m = -\text{Im} \lambda_+ + 2/p. \) Inserting (4.7) and (4.8) into (4.6) we finally get (4.3).

Cases c) and d): The classical imbedding theorems imply that \(V \subset L^{2m,q}_2(\Omega) \subset L^p(\Omega) \). Further we have that \(u \in W^{m,p}_q(\Omega) \) as in the cases a), b), and since \(2/p - m < \text{Im} \lambda_+ \), \(u_\varepsilon \) is from \(W^{m,q}_2(\Omega) \), \(1/p + 1/q = 1 \). Therefore, we again get the estimate (4.3).

Cases e) and f): Lemma 6 yields that \(u \in L^p(\Omega) \). We have

\[\| u - P_\varepsilon u \|_{L^p(\Omega)} \leq \| u - I_h u \|_{L^p(\Omega)} + \| I_h u - P_\varepsilon u \|_{L^p(\Omega)}. \]

It follows from (3.2), Remark 3 and the properties of \(U(h) \) that

\[\| u - I_h u \|_{L^p(\Omega)} \leq C \| u \|_{L^p(\Omega)} \leq C \| u \|_{L^p(\Omega) \setminus U(h)} \]

\[\leq C h^{-1/m + 2/p} \| f \|_{L^p(\Omega)}. \]
Let \(\delta > 0 \) be so small that \(- \text{Im} \lambda_+ + \text{Im} \lambda_- + m + \delta < 0\), provided \(- \text{Im} \lambda_+ + \text{Im} \lambda_- + m < 0\). Since \(2/(\text{Im} \lambda_- + m + \delta) < 2/(\text{Im} \lambda_- + m) \), it follows from b) or c), using (3.4) for \(q = 2/(\text{Im} \lambda_- + m + \delta) \), that

\[
\|I_hu - P_hu; L^p(\Omega)\| \leq C \begin{cases}
 h^{N/p - N/2 - \text{Im} \lambda_- + 1 - \epsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im} \lambda_- + \text{Im} \lambda_- + m < 0, \\
 h^{N/p - N/2 + \text{Im} \lambda_- - m + 2m/N - \epsilon} \|f; L^p(\Omega)\| & \text{if } -\text{Im} \lambda_- + \text{Im} \lambda_- + m \geq 0.
\end{cases}
\]

(4.11)

Since \(2/p - \text{Im} \lambda_- \geq N/p - N/2 - \text{Im} \lambda_- + 1 \) and \(2/p - \text{Im} \lambda_- \geq N/p - N/2 - 2 \text{Im} \lambda_- + \text{Im} \lambda_- - m + 1 \) in the second case we get from (4.9) and (4.11) the estimate (4.4).

Case g): The inequalities (4.9) and (4.10) are again satisfied. We apply the inequality (3.4) for \(q = 2/(\text{Im} \lambda_- + m + \delta) \) in order to estimate the second term of (4.9). We have

\[
\|I_hu - P_hu; L^{q_1}(\Omega)\| \leq C h^{N/p - N/q_1} \|I_hu - P_hu; L^{q_1}(\Omega)\|.
\]

Using now the inequality (4.3) in the case d) for \(q_1 \) instead of \(p \) we get

\[
\|I_hu - P_hu; L^{q_1}(\Omega)\| \leq \|I_hu - P_hu; L^{q_1}(\Omega)\| + \|I_hu - P_hu; L^{q_1}(\Omega)\|.
\]

We estimate the first term of (4.13):

\[
\|u - I_hu; L^{q_1}(\Omega)\| = \max \{\|u - I_hu; L^{q_1}(U(h))\|, \|u - I_hu; L^{q_1}(\Omega \setminus U(h))\|\}.
\]

We get from (3.3) and Remark 3

\[
\|u - I_hu; L^{\infty}(U(h))\| \leq C h^{m - N/p_0} \|\nabla u; L^{p_0}(U(h))\| \\
\leq C h^{m - N/p_0} h^{-1 - \text{Im} \lambda_- + m + \delta} \|u; V^{m,p_0}(\Omega, \text{Im} \lambda_- - 2/p_0 + m + \delta)\|
\]

(4.12)}
Analogously we get
\[\| u - I_h u; L^\infty(\Omega \setminus U(h)) \| \leq C h^{2m-N/p} \| \nabla u; L^p(\Omega \setminus U(h)) \| \]
\[\leq C h^{-1m-N/p+2/p-\epsilon} \| f; L^p(\Omega) \|. \]
Consequently we have
\[\| u - I_h u; L^\infty(\Omega) \| \leq C h^{-1m-N/p+2/p-\epsilon} \| f; L^p(\Omega) \|. \]

We now consider the second term of (4.13). The estimate (3.4) yields for a very large \(p \)
\[\| I_h u - P_h u; L^\infty(\Omega) \| \leq C h^{-N/p} \| I_h u - P_h u; L^p(\Omega) \|. \]
We estimate \(\| u - P_h u; L^p(\Omega) \| \) by (4.3), (4.4) or (4.5) and \(\| u - I_h u; L^p(\Omega) \| \) as before and get the assertion.

Example 6: We consider the 3-dimensional Dirichlet problem for the Laplacian:
\[a(u, v) = \sum_{i=1}^{3} \int_{\Omega} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} \, dx = \int_{\Omega} f v \, dx \quad \forall v \in W^{1,2}_{0}(\Omega), f \in L^\infty(\Omega). \]
The weak solution \(u \in W^{1,2}_{0}(\Omega) \) is uniquely determined. Let \(\text{Im} \, \lambda = -2\pi/\omega_0, \omega_0 > \pi \). We have
\[N(\text{Im} \, \lambda + m)/2 = 3(-\pi/\omega_0 + 1)/2 < 3/4 < m = 1. \]
The assumptions of the case g) are satisfied for \(p = \infty \). Formula (4.5) yields the error estimate \(\| u - P_h u; L^\infty(\Omega) \| = O(h^{n/4n+1/2-\epsilon}). \)

Example 7: We consider the 3-dimensional Dirichlet problem for the biharmonic equation:
\[a(u, v) = \sum_{i,j=1}^{3} \int_{\Omega} \frac{\partial^2 u}{\partial x_i^2} \frac{\partial^2 v}{\partial x_j^2} \, dx = \int_{\Omega} f v \, dx \quad \forall v \in W^{2,2}_{0}(\Omega), f \in L^\infty(\Omega). \]
The weak solution \(u \in W^{2,2}_{0}(\Omega) \) is uniquely determined. Let \(\omega_0 \) be the largest angle of \(M \). The case a) is satisfied if \(\text{Im} \, \lambda + m < 0 \), which means \(\sim 126^\circ < \omega_0 < 180^\circ \). The case c) is satisfied if \(\text{Im} \, \lambda + m \geq 0 \), which means \(\omega_0 \geq \pi \) (see H. MELZER and R. RANZACHER [13]). Consequently,
\[\| u - P_h u; L^\infty(\Omega) \| = \begin{cases} O(h^{-1/2-\text{Im} \, \lambda - \epsilon}) & \text{if } \sim 126^\circ < \omega_0 < 180^\circ, \\ O(h^{-3\text{Im} \, \lambda - 2/2-\epsilon}) & \text{if } \omega_0 > 180^\circ. \end{cases} \]

REFERENCE

Manuskripteingang: 07. 12. 1987

VERFASSER:

Prof. Dr. ANNA-MARGARETE SANDIG
Sektion Mathematik der Wilhelm-Pieck-Universität
Universitätsplatz
DDR-2500 Rostock