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Es werden die Hauptaufgaben'der Statik der klassischen Elastizität8theorie für eine Kugel 
und für einen ganzen Raum mit einem kugelformigen Ho}ilraum in Quadraturen gelost. Die 
Losung wird unter den aligemeinsten und natürlichsten Einschrankungen konstruiert. Viele 
Randwertaulgaben der mathematischen Physik werden mit Hilfe apezieller Potentiale auf 
singulare Integralgleichungen zuruckgefuhrt. Diese wérden fureinige Gebiete explizit gelost, 
die Losungen der entsrechenden Randwert.aufgaben in Quadraturen konstruiert. Für Gebiete 
nit kugelformigem Rand erwei8t sich eine Darstellung der Lsungen recht gunatig, die manch-
mal nach Trefftz benannt wird (siehe z. B. [9joder [16]), aber erstmals wahrscheinlich bereits 
1904 in einer Arbeit von R. Marcolongo [11] vorkommt. Es wird gezeigt, daB these Darsteltung 
a,uch in den Aufgaben der Thermoelastizitätstheorie zum Ziel führt. 

POIIIaIOTCR B 1cBajpaTypax ocfloBsble BaJauH CTaTHHH HjiaccwiccHotk TOHH TepMoynpy-
rOCTH Aim iiiapa H Bcero npOCTpaHCTBa C mapoBoa IIOJIOCTb}O. PeweHile CTpOHTCH B HaH6wlee 
66iex m ecTecrBeHHblx orpaHwleHIlHx. MHorHe ° rpaHM1lMe amaqjj MaTeMaTH qecF{on H3HHU 
C flOMOUblO Cflw1J1hHUX noTeH[HaJ1oB CBOJHTCH H CHHJ1HHUM HHTCrpaJIbHMM ypaB-
neilufiM. OHH AJUI HeRoTopbzx o611acTetl peuiaiocn nmio, H peLueHHH COOTBeTcTByIouHx 
rpau q ux aaaq cTpoHTCa B HpapaTypax. ,Llci o61IacTel Co cjlepHqecHon rpaHtwelt 
ouaahlBaeTcn BecbMa yJO6Hb1M cne[uaJlb1Ioe npecaatenne peweHHft, Ha3blsaeMoe niiora 
npeJcTaBJIeHHeM Tpe44TEa (CM. HanpuMep, [9] IIJIH [16]), HO BcTpeaIoueecn, LIo-BnJHMoMy, 
nepue eue B 1904 rOgy B pa60're P. MapHooHro [11]. floHaaIBaeTCR, 'ITO aro npei-

cTaBJIeHIle IIOBOJHT H UeJIH H B aagaq ax TepHoynpyrocru. 

The basic static problems of classical thermoelasticity. are solved in quadratures for a sphere 
and the entire space with a spherical cavity. The klution is constructed under the most general 
and natural restrictions. Many boundary value problems of mathematical physics are reduced 
by means of special potçntials to singular integral equations For some domains these equations 
are solved explicitly and solutions of the corresponding boundary value problems are construct-
ed in quadratures. For domains with a spherical boundary it appears to be convenient to use 
a special representation of solutions sometimes called the Trefftz representation (see, for exam-
ple, [9] or [16]) but evidently occuring for the first time as early as 1904 in a paper of Marco-
longo [11]. It is shown that this representation is also valid for problems of thermóelasticity. 

§.1 Formulation of the problem and some auxiliary statements 

Consider the system of static equations of thermoelasticity [6] 

zlu(x) + (), +,u  grad div u(x) - ygiad 6(x) = 0, 
46(x) = 0, 

where x = (x1 , x21 x3) is a point of the three-dimensional Eu'clidean space R3, 4 is 
the Laplace operator, u = (u 1 , u3 ) is the d iaplacement vector, 0 is the temperature, 
A and s are the Lamé constants, y = a(3), + 24u), a is the coefficient of linear thermal
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expansion. The constants 2, , and y satisfy the conditions 

31+21s>0,	p>O,	'y=l=O.	 (1.2) 

We introduce the notations S = 5(0, R) = {y E R3 . 1 l y l = R}, B = B(O, II) 
={xER3 Ilxj . <R}/B =6 uS,B =B-(0,R)=R3\B, B=B- uS. Let 
q' be a function defined on B+ . or B. Boundary values will be denoted by 

(q,)'' (y)	lifri ç(x),	(q)- (y) = urn q(x). 
BEz-4-YES	 /	B)z^vES	 - 

I 
-The following boundary value problems will be solved: Find in B a pair (u, 0) which 
is a solution of system (1.1) if any one Of the pairs of boundary conditions given 
below is.satisfied: 

Problem (I.I):	- (-u)' . (y) '=,f(y), () (y) = g(y). 
Problem (I.II):	(u)± (y)= /(y), (a0/an) (y) = g(y). 
Problem (II.I)*:	(t" - y0i)± (y) = /(y),(0) (y) = g(y.). 
Problem (II.11) ± :	(x(") - y0n) (y) = 1(y), (410n) ± (y)	g(y). 

Here n(y) = (n1 (y), n2(y), n3(y)) isth unit normal to S at the point y, 

flk(X) =	x  R3 \ {0};	= IxI•== }/x12 + x22 + x32 ;	(1.3) 

- yOn is the stress vector in thermoelasticitynd t t" is the stress vector in clas-
sical elasticity: -r('° = (x i "' ) , -r2,-r3'°),  

- . I&u	au-\ = ;.	+'un I — +	 (i = 1,2,3);	(1.4) 
aXk \X	Oxj/ -	-	- 

f'— (Ii, /21/3) and g are functions given on S. For / 0 and g , = 0 the problems will 
bc-called homogeneous and denoted by (I.I)*, (I.II), (II.I), (II.II) ±, respectively. 
The solution (u,0) of system (1.1) will be called regular [6] if u, 0 E CI(B) n , C2(B+) 
In addition to regular' solutions, we Wall ,also be 'interested in classical ones. The. 
solutions (u, 0) of Problems (I.I) to (II.II)' will be called classical if u, 6 E C(B±) 
n C2(B) and, additionally, if (a0/n). E C(S) for Problem (I.II)i, (t ( ) E C(S) for 
Problem (II.I) and ( -t )), (90/an) E C(S) for Problem (fl.II) ± .	' 

For general domains the boundary value problems of classical elasticity and 
theriIioelasticity' have been investigated with sufficient completeness in [61 by the 
methods of a potential and integral equations. The existence and the uni'queness of 
regular solutions have/been considered and the necessary and sufficient conditions 
for boundary value problems to be solvable have been established. The results of. [6] 
readily yield the following theorems, which are helpful for our purpose. 

- ' Theorem 1.1: If in a neighbourhood of the pointx = +00 the regular solutions of 
Problems (I.1), (I.II)-, (II.I), (II.II)- satisfy the conditions 

0(x) = (-)(jxI+),	u(x) = (IxI_ 1),	u(x)1.9x = '(I xi'),	(1.5) 

then these problems can have only the trivial solutions u(x) = 0, 0(x) = 0, x E B. 

Theorem 1.2: Problem (I.I) cin have only the trivial regular solution u(x) = 0, 
0(x)=0,xEB4 .	 '	 S
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Theorem 1.3: All regular solutions of Problem (I.II) have the .form u(x) = 0, 
0(x) = 0, x E B, where 00 is an arbitrary constant. 

Theorem 1.4: All regular solutions of Problem (II.I) + have the form u(x) = [a X x] 
+ b, 0(x) = 0, x E B, where a = (a 1 , a2 , a3), b = (b 1 , b2, b3) are arbitrary constant 
vectors and the symbol x denotes the vector product. 

Theorem 1.5: All regular solutions of Problem (II.II) have the form u(x) = Y0o 
X (x).-- [a x z] + b, 0(x) = 00,x E B, where 00 is an arbitrary constant, a = (a1 , a2 , a3), 
b, = (b1 , b2 , b3 ) are arbitrary constant vectors, it is 'a regular solution of the boundary 
value problem  

1u4u + . + u) grad div 'a = 0,	(y) = n(y):	 (1.6)

The latter problem is solvable and its solution will be ënstructed below. 

Theorems 1.1 to-1.5 can be easilyproved, taking into account the fact that static problems 
of thermoelasticity are divided into those for 0 (boundary value problems for Laplace equa-
tions) and those for u (boundary value problems of classical elasticity). For example, if (u, 0) 
is a regularsolution of Problem (II.II)+:	 . 

zlO=O,	(a0/n)+=o,	 . .	 (1.7) 
4u + (A +s) grad divu — ygrado = 0,	(v 1 " 1 —yOn)+ = 0,	.	(1.8) 

then, as follows from [13], the Neumann problem (1.7) has the,solution 0 = Of,, where.00 is an 
arbitrarylconstant. The substitution of 0	00 in (1.8) gives us the problem of classical elasticity 

j z1u + (A + a) graddiv ii = 0,	((fl))+	yO0n.	-	S S	 (1.9)

Since the conditions for problem (1.9) to be solvable f n(y) d ,S = 0, f[n(y) x n(y)] d ,$ = 0 
S	 S 

are-fulfilled and its solution is unique [6], one can easily prove Theorem 1.5. 

Let us now discuss the solvability conditions of boundary salue problems. Problems 
(I.I), (1.11)-, (11.1)-, (1I.11) are solvable for arbitrary sufficiently smoOth. [6] 
boundary values (i.e., for arbitrary smooth / , and g). Consider Problem (II:I): 

-uz1u + (2+ 1u) grad divu - grad 	?0,	(v(") - y0n) = '	(1.10) 
40 = 0, . (0) = g.  

it i well-known that problem (1.11) is solvable for arbitrary g. Substituting 0, 
determined from (1.11); in (1.10), we obtain the, second boundary value problem of 
classical elasticity:  

zziu + (2 + u) ,grad div 'a = ,	(r(")) = F, 
where 0 = y grad 0, F = / + p (0)+ n. For this problem to be solvable it is necessary 
and sufficient that the conditions	 . 

f (x) dx - f F(y) dS= 0,	f. [xx (x)]dx'— f [y x'F(y)]dB = 0 
.5+	 $	.	 .	 S 

or, taking into account expressions for 0 and F, 

ff(y)d,S=0,	f[yxf(y)]d1$=0  
S	 s	 - 

34 Analysis Bd. 8, Heft 6 (1989)
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be fulfilled [6]. These conditions will be assumed to be fulfilled for Problem (II.I). 
For Problem (II.II)' the solvability, conditions have the form 

'ff(y)d8='0,	f[yxf(y)].dB=0,	'fg(y)dS=O,	(1.13) 
S • • .	 ,.	 . s	 S	 . 

and for Problem (I.II) they are written as 

fg(y)d8=O.  

When solving Problems (I.I) to (II.II); we shall make use of the well-known re- 
pr'es'entations of solutions of the Neumann and Dirichiet p'roblems for the Laplace 
equation. Namely, the solution of the Dirichiet problem for B'': 

Vx E B: zlv(x).='O,	':Vy E S: (v) + (y) = g(y),, 

is given by the Poisson formula [13] . 

v(z) = 17(g) (x)	-f	''g(y) dS,	 (1 15) 

- and that of the Dirichiet problem for B-: 

Vx E B-.: zlv(x) = 0,	Vy E S: (v) (y)= g(v); 

isgiven by the Poisson formula  

V(X) = IT(g) (x) =
	

Ixl2R2 g(y) dS	 (1 16) 

The solution of the Neumann problem for B:  

VxEB:/Jv(x)=0,	(&v/n)(y)=g(y),  

is given by the Neumann formula [5].  

v(x) = N(g) (x) as	 - In (1x - I + B)2 1x12))g(yYdys, 

S	,	 .	. ( 1.18) 
• and that of the Neumann problem for B:	 . 

Vx €B: Av(a)	0,	' (?iv/Fn) (y) = g(y), ,	 (1.19)

is given by the Bjerknes formula [5]: 

v(x)	 1 .r z — 
yi 

/ 2B	Ix - l + IxI + R\ = N(g) (z) asj  
S	 .	 ,	( 1.20) 

Throughout this paper we shall never use the expansion of a function in a series, but for the 
method to be complete, we should note that the Poisson, Neumann and Bjerknes formulas can 
be obtained without 'using the series expansion. Let us derive the Neumann and Bjerkness. 
formulas. It is easy to verify that the Neumann problem (1.17) is equivà lent to finding a func-
tion v that is harmonic in B from 'the equation r(?v/?ir). = Rf1(g), where g obeys condition 

•	(1.14). It is likewise easy to verify that, the solution of- this equation has the form ' v(z) 
r	 1	 . 

R f 11(g) (,7x/r 1r' d,. Hence it 'foBows that v(x) = B f 11(g) (TX) r' dr.'.Applying in the 
•	 ,,	 .	 0 

/	 •	 -	 .	 .	•	p
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latter integral the identity 

R2_2 af 2'	-b--in Oy _+12_iT2 
ly - rn3 ' or \iy - xi - B	 2r 

: (x'E B-, y € S, r € (0, 1)), we easily, obtain formula (1.18). Similarly, problem (1.19)is equiva-
lent to finding a function v that is harmonic in'B from the equation r(av/?r) = RJ1'(g), whose 

+1	/	•. 

solution has the form v(x) = —R f 71'(g) (x/r) r' dt. Hence, using the identity 
0	Q 

r 1 2 '— r2R2	'	2r	1 
, - - 

In (In - y 1 2 + 2R z - ry l . ± 2rR2 - R5 - ni2) I x	tIll	ar ix - tyl	B. 
(x € B-, y € 8, r € (0, 1)) we obtain formula- (1.20). 

In constructing the solutions of Problems(I.I) ± to, (11.11)4: an essential use is made 
of the special. representation of displacements by means of harmonic functions. We 
have the following theorems, which are easy to prove.  

Theorem 1.6: If  

u =v + 1/2(R2 - r2)giad,	' -	'	'	 ' ( 1.21),

where Jv = 0, z1, = 0,  

r(d/ar) + xtp = (di v — ,jO), '	 ( 1.22)'

- B is an arbitrary constant, 0 is an arbitrary solution of the Laplace equation 40 = 0, 
•	r=ixl,  

= iz/(2 + 3i),	fi	(1+ /2)1(). +3/i),	'j = 7/(2 +.u),	(1.23)

then (u, 0) is a solution of sytem (1.1).  
Theorem 1.7:1/  

u(x) = v(z) .+ x ((x) + 2r	i-R2_2
	rad(z),	,	( 1.24)

where Av = 0, Aip = 0,  

32+2u =nO—divv,	40=0, ar Or	2+12 ar	1+ii
(1.25) 

then (u, 0) is a solution of system (1.1) and 

- yn(x) 0(z)) = 12h(z) + 12(Rz -. r2) ri9 grad	/ar	' (1.26) 

•	Here n(x) is determined from:(1.3), h = (h 1 ; h2, h3), 

*	h(x) = z,(av 1 (z)/az5 + ev,(x)1ax 1) — zi div v(z);.	' '	 ( 1.27)

'Representation (1.21) will be used for solving Problems (11)± and (I.II). Repre-
• sentation (1.24), which is-virtuallyTof the same forth as (1.21), is convenient for solv-

ing Problems (II.I) ± and  

34*  

/	 +I
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§ 2 Solution of Problems (LI) ±, (I.II)± 

We begin by formally solving Problem (I.I). After the formal construction of solu- 
tions it will be proved that the formula obtained gives the classical solution for con-
tinuous boundary values.  

We find the displacement vector u in the form of (1.21). Now, as can be easily 
verified, we have the Dirichiet problem for B relative to 0 and u which can be written 
in the form (see (1.15))	

0	 , 

0(x) = 17(g) (x),	v() =H(/) (x)	 (2.1) 

- Substituting the found valies of 0 and v in (1.22) and treating it as a differeujial 
equation relative to tp, we obtain r(/ar) + aV = F, where 

F(x) = fl(div 11(1) (x) — . j17(g) (x));	 (22) 

• This equation is rewritten in a more convenient form 

r(a( - c)/dr)+	- c)= F - c, -.	 (2.3) 

where c is a constant and oic = F(0). It is clear ftom (1.21) that the addition of the 
constant 'to the function ip does not influence u and therefore to determine pwe can, 
instead of (2.3), consider the equation r(aip(x)/r) +xip(x) = F(x) - F(0). Integrat-
ing this equation with respect to the variable r and assuming that ip is a regular har-

monic function, we obtain v(x) = r f [F(x/r)	F(0)]	d. The substitution 

of 77	Tr brings this equality to thefrm (x) = f (F(rx) - F(0)) r71 dr. Taking 
into account (2.2), we have -	- .	 - 

R2 — JTX12.	I	3xyr) dr 
Vx)	f div f (	7j7T /(y) dS I 

•	 0	 g(y)dS,	(2.4)' 
47rR f f ly — -rx l'	R) Tl-' 

where by virtue of (1.2) 0 < oc < 1/2. On account of (1.21);(.1) and' (2.4) the solution 
of Problem (I.I) can be represented in the form	- 

u(x) =f K(x, y) /(y) dS + y f O(x, y) g(y)d,	b(x) = 17(g) (x), (2.5). 

where'0 - 0	

K = lIK1I63,
	 (2.6) 

K - -
	1 jR2 —Ix 2	(R2— Ix12)	

0• - 

0	
,(x, y) =	'	- x13 

ô1	 2. 

•	

0	

:	 2	r I R2 - l rx I 2	1 - 3xy \•• dr \	
•, 0 

dx0xj J 1Iy—txI	
00 (2.7)
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•	

-	 - x12)	r fR2 — I1xI 2	1	ci (2.7) 

,8(2 +i)Rax1 J k y— txl 

iroblem (I.II)	is solved exactly in the same mannr and its solution has the form. 
u(x) = f K(x, y) 1(y) djfl +'y f Ô(x, y) g(y) dS, 

S	 S 

0(x) =N(g)'(x) ± 00 ,	 . (2.8) 

where K is determined by (2.6) and N by (118),	 • 

& = (0- D 02,	),,	 .	. (2.9) 

a	(R2.— x12).	H_2R	2	fly - rxl + R)2 - TX1 2\ 
'-	 n 'cit 

8(A±)Rx,.1J k y— txi	 4W 

We have constructed the solutions of Problems (I.1)	and (I.II)t Let us now 
establish their differential properties. First, we shall derive sothe estimates to be 
used below. It is easy to verify that	.	 •, 

I' 
/R2	Itx I.2	1	3xy	\	dr 

1-(x, Y) f 113 

-	 I
R2 —lrxI 2	dr

 
•	

f y — rzlt 
•	 .	 0.5 

Here c and , its derivatives up to the second order inclusive are bo'unded functions 
since, fort E [0,5; 11,	•	 . - 

Iy — rxl	R— rxjZ^R-0,5R=0,5R	(xEB,y CS) . (2.10) 
• Using the identities  
•	R2—IrxI2 	 0	1 

ly	 =	--+ 2r	•	 ,	 - 

- .txJ 3	i	-i--TX J	Or Ill - xxi (2.11) 

1	 1	(y - xx + R) 2 - irxI2 (2.12) 
I y — xxi	•	 R	Or	 2r 

and the inequality

1/2y—xj	(xE[Q;1],xEB,yES), (2.13) 

-	we arrive at the representation 

I(x,y) =2/jx—yi +1o(x,y), (2.14) 

•	Therefore	 •	 - 

C.	K(z, y)i	C(R2 - ix1 2)/iy - x3,	•	•+	

-	 * (215) 

iO(x, y)i, a(x, y )I	ç(R— x1 2)/iy - xi	(x E B	y E B),	.	- (2.16) 

I -
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and we have the representation	 S 

1	2,	3 
KrK±K'+K, S	 '	 (2.17) 

where
1 R2—xj2 • K(x, y=	

i	x1
3

3x3 

J(() =	x12) 02 IX	yl	,	 (2.18) - 4rR	9x, ax. 
11

3  

K(x, y) = l(R2 	x 1 2 ) x(x, Y)113x3,	x1(x,'y)I	r/IZ- Y12! 

Moreover, by virtue of the property of the Poisson ke'rnel 
(1/4R)f(R2 - 1x12)/Iy T x1 3 dES, 

we easily find (ô,	Kronecker symbol)  

f K11 (z; y) d =o ij	(x E Bk ).,	 (2.19) 
S 

The following auxiliary theorem is valid.  

	

Theorem 2.1: I/f E C3v(S), g E C2 (8), 0 < y	1; then- the pair (u, 0) determined
by forinda' (2.5) is a regular solulion o/ Problem 

Proof: It is easy to verify that under the assu mptions of the theorem we have 

11(f) E C3V(B'),	11(g) E C2 (B).	 S	 (2.20) 

Consider the expressions  

dr 
Ej(x)	r Oxi f ly — rXII 

r	.a 

J T, a(8) 
17(g) (Tx) dr, • 

1	• a	- 'rxI 2 •'	 0 

L1(x) -	(	
az ', ax,f R2 IY - 

x3 f,(y) dS) r dr / 

= 
f a(,) a(,) fl(/,) (TX) dr. 

•	 By virtue of (2.20) E, L . E C' v(B). Therefore 0, u E C'() and, in view of the pro-
• -	 pérties of the Poisson' integral,	 -• 

lim u(x) = /(y),	urn 0(x) = g(y);	•'	 5 

B?z^yES	 B3X^VES	 5 

•	Obviously, 0, w E C2(B) and the 'pair (u, 0) is a solution of system (1.1) I •	• 
•	

0	 ( 

' 5	 S	 ,	 0	 5
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Theorem 2.2: If 0, u E C(.) n C2(B) and the. pair (u, 0) is a solution of system 
(1.1), ('u) (y)	0, (0)'' (y) = 0, then u(x) = 0, 0(x)	0, x E B. 

Proof: Since for 0 we have the Dirichlet problem, under the assumptions of the 
theorem, ,a's• known, 0(x) = 0, x E B 1'. Therefore for is we have the first boundary 

• value problem of classical elasticity	 .	 . 

uL1iL+ () + u) grad divu =0,	(u) 1' (y) = 0	 .	(2.21) 

- Since is is continuous in Bk ,- it is uniformly continuous. Therefore by virtue of 
(2.21) there exists for any number e> 0'a number ô > 0 such that u(x)I'< e for 
y € S(O, R0), where B0 = B - 60 and, 0 < 60 ^5 ô. Let z E B + 	Assuming that 
<B zi,we have z E B(O, B0). From the assumptions of the theorem it follows 

that is E C2(B+(O, B0)). Therefore [6] u E C .(B+ (O, B0)). By virtue of Theorem'2.1, 
we have from (2.5) the representation u(x) = f K(z, y) is(,) dS. Hence with (2.15) 
taken into account we obtain' 

the. f	u(y)l d^	f	d = cc. 
S(O.R.)	 .Sl0,R) 

Therefore u(z) = 0 and the theorem is proved . I	S 

Theprem 2.3: 1/f, g EC(S), then the pair (is, 0) determined by formula (2.5) is a' 
solution of system (1.1): is, 0 E C(B 1') n C2(B) and  

(u) (z) = Az),	()+ (z) = g(z).,	+	(2.22)+ 
Proof: For .0 the statements of the theorem are obvious. If / E . C(S), then it is. 

clear that,u, as determined by (2.5), is continuous and has derivatives of all orders 
in B. It is also easy to verify that the pair ('is, 0) satisfies system (1.1). Letusyerify 
the first of conditions (2.22) By virtue of (2.5) and (2.19) we write  

U( x)	1(z)	f K(x, y) (1(y)	f(z)) d 1S + y  e(x, y) g(y) d118,  

•	and then on account of (2.15) and (2.16) we have	
0 

rR2_ixi2	0	
•0 

iu(x) - 1(z) :!^ cf	/(y)	/(z)i d1	 ' 

0 

+ cR2 ,. jxr max i g()iJ k - y 3I2 dS ,	(2.23) 

But	 0	 ,0• 

fix - y1 312d ,S	c	(x E Bk ),	 '	 (2.24) 
S. 

. where c is constant depending only on R. Passing to the li'mit in (2.23) and taking 
into account (2.24) and the propeties of the Poisson integral,' we obtain lim u(x), •	1(z). Hence it follows, in turn, that u E C(B'1') I	,	B3X-':ES 

+O 
•	'Combining Theorems 2.2 and 2.3, we obtain  

Theorem 2.4: If f, g E C(S), then the 'pair (is, 0) determined by (2.5) is the unique 
classical solution of Problem (JJ) +	 0
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We have a similar proof for 

Theorem 2.5: If f,g E C(S) and g satisfies condition (1.14), then the pair (u, 0) 
determined by formula (2.8) is the classical solution of Problem (I.II). Note that u is 
determined uniquely and 0 to within an arbitrary constant term. 

Let us prove the lemma to be used in proving Problems (II.I) + , (II.II). 

•Lemma 2.1: 1ff = (fl ,	13), fEC(S), then 

urn (R - x1 2) grad dfrf_	d	O 2.25) 
B3x-+zeS	 Ix - yI 

S 

Proof: It is clear from (2:23) that 

'lim	f K(x, y) f(y) d	= 1(z): (2.26) 
B?X—*zES	S	

S 5 

Consider expansion (2.17). By virtue of the property of the Poisson integral, 

-urn	fK(x,yf(y)dS=f(z). (2.27) 
B3x^zS S 

Taking into account (2.18) and (2.24), we have 

urn	f K(x, y) f(y) dS =0.	 'S (2.28) 
B9x—*z€S	S 

Fro m' (2.26) to (2.28) we obtain (2.25) U 
S

S 

Representations of solutions of Problems (1.1)- and (1.11)- are constructed simi-
larly to (2.5) and (2.8). For Problem. (1.1)- we have	 - 

u(x) = f K'(x, y) /(y) d9	EY(x, y) g(y) dS,	0(x) = JT(g) (x), (2.29) 

and for Problem (1.II), 

•	u(x) = f K'(x, y) /(y) d1, S + y f f'(x, y) g(y) dS,	0(i) = R+(g) (x), (2.30) 

where

K' =. IIKII331 
•	

S	

5

(2.31) 

1( 2 R2	 R2	a2
_____ 

f T7—rR—	I X — Y1 1	2	Oxj axj*	IX	Tyj3 

e+=(e1+,e2+,e3),	
S.	

•	 S 

&1'(x, y)=	jxj2_R)bfIx_-r2R2.d (2.32) •
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(2.34) 

19'(x, y)l, IÔ'(x, y)[	c(1x1 2 —R2)/lx — y 1 2	(XE 'B,y E 5),	(2.35) 
flx_y_3/2d11Sc	(x E.),	 (2.36) 

the following auxiliary theorem can be proved. 

Theorem 2.6: If / E C3-(S),g E C2.Y(S), 0 < y	1, then the pair (u, 8)-determined 
by formula (2.29) is a regular solution of Problem (I.1), satisfying conditions (1.5). 

Lemma 2.2:I/XEB-,then	
S 

f K,(-y, y) d1 S = ,,(x),	 (2.37) 
S. 

	

- -	where
-	R	A + 1a 1x1 2 - R2 2(R/Ixl) - c(x) 

= lkI(X)163	= 
ll j1 + 22 + 54u	/ 2	c9xi &v, 

Proof: Consider pairs (u

m

, 0), where u(x) = x im(x), 0(x) = 0-+ (i, m = 1, 2, 3). It rn M 

	

•	is easy to verify that (u,0) is a regular solution of system (1 1), satisfying conditions
(1.5)and

m	 m,	I 
S	 lim u 1 (x) = 'tm,	lim 0(x) = 0.	 (2.38) 

Bx--yES	 B3)X-*VES	
S 

' Thus the pair (, 0) is the unique regular solution of Problem (I.1). Therefore by 
Theorem 2.6 formula (2.29) holds for (, 0): Xim(X) = f	y)-dS I

S 
• Theorem 2.7: 1/ t, g E C(S), then the pair (u', 0) determined by formla (2.29) 
[(2.30)] is the unique classical solution of Problem (1.I) [(I.1I)]. 

The theorem is proved just like the corresponding theorems for Problems (I.I) 
and (I.II). We shall verify only the property lim u(x) = f(z). Taking into ac-

•	 •	
•	 B)x-.zS 

count (2.34), (2.35) and (2.36), we have on the basis of (2.29) and (2.37) 

•	 •

 

1 u(X) —,c(x)/(z)l	• 

•	=f K'(x,'y) (1(y) -f-- /(z)) d + yf0'(x, y) g(y) d,S	 • 

r IX1 2  
C	

• j x — y IES f

S - 

Hence by virtue of the properties of the Poisson integral urn (u(x) — x(x) 1(z)) = 0 
and thereforj lim u(x)	urn x(x) 1(z) = 1(z) U	-'eS 

B2x-+z€S	B?z^zS 

02, 03 ),	 (2.33) 
I	' 

• - O.+(x
	

#(1x12 R2).
j (7 2Rr - 1 lx — tyl + lxi + rR\ dr 

•	 +	

- 4r(A + 1z)Rx J \lz — ryl	lx — Till + xl — rR/ T+ 

Using the estimates 

.K'(x, )l 5 c(1x1 2 — R2)/ ]X — y 1 3 ,

C
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§ 3 Solution of Problems ('H.I) ± , (I1.11) ±	 - 

The solution of Problems (II.I) and (II.II) is sought for in the form of (1.24). It 
is easy to verify that h, as determined by (1.27), is harmonic in Bk ;, taking into 
account the boundary condition, we have by virtue of (1.26) 

(h) (j) '= (R/s)/(y).	S	 .	 ( 3.1) 

Thus h solves the Dirichiet problem and can therefore be represented by the Poisson 
interal (1.15) written in the form,	 .	 V 

h(x) = ( iJ)f ((x, y) + 3xy/R3)d,..	'	V	 (3.2) 

where  

0(x, y) = (R2 - 1 x 1 2)/Ix - y3 — 11R - 3xy/R3 ..	 (3.3) 

The latter formula takes into account the first of conditions (1.12). It is clear 'from 
r	relation (1.27) that	 . 

divh = —divv,	 "	';	V	

-	
(3.4) 

and therefore, from the same relation we have	. 

x,(bv(x)/bx1 4- bv(x)/bx) = p(z),	 ..	V	 - .' ( 35)' 
where  

P= (PI , P2, POI , P.(x)'.=h1(x)—xjdivh(x).	,	 (3.6)

Applying the operation rb/br to both parts of (3 5) we obtain 
• . . IV1(X)	bv1 (x)\ + . XX 

(b2v 1 (x)	e2v(x) \	bpi(x) 
X •  

\ bx5	Ox /	-	i -	bXk bzi	Or 

Scalar-multiplyingx by (3.5) and then differentiating, we have 
:	• ,,	/av(x) • bv,(x)\	V	 • b2v,(x)	1 b(xP(x))  

+	i	 - -	. xj 
\ bxj	bx / 

+ XX1 
bXk bX I	.2	bx	 -	- • '•.•	- 

'b2v 1(z)	• b	bv(x)	bv1(x)	. bv1 (x) •	 V	 • 

Since. 
xkX,. 

bXk , 
= r -i— r	-	

br 
= r2	.2 , the latter equalities give 

for v the equation	 ,	 • 

r2 b2v(x)/br2 = r bP(x)/br -, 1/2 grad (P(x)). •	

•	

V (3.7)+ 

V	

- From the second of conditions (1.12) it follows that	 '	V	 V 

f y ,f,(y) d += f y,/,(y) dS	(i,	1, 2, 3).	-	 (3.8) 
-	S	 S	 V	 V	• 

By virtue of (3.2), (3.3), (3.6) and (3.8) equation (3.7) can be rewritten in the form 

r2 b
2v,(x) 

= __
 f ((2r 002(x Y)	 0(x, ii)) ok - Xk 

b 0(x, Y) • 
V	r2.	8iz	 br	 '	 bx1 

- 2,	r 0
0(x, y) -	Y)) + r2 

b2o(xY)) 
My) d 

V	•,	V	,	•	 (3.9) 

V	 V 

I	•	V	 V
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Consider a simpler condition -

r', w/ar2 =	 r r	,	
(3.9') 

The particular solution of (3.9') is w(x, y) = f 	0(txfr, y)/t2 d€. Using the .1?irichlet 
1 r	r	'	00 

formula ff p(t) dl =f (r — I) q(t) dl, we have 

•	 w=2—ø1,	 S	 (3.10) 
• where	 - 

' 1 (z, Y) .= f ø0(rx,y)/ dr.,	
- :--	

( 3.11) 

•	. .	2(z, y) = f 00(rx, y)1r2 dr.	-	 (112) 

Substitutig (3.10) in (3.9'), we obtain the identity 

r2 a2(0-	)/Ør2.	 .	 (3.13) 
Hence, using-the formulas r	= , r2/r = 2+	we have 

r 0001ar 00 = r2 (02 - )fØr2, r MolOr - o = r2 a2 1 /ar2. (3.14) 

On account of (3.13), (3.14) equation (3.9) takes the form	•	 S 

r2 - (V i
(X) ---_f 

((01(X,	+ 2( X, y)) ôjk ± X1-	
Y)2(X, ))	

•" 

- 2x	'' Y)• + r 
a2( (x y) -.. (

x Y))) /(y) dS) = 0. 
aXk

Hence	 S	 - 

Vi(X) 
= 

jLf	Y) + 2(x y)) o + Xk	
1(x, y) — 2(x, y))

axi 

•	,'	
- 2x1	'"	± r2 a2 (02(X, y) - 1(x, Y))) 

fk(Y) dS + c15a + b, &V
((3.15) 

where c,,, b i are arbitrary constants.  

Remark: If co is a regular scalar function harmonic in B+, then the general solution of the 
equation r! 02w(x)/ 2. = 0. bas the form to(x) = akxk ± b, where a 1 , a2 , a3 and b are arbitrary 
constants. This circumstance explains why the term cx1 + bi has been added to formula 
(3.15).	.	 S	

5	 5	 •	 - 

Choose constants c 17 ,-b 1 such that equality (1.27) is fulfilled. On account of (3.15)-
wehave  

x(3v(x)10x + 3v()1 ax1) - ; div v(x)  

11(4 iz)f 0(x, y) f(y) dS + (Cj + C1j - Ckkôj5) x1.
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Therefore for' ( f.27) to be valid it is sufficient by virtue of (3.3) that c0 + c,, -. Ckkf3tj 
•	= 31(4z,uR3)f y5f(y) dS. Hence	 - 

C l ,	C71 
= 

4Rf (y,j) - ô,,ykfk(Y)) dS	, = 1, 2, 3) 

Taking the latter equality into account, we-have 

•	 = I/2(c + c) x ± 1/2(c 11	c) x 

1 fi	.a	a\3xy 
 -- — X) -- Ik(Y) dS + e1ka,xk, 

'her Jk isthe Levi-Civita symbol, 2a1 = c 2 - C23 , 2a2 = C13 - C3 1 , 2a3 =C21- c12. 
Finally, for v i determined by (3.15), we have 

Vi(X) =--L f
	y)	02(X, Y)) ôk	 S 

I  S 

+ Xk

	
(1(x y) — 2(x, y) -

	
—	 201(x, y) + 

/	 - + r2	(2(, y) - 45 .. (x, Y))) fk(Y) d.± eIka xk +b1. 

- To determine tp we have on account of (1:25) and (3.4) the equation 

•
-	 cr ar	I + u ar	1 + 

•	 . 5. 

which we rewrite in the equivalent form 

2r•r (— c) ± 2	r	c)+	( — C) = F, (3.16) 

1	where

3)•±2 (O(0)+divh(0)),	 • (3.17) 

- F(x) = (O(x) - 0(0) + div h(x) - div h(0)).	 • • (3.18) 

(3.16) is Euler's equation relative to r. Introducing the variable t by the formula

	

= In r, —oo < t< In R, we have	- 

+2	
a( tp 	 3A

•	 •( - C). F.	(3.19) 

• The characteristic equation	/	 • S	 - 

•	 2k2 + 2((2). +,u)/(A +,u)) k + (31 + 2)/(1 + ) =0	• (3.20)
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has roots k = (22 +y ± }I_ 212 - 62u - 31u2 )/2(). +,u). Keeping in view conditions 
(1.2), we shall here consider three cases	 -	( 

	

- 3 -:- 3	 3 - 3 
314<2< 2 P'	 2	'	2> 2 

	

for which the characteristic equation has, respectively, two different real roots, a	- 
multiple real root, two complex-conjugate roots and therefore the solution of equa-
tion (3.19) differs in form. Let 2> i /2(1/ - 3 ) /4. Then equation (3.20) has the 
comple;-conjugate roots --k1 + ik2 and —k1 - ik2, where k1	(21 + u)12(1 + ), 
0,5 <k1 < 1, and k2 = 1222 + 62,u + 3/22/2(2 + ii), k2 > 0. Now it is not difficult 
to write the solution of the homogeneous equation in the general form (x) - c 
= ed1t(c 1 cos k21 + c2 sin k20. Assuming that is harmonic in B, the'particular 
solution of equation (3.23) can be given in the form 

(x) - c =	 k1(t-4) sin (t— ) 
F (- 

e) d. 

Taking into account that in this formula t= In r and introducing the variable 
= r 1 eE, we finally obtain 

V	N2
(x) =	 fF(rx)s1n(kainr)rk_1dr+c 

The cases —2/3/2 <2 < 1/2(f-3- 3) u and I =' 1/2(j/3 - 3),u are treated similarly. 
Note that F is determined by (3.18) , and therefore 

.1(x)	
8z(1 ± 1)Rf P1 (x, y) g(y) d +	div.f 3(X, y) 1(y) dS ± c• 

in the.case of Problem (II.I) 4 ,	.	 . 

(x) =	 F2(x, y) g(y) dS. +	div
f 

03(X, y) 1(y) dS± c 8n(A + u) Rf  
in the case of Problem . 	Here 

ct3(x,y)= -*f(z':	 (3.21) 

P1 (x, y) 
= - f(R2 

I	-	
sin (k2 In t)	 (322) 

P2 (x, y) 

-*/ y 
!rxI —2— In,	yI ±R)2 IrxP2);. (k2 in r) ik' 

(3.3) 

/
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C1 = 4(3) ± 2) R21 g(y) dS +	 yf(y) dS,
1A 	 4,-z/A(3). + 2p) Rj 

-	I- C2 = 47r/4(32*+ 2i) R3J 
yf(y)dS.	 S 

• On account of (1.24) the solution of Problem II.I) takes the form 

6(x) = 17(g) (x), 

u1(x)	
S 

f ((O , x y) + 0&, y)) ôjk + Xk .._(ci i (x. y) '- 02 (x, y) + 

+ x1 - - (r -_ 3(x, y) '- ø(x, y - 21(r, - 3A.+ 2s 

R2 - r2 2 3(x,	 1(x a2( 2(x, y) -	, y) — 3 (x, y)) 
+	 2	 \ 

•	 2	t9x1 hXk	 ax  aI	- ) 
Ik(Y) 

± 8	± ) RI ( ((
B + (X" Y) + 2r '' )•) S	 • 

+ R
2 - 3r2 aPlxY)) g(y) dS + e,ka,xk + b 1 ,	 (324) 

- and the stress vector has by virtue of (1.26) the form	•	-	 - 

•	 t(x) - yO(x) n(x)	
•	 S	

S 

•	1	ri2_r2	 S	 •	 •	 S / 

•	=•----j Y)d _ i sf(	• S	 /	

S 

S •	S	 S\	 S	 • 

-	

± R2_r2f
 grad 

div(r__ 
3(x, y) — 2 3(x, Y)) /(y)d,S 

ar 

/	+ 8(A± )Rr f grad (r -- P1 (x, y) - Pi (xy)) g(y) d	(325) 

• The solution of Problem (ILII) can be written as follows:	
S 

•	.	•	0(x)	.N(g) (4 + 00, •	_	
/	 S 

Uy 
u1(x)	 f ( (0jX, y) +'02(',  y)) ôlk + Xk;	 — 2 (x ) y) + 

+	 y)—	y) - 2'1 (x, y) - 3A —+ 2/" R3) 

2	aXlaXk	
(xy)	.	.	 S
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+ r2	a 
( 2(x, y) - 1 (z, y) - 3(x,	tk(1./) d 

8(2+ : Rf(P2	4 2P2(x,	
'3r2 ap) 

g(y) d 

± y00f(x) +	+ b.	 (3.26)

The stress 'vector has the-form' 

- yO(x)'n(x)  

I __ 
Ix  : 

 

+ 
R2 r2

f 
grad iiv (r -- 3(X, y) , 203(x,	fly) d 

S	 .5	 S	

(3.27)' 

±,2y(R2_.1)f grad (r-_ P2(x, y) - P2(z, Y)) g(y) d8	'-, 

	

•	 + (X) - Oon(z),	'	 S	 S 

= 2n(x) aUk(Z) 
+ um,(x)	+ 

du(x)) 

Classical solutions of Problems (11.1)1. and (II.II) can be' obtained, using the 
uniqueness theorems similar to Theorems 1.1, 1.4 and 1.5. They result from the vali-
dity of Green's formula for classical solutions [6]. 

Let us investigate solutions of Problems (II.I) and (ll.II)' when the boundary 
values / and g are continuous on S. We have to. prove that the inclusion & € C(B) 
is valid for u determined by (3.24) or (3.26) and the inclusion (T( ' ) yOn) € C(S) 
is valid for T' - yOn determiiied by (3.25) or (3.27). We begin by establishing some 
properties of the functions' 1, 2; 3, F1 , P2 that are determined by equalities (3.41), 
(3.12), (3.21)—(3.23), respectively. It is easy to verify that r a0,31ar = ( 1	k1 ) ø 
+ di,, wheke	 5	

5. 

f JR2 — JTtJ2 13xY) dr
R R3 

On account of (2.10) to (2.12) we have	 5 5 .' 

•ø(x,y)

5	

5 5	

5	 (3.28) 
S  

IPk(x, y)I, 
aP(X, y) 

A5	
C 	32"k(, y)	 c	 S 

axi •I-yI	• a; ax,	• 'Ix—.y12 

	

S	(k=i,2;i,j= 1, 2,3),	5	 '	

S	
'	

S 

S	 S	
S
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" 0&1 Y) 4 in (( I z— y -f- B2) - z12) 

In (( I tx - l + R) 2 - 1Tx1 2) p, (t) dT + 3'(x, y),	(3.29) 

• (x,) = ____ - (2+)R 
in ((x_ yj +R) 2 lx12) 

+fln (( l vx - l + B) 2 - x12) p2( "r) dr + ' (x, y), (3.30) 

where ' and ' and their derivatives up to the second order inclusive, as welläs 
9'i and 9 3 , are bounded functions. Using the formula 

f
i t2 —i	1	3a\ 2
It (t - 3at + 1)3/2 +	+	dt	

- t	2at ± 1 

3g2_g+1 
-	+ '	

± 3ain(}/t2 - 2at _f: 1 + 1— at),	al	1, 

we obtain

02(XI Y) = 
—Y - 3 X— - 

jin ((l - yI + B2) — lxI2) 

+ (3 in 4R2 - 5) --.+ -i.	 (3.31) - 

By virtue of (3.28) and (3.31), a vector u determined by (3.24) or (3.26) can be 
represented as v = U + + , where 

(x) =1 L'(x, y) 1(y) dS, •	 • 

(x) = (B2 - 1x1 2)f L2 (x, y) /(y) dS;	•. 

k1 2 J' L3(x ) y) /(y) dS, 

Lm= lIL lI33	(m=1,2,3),	 •	 • 

L'(x,y)	
lx - yI'	

1L2(x,y)I	
I x	P, 

L(x, y) =2 (02(x, y) - 1 (x, y) - 3(x, y))/ax1 aXj. 

	

TherefOre u, . c C(.). Now we shall prove that U €	By virtue of equalities 
(3.28), (3.29), (3.31) we write

•	 V :fl 2(x, y) — OAXI y) — 3(x, y) = (x, y)• 

- y + B)2 - 1rx1 2) (r) dr;
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where q,; as well as 0 and its derivatives of the first order, are bounded functions and. 
Ia2 (x y)/d; 3x :E^: c/Jx'—yI (i, j = 1, 2, 3). Thus to prove the inclusion u E C() 
it is sufficient to show that x E C(B),.where 

5	

-1	 5	 5-	

'5	

5 

•	
x(x) =f (j grad 4iv in (( I.rx - yI+ R) 2	1Tx1 2) (r) dr) 1(y) d. 

Obviously, x E C(B'4 ) and it can therefore be assumed that 0,51? :^,-, j xj	R Since 
(I z .— yj + R) 2 - z 2	21? z —y , .1; - yl/Iz -	1, lyi j ;5 1?, for 'z E B, 
y E S, we easily obtain  

• -

	
in ((I rx - . y.1 +'.R) 2 - rx1 2 ) /ax 1 e3x4	4/I tz - yI. 

On' account of this estimate, for expressions	 S 

•	 W5(x, y)	a:2 ax in ((I rx - I + R) 2 - 1rx1 2) (r) dr-'  

we have  

dr	'	c	 - a W, (x, y)j cf 
x -	= R. I x I V! -- a 2 

arctg 
}/ i - a2 LX/2R - 

where a xy/R jxj = cos y. 'Therefore 1'(x, y)J c/}I i -- a2 . Let x E B and 
let x0 be a point of the sphere S such that Ix -	= min {jx - y l : y E S}. 
Then ly - x0l	2R Isin (y/2)1, ly + xol = 2R 1 cos (y/2)1, and therefore i/i - a2 

—cos2y=jsiny l = ly_x01l y -- x0II2R. Thus'  

lW1 ( y)l f-
C '	

lx(x)l	r	/(y)d 
1	

,	I - X l l ± Xol	 -. J hi	Xol hi +xol 
S 

Keeping in mindthat y - x01 > 1? if 1 y5 + xol , R and, conversely, I + zol >' R 
if ly —x0 l 1? and repeating the reasoning used in proving the continuity of the 
harmonic single-layer.potecitial [13], we can easily establish theinclusion x E C(B). 
Thus; it E C(B)	 '	 S We next prove the inclusion (r' - yOn) E C(S). On the basis of representations 
(3:29) and (3.30) for Tin)- 8n determined -by (3.25) or (3.27) we have 

- yo(x) n(x) 
= - 

11(f) x) + (R2 . x1 2)f Q(x, y) dS 
1XI  

	

R2_ lxl 2 r	•	 1 
:	+	

lxi J grad div 
Z -	

/(y) dfl + 77(x), 

• , 

where IQ(z,,y)l	c/h z	y 1 2 , lim 77(x) = 0. Now by virtue of Lemma 2.1,	• 
•	 S •	

Bx—..yS' 

estimate (2.24) and the property of the Poisson integral it can be easily, verified 

35 Analysis Bd. 8, Heft 6 (1989)	
5	 5	 5	

.5
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that

urn	(t(n())(X) - yO(x) n(x)) = 1(Y) 
B43x—.YES 

and therefore the inclusion (r t> . yOn) E C(S) is valid. Thus we have 

Theorem 3.1: If f,g E C(S) and conditions (1.12) [(1.13)] are satisfied, then the 
pair (u, 0) determined by formula (3.24) [(3.26)] is the classical solution of Problem 
(II.I).[(II.II)].	.	 S 

Problems (11.1) - and (II.1I) are solved in a similar manner. No new difficulty 
arises in constructing and investigating the differential propthties of their solutions. 

. 4 Concluding remarks. Historical background	 . 

Static equations of thermoelasticity in terms of displacement and temperature components 
give rise to system (1.1), which consists of four equations for four unknown values u1 , u21 u3 , 0. 
The temperature 0 satisfies the Laplace equation. If 0 is known, then .thedisplacement u = (iz1, 
U2 , u3 ) is determined by the system of classical elasticity. At the same time, in the case of Pro-
blems (I.I) ± to (II.II)±, to find 0 we have the Dirichlet or the Neumann problem for the Laplace 
equation. 0 can therefore be determined in quadratures by formulas (1.15), (1.16), (1.18) or 
(1.20). Substituting the obtained value of 0 in system (1.1) and in the boundary conditions, we 
determine u by solving the following problems: 

Find in B a solution of the system 

	

\S	

S 

Ju+(+,L) grad divu=F	 (4.1) 

satisfying the condition (u) =ipin case of Problem (I), or the condition (v° ) ) = i in case of 
Problem (II)± , as well as the condition of damping at infinity (1.5) in the case of the domain B-. 

Here F and V are expressed explicitly (effectively) by means .of quadratures in terms of 
boundary values / and g.	 S	 - 

One particultr solution of system (4.1) is given by the volume potential V(F) with the den-
sity F [6]. It is expressed by means of quadratures in terms of F. In this case, if u is represented 
in the form u. = V(F) - u0 , then u0 must be the solution of the same Problems (I) ± or (II) in 
which F = 0 and V is expressed by means of quad.ratures in terms of F. We denote these prob-
lems by (I) ± and (II). Their solutions are constructed in quadratures [15, 20]. 

Though the presented algorithm for the solution of Problems (I.I) ± to (II.II) leads to the 
purpose, the solufion representations obtained in this manner are rather cumbersome (they 
contain both surface and volume integrals) as compared with representations (2.5), (2.8), 
(2.29), (2.39), (3.24) 1 (3.26). 

Quite a few mathematicians have tried to solve Problems (I) and (II) + . The first work in 
this direction belongs to G. LAME [7], who obtained the representation in terms of series of 
spherical coordinates of the displacement vector. W. THOMSON [18] obtained the representation 
in terms of series of Cartesian coordinates of the displacement vector. The results of G. Lamé 
and W. Thomson were afterwards repeated and used in th ,e specific situations. Some authors 
represented them in a different form. The first paper in which solutions of the above problems 
are constructed in quadratures belongs to C. W. BORCHARDT [1]. Simpler representations of 
solutions in quadratures are also obtained in CERRUTI [3], 0. TEDONE and C. SOMIOLrANA [17], 
and in others. Special mention should be made of R. MARCOLONGO'S paper [11: pp 279-299], 
in which asimple procedure of deriving the solution by means of representation (1.21) was 
evidently given for the first time. This representation was later used by E. TREFrZ [19], who 
is often believed to be its author [9, 16]. Problem (II) i was solved in quadratures for the first
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time in [20].. The same problem is solved by the expansion in a series in LURYE '[10]: Detailed 
bibliographical references concerning all these problems can be found in [4, 8-11, 16]. 

'Note that we can also solve in quadratures problems with concentrated singularities for the 
sphere. They are formulated as follows: Let x....., Zr be interior points of the sphere B', and 
let p,	Pr be some non-negative numbers. 

Problem (LJ)p+: Find in B a pair (u, O)1 which is regular in B \ {x1 ,..., Xr} 'Br and 
satisfies system (1.1) in Br, the boundary conditions (u) + = /, (0)+ = g on 8, and the condition 
Iu(x)i	c/ax - ; ) P (i = 1 .....r).	 .	. 

If all p < 1, then Problems (I.I)+ and (I.I),,' 4- are equivalent, i.e., they have the same solu-
tion. If at least one p . > 1, then Problem (i.I) will have - iñ addition to the solution of 
Problem (1.I)+ - other singular solutions' which can be constructed in quadratures, using the 
formulas given in the present paper and the algorithm from [2]. Problems (I.I), (I.II)r, 
(II.I), (II.II) ± are formulated and solved in a similar manner. 
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