Overdetermined Systems of Nonlinear Partial Differential Equations

L. Berg

Dedicated to S. G. Mikhlin on the occasion of his 80th birthday

This paper is concerned with initial value problems of the kind

\[Z_i(t) = A(Z), \quad Z(0) = z \]

with \(Z_i(t) = (\partial/\partial t) Z(t) \), the vectors

\[Z = (Z_1, \ldots, Z_m), \quad z = (z_1, \ldots, z_m), \]

\[t = (t_1, \ldots, t_m), \quad \partial/\partial t = (\partial/\partial t_1, \ldots, \partial/\partial t_m)^T, \]

the zero vector 0 and an \(m \times n \)-matrix A. Such problems for nonlinear partial differential equations appear in the framework of holomorphic functions in the theory of Lie series, cf. W. Gröbner [3]. Here we only assume that the matrix A possesses continuous partial derivatives of first order, so that we can use the real theory as in E. Kamke [4].

In case of \(m > 1 \) the system (1) is overdetermined, and the theorem of Schwarz implies the necessary compatibility conditions

\[A_i A'_j = A_j A'_i, \]

for \(i, j = 1, \ldots, m \), where \(A_i \) denotes the \(i \)-th row vector of \(A \), and a prime denotes the derivative with respect to the argument, i.e. in this case the derivative \(A'_i \) = \((\partial/\partial Z) A_i(Z) \) with

\[\partial/\partial Z = (\partial/\partial Z_1, \ldots, \partial/\partial Z_m)^T. \]

The trivial case \(A(z) = 0 \) with the solution \(Z = z \) of (1) shall be excluded, i.e. we always assume the initial value \(z \) to be chosen in such a way that \(A(z) \neq 0 \). Here, of course, 0 denotes a zero matrix, and later on \(I \) a unit matrix of suitable size.

Theorem 1: If the rank of \(A(Z) \) is equal to \(m \) and if the conditions (2) are satisfied, then there exist two mutually inverse \(n \)-dimensional vector functions

\[w = f(z), \quad z = F(w) \]
with \(w = (w_1, \ldots, w_n) \), so that, for suitable small \(t \), the solution of (1) possesses the structure
\[
Z = F\left(tC + f(z) \right),
\]
where \(C \) is an \(m \times n \)-matrix with the block representation \(C = (I, 0) \).

In view of the hypothesis on the rank of \(A \), Theorem 1 is concerned with the case \(m \leq n \). If \(A \) possesses a rank \(r < m \), then after suitable permutations we can make the splitting
\[
t = (t, s), \quad t = (t_1, \ldots, t_r), \quad s = (t_{r+1}, \ldots, t_m),
\]
where \(A = A(Z) \) is the \(r \times n \)-matrix of the first rows of \(A \), and where \(B = B(Z) \) is a suitable \((m-r) \times r\)-matrix. With these notations and an analogous interpretation of the partial derivatives as above the problem (1) turns over into
\[
Z_i(t, s) = A(Z), \quad Z_s(t, s) = B(Z)A(Z), \quad Z(0, 0) = z.
\]

Theorem 2: If the system (1) possesses the form (6) with rank \(A = r \) and if the conditions (2) are satisfied, then for suitable small \(t \), the solution of (6) possesses the structure
\[
Z = F\left(t + sB(z) \right)C + f(z)
\]
with \(f, F \) as in (4) and an \(r \times n \)-matrix \(C = (I, 0) \).

In both theorems the solutions (5) and (7), respectively, exist also for large arguments, so far as the premisses are satisfied. The case \(m = 1 \) of ordinary differential equations was already treated in [1], the cases \(m = 2, n \) arbitrary, and \(n \leq 2, m \) arbitrary, are accomplished in [2]. In these two papers you also find some examples.

In what follows we consider the case of Theorem 1 as a special case of Theorem 2 with \(r = m \), where the second equation in (6) must be ignored. This means that in case of Theorem 1 we write in (1) simply \(A = A \).

Proof of Theorem 1: An unessential change in the formulations of [1] and [2] shows that Theorem 1 is valid in the cases \(m = 1 \) and \(m = 2 \). Hence we can prove it by induction. For this reason we assume that Theorem 1 is valid for a fixed \(m - 1 \) instead of \(m \), and we shall show the validity for \(m \). Let
\[
U = g(Z), \quad G(U) = Z
\]
be mutually inverse vector functions, such that
\[
Z = G\left(t_1 + g(Z_0) \right), \quad g(Z) = t_1 + g(Z_0)
\]
with \(1 = (1, \ldots, 1) \) is the explicit and implicit form, respectively, of the solution of
\[
Z_i = A_i(Z), \quad Z_{i0} = Z_0, \quad \text{where } Z_0 \text{ depends only on } t_2, \ldots, t_m.
\]
The functions (8) exist according to [1]. We consider (8) as a substitution and go over from \(Z \) to \(U \). From (8) and (1) we find
\[
U_i = Z_0 g'(Z) = A(Z) g'(Z) = A(Z) G^{-1}(U), \quad U(0) = g(z).
\]
The matrix \(AG^{-1} \) possesses the same rank \(r = m \) as \(A \).

Now we show that the compatibility conditions (2) corresponding to (10) are satisfied, i.e. that \(U_{ij} = (A_i G^{-1})_{ij} \) is symmetrical in \(i \) and \(j \). According to the
product rule and
\[(A_i)_t = \sum_i A_i \partial_t A_i, \quad (G^{-1})_{ij} = -G^{-1}G_iG^{-1}\]
we find
\[U_{tt} = A_i A_i G^{-1} - A_i G^{-1}G_i G^{-1}.\]

The first term at the right-hand side is symmetrical in view of (2). According to \(A_i G^{-1} = U_i\), and
\[(G_i)_t = \left(\frac{\partial G}{\partial U_i}\right) = \sum_{\nu=1}^{n} \left(\frac{\partial G}{\partial U_{\nu}}\right) \frac{\partial^2 G}{\partial U_i \partial U_{\nu}},\]
we have further
\[U_{tt} = \sum_{\nu=1}^{n} (U_{\nu})_t (G_{i})_{t\nu} = \sum_{\nu=1}^{n} (U_{\nu})_t \left(\frac{\partial^2 G}{\partial U_{\mu} \partial U_i}\right),\]
so that also the second term is symmetrical and the compatibility conditions are satisfied. In view of (8) and (9) the first component of the matrix equation in (10) reads
\[U_{1t} = 1.\] (11)

According to the compatibility conditions this implies as in [1] that (10) possesses the structure
\[U_t = a(U_* - U_1 e), \quad U(0) = g(z),\] (12)
where we have used the splitting
\[U = (U_1, U_*), \quad U_* = (U_2, \ldots, U_n), \quad 1 = (1, e)\] (13)
with an \((n - 1)\)-dimensional vector \(e\) all components of which are equal to 1. The compatibility conditions now read
\[(a_i - a_{i1} e) a_j = (a_j - a_{j1} e) a_i,\] (14)
for \(i, j = 2, \ldots, m\). With an analogous splitting \(g = (g_1, g_*), a = (a_1, a_*),\) where \(a_1\) denotes the vector of the first column of \(a\), and the substitutions \(V = U_* - U_1 e, \quad b = a_* - a_1 e\) we obtain from (12)
\[V_t = b(V), \quad V(0) = g_*(z) - g_1(z) e,\] (15)
and the compatibility conditions (14) transfer to \(b_i b_j = b_j b_i\). Equation (11) implies that \(V_t = 0,\) so that \(V\) is independent of \(t_1\), and \(b\) is a matrix of rank \(m - 1\). Hence (15) considered as a system with respect to the \((m - 1)\)-dimensional vector \(t_* = (t_2, \ldots, t_m)\) possesses by hypothesis a solution of the form
\[V = F(t_* C_* + f(V(0)))\] (16)
with \(C_* = (I, 0),\) where here \(I\) is the \((m - 1)\)-dimensional unit matrix. Equation (16) means that
\[U_* - U_1 e = F(t_* C_* + p)\] (17)
with \(p = f(g_*(z) - g_1(z) e).\) Now we obtain from (12)
\[U_{1t} = a_1\left(F(t_* C_* + p)\right), \quad U_1(0) = g_1(z).\] (18)
The corresponding compatibility conditions
\[F_i a^j_{11} = F_j a^i_{11} \] (19)
with \(i, j = 2, \ldots, m \) are satisfied in view of (14) and \(F_i = b_i = a_i - a_{1i} e \), where the last equations follow from (15) and (16). From (11) and (12) we find \(a_{11} = 1 \), so that we can make the splitting \(a_1 = \begin{pmatrix} 1 \\ a_{11} \end{pmatrix} \), \(a_1 = (a_{21}, \ldots, a_m)^T \). According to (19) the contour integral
\[\int dt \, a_{11}(F(sC_* + p)) = K(t_* C_* + p) - K(p) \] (20)
with an \((m - 1)\)-dimensional vector \(s = (s_2, \ldots, s_m) \) is independent of the path of integration. Hence (18) possesses the solution \(U_1 = t_1 + K(t_* C_* + p) - K(p) + g_1(z) \), and this together with (17) in the form \(t_* C_* + p = f(U_* - U_1 e) \) with \(p = f(g_*(z) - g_1(z) e) \) implies
\[U_1 - K(f(U_* - U_1 e)) = t_1 - K(f(g_*(z) - g_1(z) e)) + g_1(z), \]
\[f(U_* - U_1 e) = t_* C_* + f(g_*(z) - g_1(z) e). \]
This means the intermediate result
\[h(U) = tC + h(g(z)) \] (21)
with \(h(U) = (U_1 - K(f(U_* - U_1 e)), f(U_* - U_1 e)) \) and \(C \) as in the theorem. The determinant
\[\det h'(U) = \det \begin{pmatrix} 1 + e^f K' & -e^f \\ -f' K' & f' \end{pmatrix} = \det \begin{pmatrix} 1 & 0 \\ f' & -f' \end{pmatrix} = \det f', \]
is different from zero, so that \(h \) is invertible, and according to (8) we obtain from (21) the wanted result (5) only with other notations.

Proof of Theorem 2: According to Theorem 1 the first equation of (6) possesses the solution
\[Z(t, s) = F(tC + f(Z(0, s))). \] (22)
The differential equations in (6) read in components \(Z_t = A_i, Z_s = B_i A \), so that the compatibility conditions \(A_i s_j = (B_i A)_t = (B_i A)_{tt} A + B_i A_t \) imply
\[B_i A A_i^* = (B_i)_t A + B_i A_t. \] (23)
Writing (2) in the form \(A_k A_i^* = A_i A_k^* = (A_k)_t \), we see from (23) that \(B_i A = 0 \) and, since \(A A^T \) is a regular matrix, \(B_t(Z) = Z_t B' = A_i B' = 0 \) for \(i = 1, \ldots, m \), i.e. \(AB' = 0 \). This implies also
\[B_s(Z) = Z_s B' = B_i A B' = 0, \] (24)
so that for a solution of (6) the matrix \(B(Z) \) is independent of \(t \) and \(s \), i.e.
\[B(Z) = B(z). \] (25)
But \(Z_t(0, s) = B(z) A(Z), Z(0, 0) = z \) possesses the solution \(Z(0, s) = F(sB(z) C + f(z)) \) with the same vector functions \(F, f \) as in (22), so that together with (22) we obtain (7). On the other side, we can easily check that (7) satisfies both (25) and (6).
Let us mention that we did not use explicitly the compatibility conditions arising from the symmetry of \(Z_{x,y} = (B_i A)_y = (B_i)_y A + B_i A_y \). But

\[
B_i A_y = \sum_{k=1}^{r} B_{ik}(A_{k.y}) = \sum_{k=1}^{r} \sum_{l=1}^{r} B_{ik} B_{jl} A_l A_k.
\]

is symmetrical in view of (2), and the other term on the right-hand side equals to zero in view of (24), so that the compatibility conditions with respect to the vector \(s \) are a consequence of the other ones.

REFERENCES

Manuskripteingang: 25.05.1988