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An Existence Theorem for General Control Problems  

• -ôf Nonlinear Evolution Equations of First Order	 - 

B KRAUSE 

-	 -	 I	 S	

'.	 S 

/ 

Für die, Usung optimaler Steuerprobleme mit der Zustandsgleihung + vAy + B() = u, 
• 5die durch einen linearen Operator A und einen nichtlinearen Operator B mit JIB(y) 115	c 

'X (1'+ IIY!!m) gkennzeiehnet ist, wird ein Existenzsatz bewiesen. 

oIa3b1BaeTcH TeopeMa CUCTROBHI1A peweiiin flpO6JlcM OpTllMahHOrOynpaBTHI4n 
cecTeMaMu, coTophie xapaKTepleayloTcH ypaBHeilHeMcoc'oHHHH	+ vAy + B(y)= u C	' 

S	

.IuHefrlblM.onepaTopoM A ii lIe.jIu Heft IthlM onepaTopoM B, re JI B(y)115	c(1 + IIy!ImT).	- 

An existence theorem for the solution of optimal control problems of systems governed by the 
state' equation .+ vAy .± B(y). = u is proved,where A is a linear operator and B a nonlinear 
operator with IIB(y) i	c(1 ± l y ImT ) .	 - 

• •	1 Introduction	 S I	 S	 S 

A.-new method of proving existence- theorems for solutionC of control problems for 
systems governed by noiilinear evolution equations was proposed in [1]. There this 
method was applied to the Naviei-Stokes systeni with positive or negative. viscosity 
and to the Euler system..A similar approach was used in [5] to treat control problems	S	

S 

for systems with the state equation -s zIy = y3 + u in a bounded domain with - 
appropriate boundary and initial conditions. In both cases one can prove -existence --	- S 

- theorems for control problems without an assumption concerning the unique sol-
vability of tfie state equation for the controlled system. One only needs that' at least 
one admissible couple of state and control exists for which the state equation is fulL 
filledand the *objective functional J is finite. Since this assumption gives an additional-
a priori estimate for the solution of the state equation, the existence theorem to be 
proved for the considered problem depends in-an essential way on parameters . which - 
describe the regiilarity -properties of the functional J.  

The ain of the present paper isthe extension of existence thorems given in [1, 2, 51.. 
to a class of control problems for systems which are governed by evolution eqñations 
with polynomial nonlinearities. Using general interpolation inequalities one can alo 
iriprove the estimates of the linear and nonlinear operator . in the state equation (cf. 
Lemma 25 and Lemma 2.6) So it is possible-to enlarge the region of parameter 
valuesfor which the control problem has a solution in-corresponding function spaces. 

general approach to proving existence theoremsfor extremal problems is . develop-
ed in [3]. Similar existence theorems for control problems, which are proved in [4, 6], 
are based on the Wierstrass theorem and the-theory of monotone operators. 
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2. Function spaces  

Let H be a°rel Hubert space with nom ':I ancrinner produt (., .). Let- A: H	ii
be a selfadjoint posit.ivedefinite operator with discrete spectrum. We denote the 
eigenvalues of A by 2, 0 <2	)	..., A i - no as i .--> no, and the corresponding
orthofiormal basis in 11 consisting of the eigenvectors of A by le 1 } 1 . For each s E 
• we set	 . 

-

	

 co	 '	/co 

	

•	
.	 IP==..v =','

 
vie v 1 € R, = ( !' ' 1v 1 1 2 )	< 00 

and	 -	.	 . 

	

•	 (	jS

v ie: v i 'E IR,i* < no  

	

•	 I.	i-i 

The set E is dense in 118 for all s € R. From the (1efiniton of J/8 it follows that for 
any S € JR the operator A ' : H8 -* H8- 2 is.continuous and that for s 0 the norm 
JH_ is equal to the negative Lax norm sup {(v, w )t1 w ll8 : w € E\0}}, where the 

•

	

	inner product in.,H.andthe duality relation introduced by it will be (icuoteci by the -, 
same symbol. We denote the inner product (and also the corresponding duality rela 

	

-	t.ion) of the Hubert space JJ3 by (., .). and note that, for a > 0, v € JJ8+G and iv € H8-°,' 
we have J(v, w)I	IV I!3+a II W M3_a .	 .•	 .	 .	. 

•	Lemma 2.1: Suppose that —no <k < 1 < -no. Then the imbedding 11'c H' is 
•	continuous, and compact;  

Procif:Let{vP} be a sequence converging to v weakly. in 11), (VL - v, w) - 0 as

	

•	
ii - no for all w € E. Using the Fourier expansion of vP and, v in the orthonormal 

•	basis {e 1 } we get (v ii' - v 1 ) :> 0 as u - no for all i, where v, v 1 are the Fourier co- 
•	efficients of V' 11 and v, respectively. For every fixed i and any c> 0 w find a 110 ,110(j*, s) > 0 such that 

A Iv 14 —,v 1 1 2 < s/2	for all	.	 .-

Since the sequence {vlz} is bounded in H' and - no, there exists an	= i*(e), which
does not' depend on such,that 

)k IV,,, - v12	' IVj,- v11 2	. 

Combining both inequalities we get I1v - VI!k < r for 'ally > u,, which means v u - v 
•	strongly in W. .	 . 

Similarly to the second inequality one can show that for all v € Ii " the inequality 
•	IVIik .A1712 IMIj olds, from which the uontinuity of the imbedding follows I 

Lemma 2.2: Suppose that —no <k :!E^ 1 m < no with k m. Then,/div €.Hm, 
the interpolation inequality IIvII	IlVtIk(m -1"(m- k) IkIIm' - k)/(m - k) holds. 

Proof: Applying the HOlder inequality with the exponents p = (in - k)/(m— 1), 
q = (m -i-- k)i( l - k) to the definition of the norm I v IIi we get the assertion I	- 

We will 'denote the Banach space of all measurable and L-integrabIe vector func- 
tionsy( . ): [O,T].Hk by Lp(0, T;Hk) with the norms	 - 

•	 ./T	 \IIr	 - 

	

•	 IIYIIL8(o,T;lfk) = (,.f jy(t)I1 dt	' • IIYIIL00o.T;n	= ,supess IIy(t)Mk: -	
' 	te[0.T] 

S	 .	 -
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Let	= {y € L(O, T; Il k): , E L(0, T; H')} be theBañach space with the norm 
1YiIk.I = lIYIiLp o.T;11k + IIILg(O.T;H')	 -	 -	 -/ 

Lemma 2.3: Suppose that € Ywith 1<k,l p < o, 1 <q <. Them 
€ L(T JJ) with

k'n(n—l)-L-lfl	 -	.. 
I	 -	

: -' if I /p ± l/j	1,	- 
rn	M(k, 1, p	 1) , q)= p(q —	q 

(L+1)12	if1/p+1/q1 

and, for every . >0 and xwith 1	> K(p, q) := max {1/2, q/(p(q — 1) ± q)},. 
there exist constants c 1 (E), c2() with c 2(1) = 1, and c3 > 0 such that, /oral1 y €	0 

Sup 1Y( t )11-	11911%(0.2-;H + c 1 (s) iMY T Hk) + c 3 iYIII(o T H)	(2 1) 
t€IO.T1	 -	

S 

Proof: By virtue of Lemma 2.1 Ave only have to prove the lemma form = M(k, 
1, p, i q). It follows froni d(y(t),Sy(t))/dt = 2((t), y(t)) m that, for all t € [0, TJ and 
almost all t0 -E [0, fl, Ave have	 -. 

1IY( t )I 2	y(to)11 rn 2 +,2J ((r), y(r))m dr  

-	
+ 2 f !y( T )111 Iy(T)II rn-i dr. 

T	.	.	.\(q-t)/q 

	

IIy(to )I,,, 2 + 2 Mi Lg)O,T;W) ( f My(T)j') dr)	-	-. 

	

-	
-	.\0  

By defihitirn of in Ave have in	2m — I	Ic. So Ave can use the interpolatioiiin-
equality from Lemma 2.2-inthe form .•	 .S	 . 

< IY()Mi-i-	y()lI	+I-rn)/(km) Iy(t)I(rn_/k_rn) 

to estimate - the l'ist integral. Since q(m — l)/((k — m) (q — 1))	p 'e get 
-	 k±I-2rn '	rn-I 

MY( t )11m 2	!(')I1m 2 + C :yIILQ(o,T;iI ! ) IYI j(O ; Hm) IYII L(OTJJk ) .	:	-	-	---

In the casem < (Ic ± 1)J2, it-follows from Y9ung's inequality that., foe x,> (Ic — .m)/ 
(Ic — 1) = K(p, q);  

fty(t)1rn 2 	 I / ( to ) I rn 2 +	MYIIL00(O T Jf) +	MYIIL(O T )f') 

2	
k-rn	,	k(m-1)  

+ e	
k(Fc-I)-(k-rn)	k(k--I)-(k-rn)	.

JL)oTnk) 

Here and later Ave will denote different constants with the same symbol c.' We can 
choose t0 such that g(to) m T' JML,(o,T;Jf k ) . Taking now the suprernum with respect 
tot € [0, T] in the last inequality we get the assertion of our lemma. In the case 
in = (Ic + 1)/2 the same is true for, > 1/2 I 

	

We will'denote the operator restricting a funôtion y( . ) to I	-r by ',',: YTY = y(t).\
From the revious lemma it follovs, for in f,- M(k, 1, p, q), that the operator yt: 

	

- H" is uniformly continuous with respect to t E [0, T].	 - 
8*

1	.-
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Lethma2.4: Supose'that 1< k* c k, I <p <oo, 1 q z 00. Them the irn-
bedding Y'	L(O, T; HIc*) is compact.  

Proof: For q > 1 tile lemma is proved in [7.:Jheo'rem 4.4.1] and for q = '1 the 
proof given, in 7: Theorem 7.4. 1] can be extended from p . =, 2 to arbitrary p E, (1, 
00)1	

.	•,	 -	 ..	 .	 .	

,.. 

Lemma 2.5: Suppose that' 1 'p < o0,-00 <1 k --2. Then for allq with 
• (l)'< 1 I < I the operator A:	- L(O, T; H'), is bounded, and, for very E > 

there exists a constant CA(S) not depending on y such that1.
iIAYML(o,T;n '	11 911 	-.c(e IYIIL(o.T;JIk),	.	 ,	(2.2) 

, where a .( .1) . is given by
 

11p(k-1-2)/2	-	'ifi ' k-4/p,	. .	 .. . 

"a(l)=	(4-,k±1)/p(k-1)"	ifk-4l,k-4/p, 
0'	.	 i/l<k-4. 

Proof: Let ii	I ± 2 be a real number and yE	Then 'e use the inter-



 polation.inequality from Lemma 2.2, Young's inequality and (2.1) with = 1 to 
•	

-

 

estimate Ay:	. .	•	'.	 ''	 . 
ST.  

IIAYU g(o.T;n h) = MY	(O.T;H') = f y(0.2 (I	.	S 

	

0	'. 

I y	)J	rn) 
f	m)/(k-m 'dt 

	

i5o,r;	± CA( S ) MYHL9(o.r;Hk.  

The right-hand -side is hounded, proiclecl the epnditions m*	M(k, 1, p, q) (cf. 
Lemma 2.3) and 

p - 
q(l ± 2 - rn*)/(k	rn) are satisfied. Since this is clear for

p 'q we on1yconsider the case p < q. We' have to ensure the existence of a number 
.m*. With (q(l± 2) - plc)/(q - p) -_ ?n*	M(k, 1, p, q). Hbweve'i, this is clone 'by
the choice of q given in the 16miia I 

\Now we introduce a continuous nonlinear operator  
B:' Hm — Hn with JIB(y)II	C(YMmT ± 1), r> 1.	 •, . 2.3) 

Lernrñ'2.G: Suppose that 1 
p 

<oo, I < r <p + 1, m k.azd 10<1<00 
with  

	

f-_-oo '	if 	^'r,.. 
0	(rm - pk)/(r	p) . -if r - 1 < 'p <r.	- 

Then for all q with 9(l) :!z^- l/q < I the operator B: —^ L(O, T; H") is bounded and 
Continuous, and, for any e> 0, there exist constants c 5(e) > O,-cB > r not depending 
on'y such that  

CB 

)	
IIB(Y)ML(0 T H	IIYML7(0 T H') + CB(S) (MYII (O T H k )k + 1),	 (2 4) 

'where fi(l) is given by..'  
r	'k—m'--'m—l'	-	•	 • .	 "	 -. 

/	 •	

-'	 /	' 	f 10 -<llI ,	. •	p r(k - rn). - (k —1)	,	-	, • ,	 ..	 .	 . - 

	

r 2m—k —1 • 	 -- 

•	 . - . • •	
• 9(l) =. -' ,	 if l <1 < 'k - r(k - m); • 

-	 •	 .	 .	
-	 p	 -	 .	 •	 S	 -.	 •	 .	 -	 S	 - 

--	 .	 .	

..	 r_2±..	ifk_5r(kLm)l, 
•	 -	 -	

I.	P\	-



•	:	 An Existence Theorem	117 

with >O,l=—oo for pr±1 and li=rn_r+P ^ 	1(k_•m for 
,r-1<p<r+1.	.	 .r—p+, 

Proof: For. y E Ywe have	 S 

T	 T 
1 IB(hJ)II.r;iI)	I II B(Y())IIn di	+ c2 f IIY( t)!Im dt. L, 0

If rq	p, the boundedness of B and the. , validity of (2.4) ire obvious since m	k. 
-	.We suppose now rq p and use the interpolation inequality from Lemma 2.2 in 

the form	 s	 / 

Ily(t)Im	.!y(t)I i mhI_m	Iy(t)Ik ( n_mI ( k_ ,	rn*	rn :5: k, 

where m* <M(k,'l, p, q) (cf. Lenina 23). Then we get from Lemma 2.3 

IB(y)II 1or	, + C	
rq	

di 

•	
( IYil 10 .	+, C() ( yII co.T;,m	i)) 

- .	
. :	 .	_m_rn* 

i	
.	.	

•. 

-	 f the conditions x > K(p, q) and rq	* ;5p are satisfied. Additionally, we 
•	.k—m	 -.	

i •	chose , such that xr	= 1. All these conditions are satisfied f there exists 
Ilk 

a number rn* s- M(k 1, p, q) with rqrn —pk 
rq p	

m =,k —.r(k - rn) . < 
•	 .	 S  

— 

K(pq)r(k - rn). Noting , that M(k, 1, q, p) < k - K(p, q) r(k rn) holds for 

•	all .1< Ic.— r(Ic— rn), we derive theexistenee of such a number rn* by easy cal- 
•

	

	culations from the assumptions of the lemma formulated for 1 and 11q. The continuity
of the operator follows from the continuity of B: H - H, from the proved bounded- . 
ness and from Lebesgue's dominatçl convergence theorem •	S. 

3. The control problem  

Let Y1 , Y and U b reflexive Banacl spaces with Y 1	Y. Let Uad be a convex 
closed subset of U, and letJ: Y x U-*IR be a convex functional. From [1] we will 

•	quote an existence theorem for general extrethal problems of the type	 S 

.J(y,u)	 nf,	 'S	

S	

(3.1) 

L(y, u) ± F(y) = 0, - u E Ua,	 S.	
. (3.2) 

where the operators L: Y 1 x U —* W and F: Y 1 - W act in 'a Banach space W. 
• A pair (y, u) € Y1 x Uad which satisfie (3.2) and for'hich J(y, u) < oo is called 
an admissible element of the problem, (3,1), (3.2). We denote the set of admissible 
elements of (3.1), (:3.2) by Q . A pair (y* , u*) E Q is called a solution of (3.1), (3.2)if-it 

S S
	 satisfies J(y* , 4*) = irif J(y, u) .	 S 

S	 Q	S 

Theorem 3.1: Suppose that the following assumptions hold true: . 
i) the convex functional J: Y x U — IR is bounded 'below and lower semicontinuous, 
ii) the imbedding Y 1	Y is continuous,	 ', • .	 S 

•	

S .	
.	 - :	 •	 SI
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iii).the pprator L: Y 1 x U - W is linear and continuô'ts,	- 
iv) the operator F: Y 1 -* W is w&akly sequentially continuous,	 - 

-'	 v) the set Q is non-empty,	 S	 '_ 

vi)'/or all R > 0 the set (y, u) E Q: J(y, u) :E_^- R) is bounded in Y 1 X U. 
Then the problem (3.1), (3.2) has a solution (y* , u*) E Y 1 x Uad; 

Proof: The proof proceeds exactly as in [1: Theorem 5.1]. The only difference is 
that we d not need the' space Y_ 1 Which was compactly imbedded in Y i . The àssunlp-
tion in [1] concerning the cleniicontinuity of the operator F: Y_ 1 -* Where is replaced 
by -our assumption iv). From this it follows directly th'at, for a subeqiience {y } of 
a minimizing sequence with y,. - y weakly in Y 1 ; also (F(y,), v), - (F(y), v,, for 

- all v E 8, where S is a dense subset of W •  
Remark 3.1: Tlieorcm3.1 is in accordance with the existence thcoicm for general extremal 

prob. lems in [3]. With the help of our assumptions concerning the function spaces and operators 
• ,	 e can (insure that the conditidns of compactness and closedness formulated in [3: Theoreth 

3. 1.111 are satisfied for the.problem (3.1), (3.2). 

4. Results  

Using Theorem 3.1 weprOve in this section an existence theorem for control problems 
of gèneial 'nonlinear evblution equations. To this purpose We specify the function 

•	. .	, spaces,. operators and the functional J in Theorem 3.1' as follows.'For real numbers 
— •"

	

	 k, 1, l,p, q, q* with 1 <p, q, q* < oc' we set Y	L(O, T; fJk), '1 =	U.
= L(O, T, ; H') and W = L.(O, T; H') x B'. With the' operators A : Hk Hk_2 - 

and B: Htm - H" defined in Section 2 (cf. (2.3)) we set, fol' v E IR,  

L( u) = (y	vA?1	U / y )	F(y) = (B(y) - y)	(4. 1) 

With a convex functional dJ: Hk x H 1 – JR satisfying the conditions  

	

sup i)(y,?i) <00	for all R.> 0, '	 '' - . (4.2) 
- .	"  

•	 .	 , -
	 Ji(y, u) 	CI(Myk +	c2	with c 1 , c2 > 0  

T 
we set J(y,'u) = f J(y(t), u(t)) dl. Nowve. can 'write the problem (3.1), (3.2) for 

0	 - 

(y, u) E Y 1 x Uâd in the form,  

J(y, u) = f (y) u(t)) dl - mf,	 (4 3) 

s -)- vAy + B(y) =u	with YoY = Yo,	,	 (4.4) 

where Uad is a convex closed uhset of U and Yo E H e', V € JR.	. 

Theorem 4.1: Suppose that y E R, vi <Ic, I <r <p + 1 'and that the set Q of 
admissible elements 0/(4.3), (4.4) is non-empty. Then, for any 1 € &, I '< q < oc, there 
exists a solution (y* ,,u*) € k U,,4 of (4.3),(4.4) if l <-l^ mm (1, -a, k — 2), 
and 1 . > 1/q* > max (1/q, a (l*) (l*)), where l , ( . ), (.) are de/ined in Lemma 2.5 
and . Lemma 2.6. 	. .	,. 

• -

	

	'Proof:1For q* > I all of the spaces Y 1 , Y, U are reflexive Banach spaces. We - 
prove that all of the assumptions i)—vi) of Theorem 3.1 hold true.  

S.. 

S.	 /
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i) Since 0 is convex the, functional J in (4.3) is convex ancl beausè of (4:2) it 
•	bounded below. The fact that J is lower sewicontinuous is proved in [1: Theorem .11. 

- ii) The continuity of the in'ibedding Y 1 c Y follows from Lemma 2.4. 
iii) The continuity bf the operator L: Y 1	U - W defined in. (4.1) follows from 

the inequalities	.	 0 

IIYUy	, I 4 YMLq .(o.r;IW)	C IiYIy: 

•.,wh ere (l* )	l/q* < 0 1 (cf. Lemma 2.5),	.•	 .	. 

	

IUULq (0	^	.	for 1*	ii q* ^ q	 / 
and	.	 ..	 .	.	 .. 

	

- . JYoYIH1	MYIIyk.' ,	since l ^ M(k , l*, p, q*)  
p.Q•  

(cf.'Lemma 2.3).	 '	', ,' 
iv) We prove that the nonlinear operator F . Y 1 - W'defined in (4.1), is weakly 

sequentially continuous; To this urpose let {y)	Y 1 be a seuetice with y,, - y 
•	weakly in Y 1 . We show that, for any element v of the dense subset S =C([O; T]; E) 

•x -E of W*	LQ./(Q._l)(O,'T;I') x,H m , (fly,), v)w - KF(y), v)w.We have 

- (y) v),= f (B((1)) - B(y(t)) (t)) dt  

^ IvMcon II 1 f IIB(y )) - B(y(1)	 (45) 

By virtue of Lemma 2.4, for m k* < k, the imbedding Y'5	L(O;T;Hk ) i s 
compact. That is why,	y strongly in ,(0, T; Hk'), and therefore, for almost ll 

€ [0, T],. Iyp t) - y(t)Mm'	cjy,4 (1) - y(t)I!t - 0 as 1u -	. Since B: HI - H' •j
a. continuous operator the convergence of the integral in (4.5) follows irom the esti -
mate II B(Y)ILo.T;w	c(T) IIB(y)i q . (o.TH ., fron the boundedness of the operator 
B: V1 _*Lq•(O, T ;'Ii) proved in Lemma 2.6 and from the houndedness of the sequence. 

•	{y,) in Y 1 .	.	.	..	,	 .	.	 .	. 

v) Q . +'0 is a livpothesisof , our theorem.  
vi) As a consequence of the second inequaity , of (4.2) we, get, for an admissible 

pair (y, u) of (4:3), (4.4), from J(y, u)	B that. IYIL(oT;Hk)+ J U IL(oT;H & )	C(R). 

-Using the estimates (2.2), (2.4) with c = 1/4 v (if v	0), '=1/4c, respectively, 
we conclude '	•.	..	.	 .	.	 .	

0 

.	
•'. '9!Lq*(0.T;11)	II Ayfi.	i* + C B(y)M	o.T;If" ± !1ULQ(0T;fl 

^5 1/2 iL5 .(o,T;Hi) + C( 1"+ IY(o.T;l1k)) ± U1 I L(O.T;IP) 
0. 

From this estimate it follows that the set {(y, c) € .Q J(y, u) < R} is bounded in	. . 
. , :Y1xU 1	,	 •'	 .	'	.	. 

Remark 4.1: Theorem 4.1 is a generalization of [1: Theorem 6.1].. There the state eqution 
of the control problem was the Xavier 	systern with arbitrary viscosity v € JR in a bounded 
domain £2	JRN, N = 2 3 1 ....with'9.Q € C. The nonlinear operator B in the corresponding 

- operator equation was characterized by the estimate (2.3) with a < —(N12 + 1), rn = 0 and 
2. Under the same assumptions concerning the objective functional as in [1: Theorem 4.1] 

•	the existence of an optimal pair, of state and control (y * , u*) E .	x L(0, T; H 1 ) with k > 0 
p	2,1* < mm (_(N12 + 1),l) and. 11q* =-max (11q, 2/p) was proved As a consequence of 

• our Thcorem'4.1 the region of parameter values p; q* for which a solution y* €	exists-is 
enlarged.. The' 'values of , p and q* can be chosen as functions of k > rn = 0, r = 2.-and I*- - 
<mm (-(N12 ± 1), 1, Ic —2) as follows: p > _21*/(k - 1*) and 1/q*> max (l/q. a(l*), (l*)). 

- This means that the case p = investigated in [1: Theorem 6.6] does not;necd special considera-
tion. Moreover, Theorem 4.1 yields y € Y	also for p < 2 and q* > 1.  

-	.
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