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Dedicated to Professor S. G. Mikhlin on the occasion of his 80th birthday 

/ 
-	 / 

Die Arboit beschäftigt sich mit Charakterisierungen der Räume Fspq' und B 9 auf R", R" und 
beschränkten Gebieten durch lokale Oszillationen und Differenzen von Funktionen. AuBerdem - 
werden Morrey-Campanato-Raume behandelt. 

• B. paGoTe xapaKTepnaymTca npocpancna F,5 itB3 na R", R, it orpanuqeHilbix o6jia- 
CTHX JIOHaJU,HhIMu OCLU1JUiH411RMW n pa3HOCTiiMn tyHFnHt. lcpoMe sToro paccMa'rpu. 
BaIOTCH npOCTp aHCTBa Tuna Moppe-HaMnaHaTo. 

The paper deals with characterizations of spaces Fs and B3 on R, R+ and bounded domain 
' via  local oscillations and differences of functions. Furthermore Morrey-Campanato spaces are 
treated,	 .	.	.	 . 

1 Introduction and historical comments	 - 
( 

Let .Q bea smOoth bounded -domain in R" and let B(x, t). = {y I y € Q, I  - I <t}, 
shre x € Q and t> 0. Then  

.osc M /(x , t) =inf	/(y) - P(y)P dy' IP ,	x € Q;	 (1.1)

denotes local-oscillations of / € L(Q) where the infimum is taken over all poly-
nomials P of degree less than or-equal to M with 	€ N0. Furthermore 0 <p <c.1 
and fg(y) dy	I V I I, f g(y)dy denotes the' mean value. We complement (1.1) by'. -	v'	 V	 .	 'S 

oscp" t/(x, t)'r ( •f /(y)
.
P dy'IP. Since the early 'silties

.
 oscillations of this type have 

	

/	 . 
been ystematica1ly used in order to describe, smoothness prbperties 'of functions. 
Let L8(92) with  
• 

	

1:5'p<oo, ' M=-1,O,1,2,... and —n/p^S's<M+j . (1.2)	--
•	be the collection of all / E L(Q) such that fM.8 E L(Q), where  

-	. /,,M.3()	sup t oscpM /(x, t)  
0<1-C1	.	.	.	. 

is aso-called sharp maximal function. Naturally normedL8(Q) coincides with the 
well-known Morrey-Campanato spaces. The case M = —1 andhence —n/p :!E^ 5 <0 
goes back to C. B. MORREY [22]. Recall L"IP(Q) = L(Q): Furthermore L°(Q) 
= BMO(Q).is essentially the John-Nirenberg space of all functions with bounded mean 
oscillatioiT, see [16]; and L8(Q) = '8(Q) if s > 0, where the latter stands for the 
Holder-Zygmund spaces. The theory of these spaces has been systematically develop-
ed in the middle ,of the sixties by several authors, we mention especially S. CAIth'A-
NATO [6-9], G. N. MEYERS [21], S. SPANNE [25] and G. STA1H'ACCHIA [26]. We refer 
also to the surveys [23] and [20: Chapter 4, in particular 4.10]. Iii [27] G. STANTAC-

18 AnalysIs Bd. 8, heft 3(1989)	 -
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CIHA replaced the sup-norm in (1.3) by an Lq-norm. This idea' was extended by -V. P. 
IL'IN who described on that way the classical Besov spaces B q(Q) via oscillations 

• and who introduced large classes of new spaces in a Besov space setting, we refer to 
-the survey of his results given in [1: §28], see also the paper by Ju. A. BRUDNYJ. 

[3]. In this connection it should be_ mentioned that the idea of approximation of 
functions by best polynomials' can also be used to study' spaces of Besov type in 
rather general non-smooth domains, see the surveys [17, 33] and the papers mentioned 
there. In the last few years oscillations and sharp maximal functions of type (1.1) 
and (1.3) attracted new attention. Apparently.this new development began with the 
work-.by A. P. CALDERON and R. Sco'r'r, see [4, 5], who connected sharp maximal 

'functions of type (1.3) with the theory of Sobolev spa3es. in particular. A. P. CA1.DE- 
RON proved-in [4]	 . 

W(Q)	{/ I /E L(Q) /kI.k e L(Q)}	'	'	 (1.4) 

with k € N0, 1 u < p, where Wk(Q) stands for the classical. Sobolev spaces, see 
also [5, '10, 11]. Formula (1.4) with k = P is essentially - the Hardy-Littlewood maxi-
nial inequality. These ideas were modified by R. A. DEVORE and R. C. SHARPLEY 
who, introduced spaces of the type  

O 8 (0) ,= if I / E L-(Q) /1818 € L(Q)I,  

where s> 0, 0< p'< co 'and = max.(1, p), see [11: §6 and 12] (these authors 
• - deal mostly with the case p	1),. Independently. B. BoRsKI defined in [2]spaces 

, which cover more or less both the Morrey-Campanato spaces L8 and the above, 
spaces C 8 (with p	1), see also [1Q]. FurthermorO it was noted by J. R. DoüRoNSoao 

• - in [12] that oscillations of type (1.1) can' be used in order to characterize Bessel- 
potential spaces in the sense of Paley-Littlewood characterizations. The extension of 
this observation-to some spaces of type F,q (Q) is'due to A. SEEGER' [24], see also" 

- [13]. (Recall . that the Besov space counterpart of this part of the theory is more or 
less covered by, Il'in's work, p j> 1, see also [3, 14, 17, 33].) The t .heoryof the spaces 
B,q and F in its full extent; i.e. --oc <s <00, 0 <p cc (p< cc in the case of Pq 

theF-spaces),.0 <-q.^ cc; has been developed in [28]. These two scales cover many 
• well-kncwn, spaces: classical Besov spaces, Holder-Zygmund ,spaces, (fractional) 

Sobolev spaces and inhomogeneous (Sobolev-) Hardy, spaces. One of the main results 
- - of the present paper reads as follows: Let	 - 

-	.	'	.	.	;.	'-	
•'	 /1'	1\	- 

O<p<co; 0<qco,,1rco, s>m.(-------J, 

	

\p	 '16 1..	 - 
s>,n G--  .,	r^	•'	 '	 -	 .	 - 

let 0 < u	r and M	[s], then F 0(Q). is the collection 'of all / € Lmax(p.r)(Q) 
such that •	 •	 '	 '	 ' 

Il/ I L(Q)	 oscuM A . , M	 L(Q) <cc	 (1 7) 

in the sense of equivalent quasi-norms (modification if q = cc). With u = r- this 
•	assertion is essentially covered by A. SEEGER [24: Corollary 1]. The extension to

• ' u < r is useful for several reasons, in particular it follows immédiate.y 

C9(Q)=.F(Q),	0 <p< cc, 8>	_.i)	-	•	 (1.8)
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where C(..Q) 'are the spaces from (1.5). Oscillations are closely connected with dif-
ferences of functions	 . 

	

= ' (1)-1 (	) /(x +lh ),	XE R", h  JI'.	, (1.9) 
j=o	\	\	/•	 .	 - 

Characterizations of function spaces via differences are much better known than 
'characterizations via oscillations. Descriptions ,of function spaces with the help of 
differences have a long history. In the theory of the Holder-Zygmund spaces 
with a> 0 and the classical Besov spaces B 4O ; a> 0, 1 <p < 00, 1	q	co, they 
played a decisive role from the very beginning. The extension , of this part of the 
theory to more general spaces B10, including those ones with p < 1, and correspond- 
ing spaces F,q may be found in [28], where we gave also detailed references, see also- - 
[29] for a more recent and systematic approach: In [281 we mentioned the problem 
to find intrinsic descriptions of the spaces F(Q) via differenes under reasonable 
restrifions for the involved paramete'rs. This problem was solved by G. A. KALJABIN 
[18] in a satisfactory way br the spaces F q(Q) with &> . 07 1 < p < oo, 1 < q <00. 
It is the second-main aim of the present paper to extend Kaijabin's characterization 
to spaces F1 (0) with (1.6) (r = 1). We add a technical but important remark: If 
one takes one of the two characterizations of function spaces in question, i.e. via 
oscillations or via differences, as granted, then such an. assumption is of great help 
to derive the other one. Since characterizations via differences are known, it vas 
quite natural to use them in order to treat characterizations via oscillations, see [24]. 
Our intention in the present paper is different. We start-from scratch, what means in 
our context that-we begin with characterizations of 'F,q(IV') via local means in the 

- sense of [29] and [31]. Then we derive inequalities for osèillations for their own sake, - 
which can be used both for F q spaces and Morrey-Campanato spaces. Then we give 
a new and almost-trivial proof of the extension property for the spaces F,q(R") and 

- arrive finally at characterizations of type (1.7). On this basis and the distinguished 
local means from [31] we -deal afteivards with 'characterizations via'differences. 
- The plan 'of the paper is the following. Definitions and main-results are pollected in 
Section 2. - Proof and more technical assertions are preented in.Se'ction 3. As usual - 

•	unimportantpositive constants are denoted by c, occasionally with additional marks. 
They' may differ from formula to formula (but not within the same formula or in-

-	equality):	-	 .	-	.•	.	 , - 

2. Definitions and main-results 

2.1. Definitions 

2.1.1. Let N be the collection of a! ,! natural numbers, No =.N u 0) be the collection --
of all non-negative integers and N_ 1 = N0 u {-1} Let Rn withm E N be the Euclidean 
n-space. Then'S and 8' stand for the Schwartz space of all infinitely differentiable.- - 
rapidly decreasing complex-valued functions on •1t' and -the collection of all cdmplex- - 
valued tempered distributions' on I!", respectively. For sa'ke of brevity we adopt . - 
here the following conventiOn: for spaces and quasi-norms which are defined on Rn

 we omit "R". in the respective notations, otherwise the underlying domain will be 
mentioned explicitly (mostly R," or bou tided -smooth domains in IV). Similarly - 

otherwise the region of integration will be specified explicitly. Let 0 <p	00, 

then	 -	-	 - - 

	

MI I LpII =' (f /(X)I dx) uI	- -	.	- -	 -	(2.1) 
18*
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(usual modification if p ='oo).- Let k E 5, then we introduce the means 

k (t, /) (x) = f k(y) /(x + ty) dy,	X E R, 1> 0,	
c	

(2.2)

which make sense for any / E 5' (appropriate interpretation). Let k0 E S with 

suppko{yIIy <1},.	k0(0)+ 0 ,	 V	 (2.3) 

where k0 denotes the Fourier transforth of VkQ . Let a = max (a, 0) where a is a real 
In 2\1	 -. 

number. Let 
JjV= (

-) 

with lE N.	 V 

	

• 2.1.2. Definition. Let —00 <s < 00 and  <q :!i^- 00.	

V	

- 

•	(i) Let 0 <p < oo. Le't e> 0 be small and, 1 + E N with 21> max (, ii(' /P - 1)+). 
Let k = 4'k0 ,where k0 is the above function. Then	 - 

P pq = {i I /ES',' 1 11  I j Iko(e /) I L911 

	

+ (E 2i8Q. I k(2-i, f)( . )I Q)	I L	<}	(2.4) 
V	

•V •	 V	
V 

V (modification if q = oo).	 V	 V	 V 

•	 V	 (ii) Let 0 <p !E^ 00. Let 1 be the same number and k5 be the same function s 
•	V

in 

(i).Then	 V	

•V	 V 

B q = {t /E S', Mt I BII = 1 1k 0( 	I LPH 

•	 V	

•	•+ (
 

	

2j lg IIk (2- , I) FL'I	
<V°4	

(2.5) 

	

/	-	-,	V	
V 

(modification if q = oo) 

•

	

	2.1.3.Remark. The original' Fourier nalytical definition of F and B,q looks
somewhat different,-see [28: 2.3.11. The ab'ov,e version is covered by [29],-see also 

V 

[30: Remark. 1] for more detailed references. Of course k(2, /-)- is-given by (2.2). 
•

	

	We shall not distinguish between equivalent quasi-norms ina given space. This 
justifies the above abuse of notations to write simply II/ I F ,Il' although it is quite 

• clear that the above 11fl F s 

	

pq II depends6n c, 1 and thechosen function k0 . We recall	•

that these two scales B q and F q of quasi-Banaeh spaces-cover-many well-known 
•	spaces: B with s >0, 1 <p < 00, 1	q	oo, are the classical Besov spaces;. 

•	 B	 with s > , 0 are the Holder-Zygmund spaces; H 8 = F with , -00 <s00

< oo, 1 <p < 00 are the. Bessel-potential spaces with the Sobolev spaces as a sub-
case; H = F° 2 with 0, < p < oo are inhomogeneous Hardy spaces. The theory' of 
these spaces has been sy$ematically developed in [28].	- V	 V 

V	

V	
V	 > 

2.1.4. Distihguished .V kernels. We need some results proved in [31] which we 
describe in this subsection aiid the next one. There exist two G 

1 
00 funtions 99 and v on 

V	

V 

the real line with supp op	(0, 1), supp	(0, 1) and	- 

V	

'	 fç(t) dt-= 1,	(t)—	(f) = (M)(),	-	
V	

(26)
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where M € N is a given number. Let 

(x)	U(x:),	x = (x 1 , ..., x) € R,	 (2.7) 

•	 (—l)M+1 M 
ko(x)	 rm'i	(M ) (M ) ' r-'mm-.'O

x
m 

	
(__), 	

- (2.8) 

and
k(x) = k0(x) - 2k0(x/2).	 (2.9) 

These are the distinguished kernels introduced in [31]. Const .ruiôns of type (2.8) 
play a crucial role in the Russian school of the theory of function spaces. The partic-
ular structure of (2.8) with a double sum goes back to G. A. Kur.&nn [18], see also 
[19] and LIzoRxIN's appendix D.2.3 in the Russian edition of [28: p. 411]. Let 

• - /ES', then	- 
f k(2-, /) (x)	if j E	 (2.10) j7X;	
1 k0(2, /) (x)	if, —j E N0. 

Furthermore, any /E S' can be represented as	 - 

	

(convergence in S').	.. -	..	 (2.11)

For proofsand details we refer to [31]. 

2.1.5. Equiv'lent quasi-norms. Let k and k be the functions from (2.8) and 
(2.9), respectively, and let k(t, /) and k0(t, /) be the corresponding means, see (2;2). 
.Let--oo<s.< oo,0 <p :!E^ oo(withp < ooin the caseofF-spaces) and o <qoo. 
Let MEN be the same number as in 2.1.4 with M > max (s,n(1/p - 1)+). Then 
there exists a number K E No such that 

/ 
F,q = If  / € S', (	

' 2i /(.) q )	L	< oo
1

-	(2.12) 

	

 /	. 
• and

/ Co	 -	\lfq	•1 
Bpq 	E S', ( E 2j8q 1 1f,

< OO	 -	(2.13) 
I	3 

in the sense of equivalent quasi-norms (modification if q = oo). The functions 1, 
have the same meaning as in (2.10). A proof of this assertion may be found in [31: 
Theorem 2.2.4].	 .	 . 

2.1.6. Spaces on domains. Let Q be either R, = IxI x = x1 , ...,x,,) E R'1 with 
Zn . > 0} ora bounded CCo domain in W. Then F7,(Q) is the restriction of E on Q 
quasi-normed by 

II/ I F q(Q)ll = inf Ily I F qlI,	 -	-	 (2.14) 
where the infimum is taken over all g E F,q with g Q = / (in the sense of D'(Q)). - 
Similarly one defines B,Q (Q). The parameters s, p, q have the same meaning as above. 

2.2. Characterizations via oscillations •	 . 

2.2.1. Oscillations and sharp maximal functions. Let Q. be an arbitrary 
domain inR. Let	 .	. • 

B(x, t) = {i Ix - y <t} n Q,	x € Q,'t> 0. -	 -. (2.15)
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Eor sake of bevity we write  

g(y) dy= jB(x, t )L' f g(y)dy.	 S. 

B(x.1)	-	 Br.g) 

Let M E N_ 1 and 0 <u :^-, oo, let . P 1 be the collection of all polynomials (with com-
plex coefficients) of degree - less than or equal to M, where we put P_ 1 = {0}. Then' 

oscu M /(x,'t).= inf (.	j/(y) - P(y) dy/u,	x € Q,.i > 0,	(2.16) 

'denotes the loal oscillation where the infimurn is taken over . all'P E PM (usual modi-' 
fication if u = oo). Of course the notation osc7 depends on Q, but in, general we 
'shall not indicate this dependence.. Furthermore it is tacitly assumed that Ifl u is 
integrable in B(x, t). We introduce the sharp, maximal functions 

V 
1 M.8 (x)	sup	' osc	/(x; 1),	x.€ Q,	-	 -	(2.17) 

	

-	
r

'O<i<l  

where s is'aYreal 'number, M € N and 0)< -?-t:E^ 00. Let a, = max (a, 0) where a is 
V	

-V a real number.  

• , 2.2.2. Theorem. Let £2 be either R, Rn or a bounded Q dornainin R"..  
. (i) Let 0<p<oo,O<qoo,1r ooand  

->'n(-----'	and	 .	 (2.18) 

	

-	 , \p	r j+	 q	r/^	..	.	V 

	

- -	

--

 

Let- 0 <	r'andM E No with M Is), then. 

= /J E Lmax ( pr ) (Q) Ill I LI(Q) ll  

± (E 2j8q osc M f( 2 1 ) Q)	 LP (.Q-) < 04 , V	 V	

'(2.19) 

V	

,

 

(modification if q = oc) in the sense of equivalent quasinorrns. -	- 
V '	

- (ii) Let - 0 <p	oo, 0 <q	oe,I	r	oo and	 - V 

s> n

	

	-	
-	 , V	

' (2.20)
\p  

Let O'<u r and. M EN0 with 	[s]. Then  

-	B q(Q) = {t I / ELma:pr) (P) 'It L(Q) I	

1/q 
2iQ llOsC M /( 2) 1 L ( Q)II' < 60 .	(2.21). 

V .(modification if q = oo) in lhe'sense of equivalent quasi-nórm.s.  

2.2.3. Remark. As we said in the introduction there exists some eharacterizations.of 
type '(2.19) in the literature. As far as fractional Soholçv spaces ii8= F 2 with
8> 0 and 1 <p <oc are concerned we refer to J. R. DORRONS0110 [12]. Extensions
to more general spaces .P q are due to J. R. DoRuoNsoRo [13] and A. SEEGER [24],
where the latter paper covers more or less (2.19) with u = r. Characterizations of 

	

V	

, type;(2.21) thay be found in a somewhat hidden fotrn in the work of V. P. IL'IN, see	V 

	

-	 .	 J
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- [1: §28], we refer also to Ju. A. BRUDNYJ [3], H. .WAuUN [33: Theorem 71 and the	ri 
references given in the latterjiaper to further papers by Ju. A. Brudnyj, J. R. Dorron-
soro, F. Ricci, M. Taibleson, A. Jonsson, H. Wallin, R. A. DeVore and V. Popov in 
this connection. We concentrate ourselves on the more complicated F-spaces, and 
formulate the corresjonding results for the B-spaces only for sake of completeness. 
We prefered in (2.19) and (2.21) a discrete version. But it follows immediately from 

- (2.16) that one can replace the sum over j by .an integral. For example, 

lit I L;(Q)j +	-q oscM f(., t)Q )

	

L(Q)	-	(2.22) 

is an equivalent quasi-norm in5 F,q(Q) under the ae conditions for s, p, q as in the 
theorem. 

2.2.4. Definition. Let Q be a bounded C domain. 
(i) Let'1 p < oo, s	—nip, and M	max (-1, [s]). Then	 - 

L98(Q)	{ti [E L(Q, lit I Lp8(Q)Il 

-	=	L(Q)l ± sup /8(X)	oo}.	 (2.23) 
-	x(Q' 

(ii) Let s> 0, 0 <p 15;	and = max (1, p). Then	- 

•	-	
C(Q) =(f /E L(Q), Il/ I C 8(Q)ll	-	- 

= Ill 1 L(Q)1 + 1/[8L L(Q)II <oe}.	 (2.24) 

2.2.5. Remark. The spaces L8(Q) -are the Morrey-Campanatp spaces. The case 
—n/p s <0, and hence M = —1, goes back to C. B. MORREY [22]. Furthermore 
L°(Q) = BMO(Q) is essentially the John-Nirenberg space of all functions with 
bounded mean oscillation, see ['16]. (If one extends the case M = —1 to .s =0, in 
contrast to our définition,.then one obtains L(Q), and it is well known that BMO is 
strictly larger than L.) The extension of the spaces L 8(Q) to s > 0 has been done 
in the sixties by S. CA1H'ANATO [6-9], G. N. MEYERS [21], S. SPANNE [25] and G. 
STAMPAOCHIA [26, 271. The original notations are different. The above notations are 
adapted to the main subject of this paper, the sjces Further details and refer-
ences may be found in [23] and [20: Chapter 4, in particular 4.101. The spaces C8(Q) 
have been introduced by R. A. DEV0RE and R. C. SHARPLEY in [ii] and M. CI-ERrsT 
[10]. The difference between (2.23) and (2,24) . is obvious: One replaces the sup-norm 
in (2.23) by the L u-quasi-norm. The ideato replace the sup-norm by some Lq-.porms 
is not new, see G. STAMTACCI[1A [27] and V. P. IL'IN [1: § 28]. A-discussion of this 
point and further references may also be found in [2].. In order.to define L 8(92) and 
C 8(Q) it is not necessary that the underlying domain Q is hounded or smooth. It is 
simply convenient for us. However if Q is unbounded, then it seems to be desirable to 
replace lit I L(Q)il in (2.23) by sup t I L(B(x, l))II, see (2.15). As we shall see one 

ZED 
can prove well-known classical results for the spaces L8(Q) more or less as a by-
product of the ,technique which we develop in order to handle the spaces F8 -Maybe 
.this justifies to incorporate these results ,jn Theorem 2.2.7 below. 

S •-

.	 .5	 —#	-
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2.2.6. H_ölder-Zygmund and Sobolev spaces. Let Q be a bounded C domain 
in R'' let 1 <p < co and k E N,.*, Then 

Wk(Q) =	I E L(Q), / I JVVk(j? )11	E 11 Th/I L(Q)H <}	(2.25) 
I. 

are the well-known Sobolev spaces. Let M E N, t'> 0 and x E £2, then 

•	
VM(x,t)= {h I hE R",x+hEQjh <1,0	r:!E^M}	 (2.26) 

is a maximal subset of a ball of radius t and with its centre at the origin such that 
•x + MVM(x , t) c Q.Againwe omit to indicatethe dependence of VM(x, t) on Q. Let 

• s> 0 and let M E N be the smallest number with M > s,-then	 - -	S	 •\_ 

E L :,,(Q), / .j 8(QI	 S 

-•	
••	 = Ill I L(Q) + sup IhJ- 8 14 4M/(x)I <oo}	 (2.27) 

are the Hölder. Zygmund spaces, where the supremum is taken over all x E Q 
-	0 < t < 1 and h € VM (x, 1), and	

S' 

S	 M
	( M ) (-1)" i /(x +jh)	 (2.28) 

7-0 

are the usual differences. It is known that both spaces WP k = F 2 and '8 = B are 
covered by the spaces introduced above, see [28: 2.5.6 and 2.5.7], but this is un-
important at the moment. Furthermore one can replace the smallest M E N with 
M > s in (2.27) by an arbitrary M E N with M > a (equivalent norms). 

.2.7. Theorem. Let £2 be a bounded C dornzin in R. 
(i) Lei 1 :^-p<oo and .s>O.Then -	

J-11/P(Q) = L(Q)	and	L 8(Q) = 3(Q).	 • (2.29) 

(ii )Letl!5p<oo,MEN i and _n/p:!^:s<M+1.Then 

•	 lit I L 8.(Q)J	= Ill I L(Q)I + sup /5t.8(x)	 (2.30) 
XED 

is an equivalent norm on L8(Q).. 
(iii) Let 0< p ^ oo and a > n(l/p — 1). Then 

c8(Q) = F(Q)	
S	

(2.31) 
•	and/or any M EN0 with M [a] :	--	- 

II! I C 8(Q)JI M = Il/ I L(Q) + Ii/M.8 I L(Q)iI	 (2.32)	- 
is an equivalent quasi-norm in C8(Q).	S	 S	 S 

(iv) Let k E No and 1 -^ u <p < oo. Then, 
iV5k(Q)	If I/ E L(Q), If I L(Q)II + I11k_1k I L(Q) < oo}	(2.33) 

(equivalent norms).	 •- - 

2.2.8. Remark. As we said we consider the above theorem as a complement of Theo-
rem 2.2.2. For this reason we did not try to give most general formulations. One has 
corresponding assertions if one replaces £2 by R" or R+' (with the modifications mdi. - 

5)
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cated in Remark 2.2.5). Furthermore Q need not be C. Almost allassertions of the 
above theorem are known: (I) and (ii) are known since the sixties in the framework of 
the theory of the Morrey-Cámpanato spaces, see the references given in 2.2.5. Further-
more (iv) and also the assertion about the equivalent quasi-norms in (iii) are covered 
by [11],'i * ncluding some generalizations, wheras (2.33) is essentially due to A;P. 
CALDERó [4], however see also [5, 10]. Formula (2.31) seems to be new, but it is - 
more or less a consequence of [24: Corollary 1]. 

4	
/	 - 

2.3. Extensions and characterizations via differences 

2.3.1. The extension problem. Let Q be either R, n or a bounded C domain in 
R I . Let -oo <s < co, 0 <p < 00, 0 <q 00 and let re be the restriction opera-
tor from F,(R'1 ) onto F,q(Q) in the sense of 2.1.6. Of course re is linear and bounded. 
We are looking for a linear and bounded operator ext frOm F,(Q) into F,(R') with 

re a ext = id	(identity in F,(Q)).	 (2.34) 

This extension property is well known for the classical spaces (Sobolev, fractional 
Sobolev, Besbv, Holder-Zygmund). For general spaces F,q (and also B,q)'includingin 
particular smoothness parameters s 0 and values p < 1 this property has been 

• studied in [32: 2.9.3] and [28: 2.9]. However there remained some gaps. The first 
full proof is due to J. FRAcKE [15]. In [31] we gave a new proof of this assertion which 
was based on the kernels and the quasinorms in 2.1.4 and 2.1.5, respectively. In the 
present paper we give a new and almost trivial proof of the extension property for 
the spaces F8 under the same restrictions for p, q and s as in Theorem 2.2.2 which is 
not only of interest for itsThwn sake but which is crucial for our method: First we 
prove all assertions on R, for example.those ones from Theorem 2.2.2, then we prove 
the extension property and obtain on this way corresponding assertions on R''1 and 
transfer finally these assertions to bounded C domains with the help of diffeo- 
morphic maps.	 - •	 - 

2.3.2. Theorem. Let 

O<p<oo,	0<q;5-oo	s>n(_._1)	s>n(_1).. 

•	 (2.35) 
Let L E No with L	[s]. Let 0 <2 < 2 <'v.. <'iL and let jo, ..., aL be real numbers 
with.	 - 

L

' a( — A = 1	- where	1 = 0,..., L.	•	 ( 2.36) kO	 - 
Then extL with

/(x)	 - if x E R.,'3	--
extL 1(x) = - L- 	(2.37) 

-'	 -	Eakf(x, —Akxfl)	if x = (x, x) withx 15: 0 k=O	 •	 S	 - 

is an extension operator from F 0(R,") into F,(R').	 -• 

2.3.3. Remark. Extension operators of type (2.37) are not new, they go back to 
Fichtengol'z and we used them several times, see [3: 2.9.1 and 2.9.3], [28: 2.9] and 
[31], in an extended form which co'ers also values s	0. The theorem in the-above 

•	-
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form can be extended immediately to the spaces B q . with 0<-p 00, 0< q 00 

and s >n(l/p  

2.3.4. Corollary.. For any r > 0 and all . p, q, & with	- 

& <p< 00,	 <q	oo,	I sl	 (2.38) 

there 'exists a connon extension operator ext1 from P q (R+ ) into Fq(R). 

What is meant by this a little sloppy formulation is that there is a linear operator 
- ^extr defined on the union of all spaces in question suchthat its restriction to a partic-	- - - 

ular space P7,q(R+') has the desired property. We incorporated this corollary be- 
cause it follows rather simply from Theorem 2.3.2 and some techniques used in [28:-
2.9]: duality and complex interpolation. Hence one has anew proof of the full theo- - 
rem (without any restrictions of the parameters). The same-operator ext is also an 
extension operator from B,q(R+8 ) into B q(R) if	-	 - --

-	 S <p < 00,	0< q ;5 00,	sj <e'.	 :	(2.39) 

2.3.5. Means of d ifferen c-es. Let Q be either R' 3 or R," Or a bounded C domain in - 
R'. Let VM(x, t) and 4 hM/(x) be given by (2.26) and (2.28), respectively. Let f € F,(Q) 
with the same restrictions for s, p, q as in Theorem 2.2.2(i) with r = 1. Then / E t(Q) 
where'?- = max (p, 1). In particular,	 - 

ci t Mt(x) =	4/(x) dh';	x € Q, t > 0,	-.	 (2.40) 
-	 V3(x,()	 - 

makes sense where again we 'omit to indicate the dependence of d1Mf on the given 
domain Q. Furthermore f stands for the mean value, see 2.2.1. This is the counter-
part of osc M f(x, t) from (2.16) with u = 1. There is no problem to replace the L1 -

,-means in (2.40) by L-meansand to-generalize the theorem below-to this-ease. But 
for sake of simplicity we restrict ourselves to the above means.	 - S 

2.3.6. Theorem. Let Q be either li", or R," or a bounded C domain in R.

	

• - (i) Let O<p<.00,0<q	ooand	S	 - 

	

•

	

G

> 	i ,	>(— —	.	 (2.41) 

	

- 	/+	 q	j+	
S	 - 

Let M € N with M > s. Then
 

- - F q(Q){f I / E Lp (S?),.j*j1 I Lp (Q)II	 -	 -	- 

+
 ( <-04	 - (2.42) 

- 

	

j=o	-.	I 	_,	 -  

(modification if q = oo) in the sense of equivalent quasi-'norms. 
(ii) Let 0 <'p :5 oo, 0 <q 00 and s> n(1/2) — 1). Let M E N with M > s. 

Then -	 -	 - 

I
	 -	/00	 \lIq 

B q (Q) = f If €.L(Q), lift L(Q)lj + ( E 
jsq lId f L (Q)II Q)	< 00 

••	 -'	
-,	 • 

-	 •	 -	 .-	
-	 S	 •	

(2.43) 

(modification if q = 00) .n the sense of equivalent quai-norms.	-
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2.3.7. Remark. Weprefered again the-discrete version. But there is no problem to 
re1ace the sum over j in (2.42) and (2.43) by corresponding integrals. For example 

.	L(Q)j	
)I/Q 

L(Q)	 - (2.) 

is an equivalent quasi-norm in F,q(Q) under the same conditions for s, p, q as in the 
theorem. 

2.3.8.Remàrk. Characterizations of function spices via differences have beenstudied 
extensively. This is well known for the Holder-Zygmund spaces	with s> 0 and 
the classical Besov spaces B q with s> 0, 1 <p < oo, 1	q co. Corresponding - 
results for fractional Sobolev spaces have been proved in the late sixties and early 
seventies by R. S. STrn	 Iz cJEAaTz and P. I. L0RKIN, see [28: 2.5.10, Remark 31 for 
further references. Extensions to are due to G. A. KALJABIN nd the author. An 
extensive treatment has been given in [28:2.5.9-2.5.12], where we gave many refer-
ences, see also [29] for a more recent systematic study. The characterization (2.42) 
wthQ 'II" coincides with corollary in [28: 25.111. However the extension of 
characterizations of this type to R' or to bounded domains .Q caused some trouble. 
In [18] G. A. KALJABIN proved the characterization (2.42) for bounded domains 0 
(even more general than C° domains) for the spaces F,(Q) with s> 0, 1 <p < 00,-
1 <q < co. In other words: (2.42) extends Kaljabin's result to 0 <p < 00, 0 <q-
!E^:co and s with (2.41).	 . 

2.3.9. Remark. Our study of the spaces F,q(Q) where Q is a bounded C domain in 
II" and p, q, sobey (2.35) is based on the results for the spaces F (on R') and the 
extension property from Theorem 2.3.2. In particular we obtain as a by-product that 
all the spaces E,(Q), and also B,q(Q), hive the extension property (from Q to It 
-El Q is a non-smooth bounded domain, the situation is different and the extension 
problem from Q to R' cannot be reduced to. Theorem 2.3.2. This question attracted 

-. some attention in recent times. We refer to [18, 24] as far-as F q-spaces are concerned 
and to [tO, ii] in connection with Cr8-spaces.	-	 - 

3. Proofs and further inequalities  

3.1. Inequalities for oscillations	 .	S 

3.1.1. The aim of Section  it twofold. First of all we prove the main assertions of 
this paper formulated in the Theorems 2.2.2, 2.2.7, 2.3.2, 2..6 and in Corollary 2.3.4. 
Secondly we derive several inequalities for oscillations which are (as we hope) of 
some interest for their own sake. 

- 3.1.2. Preliminaries. Let Q be either W', or R+ " oraboundedC domain in R. ih 
the latter case we assume without restriction of generality 0 E Q and that Q can be 
represented near the oigin as x = (x'), x' E R"', where is a. C function, near 

- the origin in R". Let k0 and k be the kernels from (2.8) and (2.9), then 

suppk0	R,' - and - s.upp k	R,?.  

Let / EL(Q) with 1 :!9 p ^5 oo. Then k(t, /) (x) from (2.2) 'and similarly k0 (t, /) (x) - 
make sense at least for x  Q near the origin and 1 > 0 small. We may assume that 

1
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these means make sense for all x E Q near the origin and 0 <t	1. Let /j with 
j e N be given by (2.10). Let	 -	 I 

(x)	±Ik(x),	where j E N0 .	 (3.2) 

3.1.3. Proposition (Optimal polynomials). Let Q be ei1heR, 'or R, n or the bounded 
C domain from 3.1.2. Let 1 :E^ p :E^: co and M E N0 then there exist positive numbers c 
and c' such that 

	

-	 i	r 
osc,M1 /(x, 2- i ) ^'f + 1/(y) '- 	(Do/i) (x) (y -. x) P-dy) 

I/P 

-	J 

c' osc/(x, c2)	 (3.3)

for-all] E .L(Q), j E N0 and all x E Q (near the origin). 

3.1.4. Proof. The left-hand side of (3.3) is obvious. We prove the right-hand side; 
By (2.2) and (2.9) we have 

- -.	/() = ko(y) /x + y) dy ±E2'f k(2'y) /(x + y) dy 

•	 =fko(y)/(x+21y)'dy.	 '- '	 (3.4) 
-'	By' (2.8), see also [31: (3.12) and (3.8)], it follows 

• .	 -	 (_1)M1 M	 /M\ /'(x)— 1(x) =	M'	E (_1)-m (. ) MM —n 

(-!:_1r() /x + r2- . y) dy	 (35) 

	

-	"	
= f k(y) 4if(x) dy, 

where k-is a compactly supported C function with supp Ic	R". We can replace I
on the right-hand side of (3.5) by / - P with P E P 1 . Then it follows 

1/(x) - /'(x)l	c' 1(x) - P(x)J ± c' f /(y) - P(y)j dy	 , (3.6) 
B(x.c2-5 )	- 

for all P E P511 and some c> 0 and c' > 0. Hence we have 

( f /(y) - /f(y)JP dy\ h /P	c' osc-' /(x, c2 1 )	,	 (3.7.) 
\B(z2'1)  

for some c> Oand c' > 0. On the other hand the polynomial in (3.3) is the Taylor 
expansion of /i. Let y EB(x,2' 1 ) then we have 

/1(y) - •' --- (Dfl) (x) (y - x)	c2iM	p	DI'(z)l.	(3.8) 

	

5. IIM-1	 zEB(x2') kIM 
By (3.4) it follows  

-	 .D/(x) = 2i J ' f Dko(y) /(x +2) dy,	j ai	M. ,	-,	'(3.9) 
Hence one can again replace / on the right-hand side of (3.9) by / - P with P E P51_1 

- and we obtain by the same arguments as above 

	

c'2	oscp 1 /(x, c2 1 ),	y- E B(x, 2- 	 (3.10). 

- , for some c> 0 and c' > 0. Now (3.7) and (3.8), (3.10) prove the right-hand side of 

	

• (3.3).	 '	•	 -	-
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3.1.5. Proposition. Let Q be either R, or R,n or a bounded Coo domain in R. Let 
1 p ;5; cc and M E N0 , then there exist positive numbers c and c' such that - 

OsCp' f(x, 2-i) :54	2-0-1iM osc,, /(x, c2 1 ) + c'2iM I I/(y)I dy (3.11) 
1=0	 -	R(r.c) 

for all fE L(92), j E 1\70 and all x € Q. 

3.1.6. Proof. We may assume that Q has the properties described in 3.1.2 and that 
z E Q is a point near the origin. Then we can apply (3.3) and obtain 

osc:' /(x, 2 i) ^ a' osc /(x,c2 1) + c'21M E ID/'(x)I.	 (3.12) - 

By (3.4) an [31: (3.14)] we have	 S	 . 

Da/l (x) = 21m f V(y) LJ! /(x) dy,	I = M,	 (3.13) 

and l N, where k' is a compctly supported C function with supp k' . R",°a 
linear combination of D(y/m) similar as in (3.5) (obvious modification if M = 0).. 
Let £ E N0 , then we have  

D/''(x) - D/ 1 (x) = 2(f)M f V(y) [A!i_if(x)._ 2_ 114/(x)] dy. . (3.14) 
Next we 'use the formula	 -	

S 

.....	Af(x) - 21JLf(x) = E a /(x ± r2 11y)	 . (3.15) 

	

r=0	 - 

where á are some, constants, see [28: 2.59, formula (45)]. This formula makes clear 
that one -èan replace /. .on  the right-hand side of (3.14) by / - P with P51 € P. We 
obtain  

ID/''(x) - D/'(x)I	c'2' f f(y)— P(y)J dy	-	- (3.16) 
B(x.c2')  

for dome c> 0 and c' > 0, where we used the structure of k'(y), in particular f k'(y)dy. 
• •.

	

	 = 0 if M € N. Hence we can replace the right-hand side of (3.16) by c'2' osc /(,-c2:1).	
'S 

Finally we arrive at 

2i I D /1 (x)! ;5 2- 11Z IDII I+ ',(x) - D/'(x)j + 2-'' ID /o(x)I 

	

S	 .j-1	 •.	 -	 .	 .•	
S.,	 / 

	

- S	 -	 •^ c' L' 2-(i- h )M osc,,M /(x, c2) ij_ c'2iM f /(y) dy	(3.17) 
S	

-	 1=0	- .	-	.	 -	B(zj)  
Nov'-(342) and (3.17) prove (3.11).	 .	 S S 

3.1.7. Proposition. Lct'Q be either R or . Ri!' or a bounded C domain in It'. Let 
• .MEN_1,  

0<u<1<r^cc	and	1=10+0 -	 (3.18) 
•	 S	

S	 u	r	 S 

There exist positive numbers c and c' such that	 .	
0 

•	 S	 . 

osc 1 51 /(x, 2 i )	a' L' OS,CrM /(x, c21) I [sup osc M f(x, c21')	
S 

Ll=0	 J [ZEN  

+ sup ( -	f	osc 51 -/(x ± w, c2- J- ')" dw\uI110 
S	

- ZEN \{ w I z + weB ( x.c2-'}	S	 /	•J 
•	 .	

5	
5	 •	

•	 (3:19) 
• for all f € Lr (Q), j E No and all x € Q.	 -	.	 S
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3.1.8. Proof. We assume that .9- satisfies the hypotheses of 3.1.2 and that xis near 
the origin, in particular (3.3) (now with M instead of M - 1) is at.our disposal. Then 
all the calculations below are justified. We nay assume M E N0 because the ease 
M= —1 isohvious by Holder's inequality. We use the same technique as above, i.e. 

osc /(x, 2-1)	f Ift) — f1(y) dy 
B(Z2)	 S	 - 

•	 +	. /i (y)	E	D/1(x) (y — x) dy.	- (3.20) -	 S 

• B(x.2-5 )	- 

In order to estimate the.second term we need the integral verion of Taylor's expres-
•	 SiOn,	 S	 •	

5	

5	
0	 5	 •	 - 

E	J)11(x) (y	x)	
S. 

M + I'
(y — x)f (1 — )M Dfl/'(x +(y — x)) dr.	(3.21) 

IPI=M+i	 -	S	 -S 

We may assume that x + r(y — x) (B(x,2') for all 0-:5: r	I. Then we have 

•	f I T)I'(x ± r (y ,- x ))I dy !S^ f . 1 D#1 0 (y)l dy.	 (3.22) 
B(x,2-J)	 B(z.r2M	 S 

- On the other hand (3.13) with 'DP,	= M -k 1, instead ofDlal ='M, yields 
.5	 2)(±	DP/i(y)	 S 

(f k'(z) I4YI(y)Iudz)(loM (f k'(z) IJ M+i/()I r dz)Ofr 

-.	' (11(y) — P1(y)u + f 1(z) - P(z)I U dz\(10)Iu 
S	 B(y.c25) -	 /	S 

X (1(y )	P2 (Y) +	/(z) - P2 (z)l dz\OIr,	 (3.23) 
-	 S	 B(y,c25)	 5	

/'	
5	 - ••	S 

where the polynomials P 1 E PM and P2 E P 1, are at our disposal By (3.18) and Hol 
•	er's inequality it follbws	 S -

	 •	• 

2i±	Dfl/i(y) dy	•	 ' 

B(Z2)	 -	 S	 S	 S	 • -	S 

I f 1(y) — Pj(y)udy	 f It( + w) - Pi(+w)ludydw1(1_6)Iu	S 

{ioIz+wEB(x.c2 -J)) B(r,2)	 -	J 

X- , [	'1/(y) — Po (y)I T (ly + f	f 11(z) — P(z)Jr dz dy1 IT .	 (3.24) 
•	[B(z.2)	 R(.r2J) B(y.c2 ) ) -	 J	

•	 S 

The two factors will be treated differ'ently. As for the second factor we choose P2 
as the optimal polynomial in the sense of (3.3) (with M instead of M — 1). Then the 

- second summand in the second factor can be estimated fromaboveby c' OSCr M /(x,c21)T 
with a new constant c > 0. We may assume  = '2-' with 1 E N0 in the first summand 
of the second factor. By our choice of P2 and by (3.3) with j + £ and M instead of j 
and M — 1, respectively, we have	 •	 : 

• f 1(y) - P2 (y)l dy\ l Ir	•	 .	 • 

-	 \B(z,2-1) /	 -- -	S	 •	 - 

•	 .1-1•	 -	 • 

-	 ^C OSC	/(x, 2 1c) -}-- c	' 0-'	' 2-(i+ 1)I ID/J+k(x)I,	 (3.25) 
- k=0 IaJM	 -
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S	
:	 - 

where we used (3.2). We may assume that 

= 2(i+k)II f •' DPkp(y)	/(x) dy	 ,.	(3.26) 

	

II=M+I	 - 

holds fr-j = 0 and	= M -i- 1, where the kernels kare compactly supported, 
• C functions in R vk ith supperts . in 11 + ". This claim is, covered by [31: (2.23), (2.24)]. 

We can replace / in (3.26) by / — P with P E PM. Because-the integral over the 
kernels vanishes we obtain - 

	

c2' >II oscrM /(x, c21) 	(3.27) 

for jxI = 0 and Ix = M + 1. It is not hard to see that this estimate can be exten- 
ded afterwards to alla with .0 ^ jal ;!^; M + 1. Hence, (3.25)'With (3.27) has the 
desired form, the second factor in (3.24) can be estimated from above by the factor 
in (3:19). If we choose P1 in the first factor in (3.24) in an optimal way, then the 
first factor in (3.24) has also the desired form. By (3.21), (3.22) and (3.24) it follows 
now that the second summand in (3.20) can be estimated from-above by the right-
hand side of (3.19). In order to estimate the-first summand in (3.20) we use '(3.5) 
with M + 1 instead of M. Then we are in the same position as in the right-hand 
sides of (3.23) and (3.24), now with r = 1. Hence we have again the desired esti- 

•	mate.	 .	.	. 

3.2. Proof of Theorem 2.1% . 2, the case	= It" 

3.2.1. We prove the theorem-for the F q spaces. The proof for the B 4 späces is siqilar5. 
but technically simpler. Let k(2 1 , /) ( ) be the same means as in Definition 2.1.2 
and let s be restricted by (2.18). Then we can replace(2.4) by	.	.. . 

= {t / ELmax(p	ii, I LP II	 - 

IN 

+	2	k(2-I , /) (.)j4) - L	<ooF	 (3.28) - 
•	 S	

'	 S\j=I.•	 //	 J	,	S	
• '	 ,• 

(equivalent quasi-norms) where we again omit to indicate It' as 'the underlying do- 
•	main. We refer. to [29: Theorem 1] for the replacement of lI ko(e , /) I L,11 in (2.4) by 

	

I!/I' L II and to the embedding theorems in [28: 2.7. 1] ás far as / , E Lmax( p.r ) is concerned.	•. 

3.2.2. Let the ñumbers p, q, r, s and M be the same as in Theorern 2.2.2(i) and let 
1	-u	r. Let/ E L,n X p,r) such that the quasi-norm in (2.19) isfinite. Recall k = zik0

• in the sense of Definition 2.1.2 where I is as large as we want. Then we haye 

k(2-, f) (x) = I f k(y) (/ - F) (x + 2y) dy l	C oSc,, f(x, 2 1 ),'	(3.29) 

j E N, where we used that the first equality holds for any P € P 1 .. Then it follows by
 - (3.28), / € F q , and  

	

\1/q	
S 

•	
•	 il/ I F II	Il/ I LIP II + (E 218q osc,' 	2- i)}	L	..	.-	(3.30) 

•	 'S	 . 

3.2.3. We wish to prove the converse inequality-under the same restrictions for the 

	

- parameters as in -3.2.2, in particular 1	u	r. Let / € F1 .. We use the same_tech-
Pq 

I	 -	S 

S	 S 
•	 S	 I	 -
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nique as iii 3.1.3 and 3. 1A and obtain	 - 

osc M '/(x 2- 1) ( /(y) - /j(y)l, dy\' I	.. 

	

B(x.25)	 / 

I	 U- 

+ I	/'(y) -	
1 

—j- (D15 ) (x) (y - x)" dy 
-	-.	 - 15M C 

•	 \B(z.2-'	I 

•	 E ( f fj+i (y)I U dy IN ± e , sup If Dko(y) /(z + 2y) 
'B(z,2--')  

(3.31) 

where the supremurn is taken over z E B(x,.c2 i) and jj = M + 1: We used (2.11), 
(3.2) for the first term and (3.8)-, (3.9) (with M + 1 instead of M) for the second term. 
However the last term in (3.31) is a maximal function which fits iii the scheme of - 
[29: Corollary 1] because of M + 1 > s, which we denote temporarily by /. In other 
words  

	

•	/oo	-	\ i/q	 -' 

	

C	1 'pqIL	 (3.32) 

In order to handle the first terms in (3:31) we need more maximal functions. Let g 
be the usual Hardy-Littlewood maximal function of g and let - 

-	
-	/°(x) =	 with a>	.	 (3.33). 

•	 1 ± 2'yJ	 mm (p, q) 

Because of > 1	
ve find a: real number  with , <1 and 

4..	 -	n	mn(p,q)	r	 .	-	- - 

mm (p, q)> > 1 —	mm (p q)	if 1	u r	 (3.34) 

• 'Then we have  
•	

0	 -	 • •	
(. f 

J/ ,i (y ) U dy
/

II < 	(3.35) 
S 

	

: 

•.	
Now (3.31), (3.32) and (3.35) yield 

•	

0	

--	
/3	

-	
-	

- 'j8q osc	 . 2_i))	•J	c' / F' qII + c'	' 2_(8-- e ) I2kJ ( i_x )	S 

	

I	 - 

-	
(	

2(i+'Q/	(.)q(i-x)(/. 1fu)sqfu ()) q 	 -	
-. (3.36) - 

where e is an arbitrary positive number. We may choose a in (3.33), x in (3.34) and :
 

- 
e> 0 in such a way that s • t > a(1 - x). Then the left-hand sideof (3.36) can be 

- estimated from above by	
5: •	 :	

0 - 

-	 -	 •	 \i/q	•	 .	- 
c l/I 1 qII + c V 2i8Q/1o(.))	L	 -- 

	

. 	J	
S 

-	 :	

-	 \I/q	 -	:	•	 - 
• -	 x (	

' 2i8(J/1u).QIu)	L	.	 (3.37) 
•	.	-	\j=i	 1 

-The first factor of the second summand can be estimated from above by c Il/ I 
see again [29: Corollary 1]. Because both q> xa and p > u, see (3.34), we can
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apply the vector-valued maximal inequality due to - C. Fefferman and E. M. Stein, see 
[28: 1.2.3] for references (which works also if q = co). Then it follows that the second 
factor of the second summand in (3.37) can be estimated from above by c Ilf I F,qlI!': 
We arrive at  

• 

IR 
lit L + 	'2iq	f(, 2)'1 )	L	C It FpQ II.	 (3.38) 

S	

-	 '	 I 

Now (3.38) and 3.2.2 prove Theorem 2:2.2(i) with Q = It" under the additional 
restriction 1	U	r.	•	 .. 

3.2.4. The extension of (3.38) to 0< u < 1 is almost obyious because we haveby 
• Holder's 'inequality  

OSC0M AX, t) < OSC/(X, 1), - 0	U <V :!E^ 00, t	0.	 (3.39) 

It remains to prove (3.30) under the hypotheses that the right-hand, side of (3.30) is 
- finite and / E Lr. We begin with some preparations. If (2.18) is satisfied for r- 1, 

then it is also satisfied for some r . > 1. Furthermore again by (3.39) it is sufficient. to 
• prove (3.30) for small values of u'> 0. Hence we may assume -without restriction of 

generality  

— 0 <t< 1 <r :5: oo	and	0 <u < mm (p, q).	 (3.40) 

Temporarily w6 take it for granted tlat under these hypotheses / belongs. toF q , we 
return to this question in 3.2.5. We.use (3.19) and obtain 

/00	 '- 
osc 1 M /(x, 2: ;- ) ^	(' 2'l osc M /(x, c2_i_l)	

0	 • • 

/00	 • IN 

+ C,  E loSca M /(x, c2__1)Lj*I) ,	 (3.41)	..	- 

	

-	 /	• 

where again the star indicates the. Hardy-Little^^6_ od maximal functiOn. The positive 
numbers € and may be chosen arbitrarily small, in particular 0 < 77 <s. We multi-
ply (3.41) with	and take the 1q-quasinorm with respect to j. Then we obtain 

/ 

00 -.

	 • -

	

IN	- 

; 
;8q osc 1 /(x, 2)	 S	

_ 

	

7 00	 \Ifq-	

/ CO

	 \1/q 
e (	' 78q 

O5Cr' /(x, c2_i))	+ c"( E fsq IOSCU M /(x, c2_1)t1*Q/u 
\j =L	-	- 

	

.	.	- ..	.	-	-S	 •	

(342) 

Next we apply the La-quasi-norm to (3.42) and add on both sides If I LV II . Then we 
obtain by the above results  

F qil 5 6 / 1 FqiI + c l/I Lp Il-

j,(	' 2j8q losca M f(, C2_ i ) u l* ts 1	L	,	 (3.43). 
•	

-	 \jj  

whre e> 0 is at our disposal. Because u < min(p, q) we can again apply the vector-
valued Hardy-Littlewood maximal inequality to the last summand in (3.43).- We 
obtain. (3.30).	-	-	S	 -	 -	 •.	 . 

	

-'19 Analysis 13d. 8, Heft 3 (1980)	 -	 .	S
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3.2.5. It remains to piove the following assertion: Let / E Lr and let the 'right-hand 
side of (3.30) be finite. Then / E F q . We begin with two preliminaries. Let K E N 
with K ^ [s] and let 92 bea C00 function in Rn with 

' 
JDfq(x)J	1	if yJ 9 K +.1 and x E R.	 (3.44)

Then wehave  

OSCU	(9,1) (x, 2)-  

(
) /()	 D(x) (y -	I x)-P(y) dY)	- 

B(x.2"i)  

where P E P 1 is an arbitrary polynomial. It follows  
\ 

oscuic+M ('/) (x, 21)	- 
C osc" /(x, 2') + c2J'1' (	I/(y)j" dy1u.	 (3.45)	- 

I 
The last integral can be estimated from above by (/11)*hIz, where again the star indi-
cates the Hardy-Littlewood maximal function. We have 

/00	 \ 
E isq0c01+1 (99/)(., 2_7) q 

I/qJ	L 

c'	I L,11+(	' 21 ose' 	2_1)Q)	L, .	(3.46) 
.1 

We estimate the first summand on the right-hand side of (3.46) by c Ill I LVII, this 
follows from the Hardy-Little\voQd maximal inequality and p > u, see (3.40). Hence 
the left-hand side of (3.46) can be estimated from above by a constant 'which is in-
dependent of (p with (3.43). We need a second preparation. Let ip be a compactly 
supported C00 function in . R" with f-(y)'dy .1 and let / be the above function; i.e. 
/ € L such that the right-hand side of (3.30) is finite. Then (t//) in the sense of 
(2.2) is a mollification. We have	- 

p(t,, /) (x) - /(x). -almost everywhere in R"	 (3.47) 
at least for some sequence t j	0. Furthermore,  

-	05L ip(t, /) (x, 2 1 )	10 1 / - F) (y)Judy\l/u	 '	(3.48) 

	

-	-	/	 - 

for any P EPL becãus (l, F) € PL. Now we combine these two preparations. Let 
/ € L such that the right-hand side of (3.30) is finite. Let (p be a cut-off function with - 
(3.44) and ç9(y) = 1 if jy j	R. Then (t, 92/) is a compactly supported C function
and belongs to F q . We can apply the arguments from 3.2.4 to (t, 92/) instead of 
and obtain	 - 

II(,	/) I FqII
\i/p 

-	-.<	(t, 92/) I LP II +	' j8q OSC.1 t, 92/) (;, 2_i))	L	 .	(3.49) 
\j=I 

We use (3.48) with Li = K + M and / instead of /, choose P = 0 and estimate 
ose I + M p(t, 92/) by ( f It(y)It dy\ I IT . Hence by Lebesgue's bounded convergence 

•	

'	 \x.-i	/	 - 

9
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theorem and (3.47) we have for any bounded domain a and some sequence t 1 0 
\IIq 

V	 ( 

E 21sq 0.sc"	(p/) (., 2-i))	L(w)	. 

	

/	 - 
I, 

\Ifq 

II UJ' 2 osc,,"(çv/) (. 2-)	L(w) 
V 

-	 -	 I	 - 
I..	/oo	 \i/q 

lit I LlI + (	'	osc,M /(., 2))	L	,	 (3.50) 
\k=i	 -I-	- 

where we used (3.46) and the subsequent arguments, J € N. Now by Fatou's lemma 
we can replace J on the left-hand side of (3.50) by co and co by 1t. By the definition 
of II. I FII in (2.4), (3.49), (3.50) and Fatou's lemma follows now / € FP-q. 

3.3. Spaces on R + 11

V 

3.3.1. In this section we prove Theorem 2.3.2, Theorem 2.2.2 with Q = R+" and we 
add remarks about Corollary 2.3.4. 

3.3.21 Let p,q and s be given by (2.35). Then we have (2.19) withQ = W. In paiticu- 
lar F1 (R") c LIX(p T) (It+") for some r ^ 1 and extL /(x) from (2.37) makes sense for 

Pq 

	

any / € F,(R,"). In order to prove the extension property from Theorem 2.3.2 we	V

have to distinguish between oscillations based on R, denoted by OSC UM /, and oscilla-
tions based on R,", which we denote temporarily by OscM f . Let P E 1-IL; then we 
have by (2.36)	

V	

V -

	 V 

extf P(x) = P(x)	if x € It".	 (3.51) V 

In particular extL /(x) - P(x), = extL (/ - -P) (x) for any / € F,q(R+ ") and P € L. 
Let x = (x', x) with x' € R'. We have.- V 

osc,/ (extL I) (x, 2) = Osc,," /(x, 2-1)	 (3.52)	
V 

if x € 1t,> 2, an  

osc(extL I) (x, 2-1)	
k=O 

Osc,,L /((x' , — ),kXfl), c2 1 )	/	(3.53)	V 

if x EVJt x <	for some c > 0. Finally if x = (x', x) with Ixl ;5 27 1 , then it
• follows  

osc, (extL /) (x, 2-1)	 c Osc' /((x, x l); c2 1 )	 (3.54)	V 

for some c> 0. Let now L [8] and / € F,q (R + ),/thenV we claim	
V	

V 

HI 
I F q(R+")II	IiextL . t I FqlI 

	

V	 -	 /c	V	 \11q• 
c' I/ L(R,")	' + c' (	Osc,,' /(., c2')Q )	L(R+") —	

-'V	

V	
I.	

V 

•	 c" HI I F,q(R")Il	-.	V	 (3.55) - 

for some positive numbers c, c' and c" which are independent of /. Furthermore we 
assume that p, q, a and also r and u are the same numbers as in Theorem 2.2.2(i). 
By (3.52)—(3.54) and Theorem 2.2.2(i) with .Q = It' it follows ' both CXtL I E 
and the second inequality in (3.55). The first inequality is obvious and the last in-
equality in (3.55) follows again from Theorem 2.2.2(i) with Q	R'. In particular	V 

' ext1 is an extension operator and Theorem 2.3.2 is proved.	
V	 V	 - 

19*	 V	

V	

V"	
V	

V
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3.3.3. We prove' Theorem 2.2.2(i) with Q = R," If / E F(R+ ), then we have 
/ € Lmaxp,r(R+") and the right-hand side of (3.55),If / E L,,x(p.T)(R+) such-that the 
third term in (3.55) is finite,, then it f011ows by the above argument, and by Theorem 
2.2.2(i) with Q = R" that extL I, € F q and hence / € F q(R+ "). Now (2.19) with Q 

	

R," is a consequence of (3.55).	 S 

33.4. We add some remarks about the prOof of Corollary 2.3.4. By duality arguments. 
and on the basis of Theorem 2.3.2 one can prove the extension property for the spaces 

with —no < s <co, 1 <p < oo; . i <q < no, see [28: 2.9.21 for details After- - 
•	wards one can use complex interpolation which proves the extension property for all 

spaces Pp. -^vith • —no <s < no, 0 <p <no and 0- < q < no, see [28: 2.9.4]'-for 
•	 - details. Similarly one can prove the extension property for the, spaces B for- all pq 

—no <s < no, 0< p ;5 no, 0 <q no. Now complex interpolation between the 
spaces F, s0 > n(l/p - 1),, covered by Theorem 2.3.2 and B =	covers also'. 00
the case F.	-	 -	-	-	-	-	-	-	- 

3.4. Proof of Theorem 2.2.2	 -	- 

3.4.1. The aim of this section is to prove Theorem 2.2.2 for bounded C domains 
- : Q. Recall that we proved Theorem 2.2.2(i) if the underlying domain is either Rn or 

lt^", see. 3.2 and 3.3.3. In the same way one proves corresponding assertions with B q - 
instead of P. Now we concentrate ourselves again to the spaces F,q(Q), the proof - 

•	for the spacesB(Q) is-similar but easier. 

- 3.4.2. Let i be a bounded C domain, Let p, q, s be the same numbersas in' Theorem - - 
•	2.2.2(i). We have to distinguish between oscillations based on R, which we denote 

•	by osc, /, and oscillations based on Q, which we denote temporarily by Osc M / (not: 
to be mixed with the corresponding notation used temporarily in connection with - 
R+"). Let ext be an extension operator from F" (D) into F q obtained in the usual way	- pq 

via a resolution of unity, local diffeomorphisms, and the operator CXtL from (2.37) 
•	(e refer for details about this procedure to[28: 3.3.41, see also the considerations 

below). We begin with a local consideration and assume that the hypotheses of 3.1.2 - 
are satisfied and that. / € F,q(Q).has a support near the origin. Let x be a diffeo-
morphic map of, say, the unit ball Bin Rn into itself such that 7(B n Q) =Bn It' 
'and x(0) = 0. Then ext can be described locally as	 - 

ext /(x),= extL /o x(x(x)),	.	 S	
(3.56) 

where exth has the meaning of Theorem 2.3.2. Let 1 u r in the sense of Theorem 
2.2.2. Then we. can use Proposition 3.1.3 both for os'cuL ext / and OscuL /. We deal 
Only' with the most critical case which corresponds to (3.54) iPthe case of H 4!'; The	- - 

- -	trnsforrn 2(x) = (x', IxI) in this case must be replaced now by (x) = x'- o 2 ° x(x). 
We have .	 .	-	.	•	

." 

.-	 osc,,' ext'/ (7-1(X), 21)  

(	IextL / 0y 1 (y(y)) - E a(x) (y - x-'(x))i' dy''I 
_ '.

	 (3.57) 
\uIIz z— vI< 2 '}	 ..•'/,_	S	 S	 •, 

We wish to apply (3.3) with Osc instead of osc at the point It o '(x) instead of x. - - 
We substitute y = X- 1 (z) in (3.57) and my assume	 S 

- (-'(z) - 
.x 1 (x)) = c(x) (z — x) + ... + O (I z — XI')	-	(3.58).-
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• with c) + 0 where + . . indicates explicitly calculated terms of order between 
Jai + 1-and L or of type (z - x) fl with j = and fl. <tx,,. Now we determine the 
coefficients aa (x) by induction with respect to J and a. such that 

•	a(x)(z) - X 1 (x)) =	 (Z- x) + O(Iz —xI). 

	

JIL	- 
-	 .	•.	 -	

-	 (3.59) 

The coefficients a,(x) are uniquely determined,'they are linear combinations of 
Dfl/1 (1z o x'(x)) with ^5 L, multiplied with harmless C•functions. Now we choose 
L large, for example L = 2M with M € iN. and M [s]. Then we have L + 1 - M 
>'M and by (3.9)(with	M instead of jai = M) 

2- iL	IDft(,L ° x'(x))I	2—j(M+i)2Mj ID1 1( a y'(x))I 
^c2_i( M +f(poy 1 (x)), -	< M,	-(3.60) 

where the star indicates again the Hardy-Littlewood maximal function restrict ed to 
If M <	 L, then we estimate DP/i (it o r l (x)) by (3.10) (now with Os(. 

instead of osc). Recall that we are only interested in the counterpart of (3.54). Now 
we use (3.51) in the same way as in the case of R + ', the optimal polynomial in (159), 
see (3.3), and obtain the counterpart of (3.54)	 . 

osc'cxt /(x(x), 2-1)  

C E Ock t( ° z'(x), c2 1) + c'2"'' /*o z-1 (x)).	 (3.61) 
M k=	 '	.	. 

Similarly but simpler one obtains the counterparts of (3.52) and (3.53). We replace 
x(x) in (3.61) by x, multiply (3.61) and the just mentioned counterparts of. (3.52) 
and (3.53) with 218, take thelq-quasi-norrn and then theL-quasi-nothi and obtain 

-	/oo	-	\Ifq	 . 
•	

5	

(	

2j8Q osc,	ext f(., 2))) •	
.	

•S

I 
L	/	.	-	\l/q 

^ c'-,' .( ,' 8q Osc/(, c2-)	L(Q) + c' II/*i L'(Q)ii,	(3.62) 
-	k5-M \j=l  

where now f* stands for the Hardy-Littlewood maximal function with re spect to D. 
• We may assume r 1 in the sense of Theorem 2.2.2. Let t = max (p, r). By our assümp-

tions we cad replace L(Q) in the last term in (3.62) by L1 (Q) (Holder's inequality). 
Hence by the maximal inequality the last term on the right-hand side of (3.62) can be 

• estin&ted from above by c it I L1 (Q)I1. Nextw.e use (3.11) *ith k instead of M - 1. - 
Because k + 1 '> s we obtain	- 

\11q 

•	(	' 2j osc L ext f(,- 2- 1 ) Q )	L 

/oo	0	 \Ifq 

	

^ c' ( ,' faq Osc' /(., c2_1))	L(Q) + c' / L(Q)j.	-'	(3.63) 
\j=i	 1 

•	• Again by Holder's inequality and known embedding theorems, see [28: 2.7.1], we 
have	 •	•	 •	.	 •	 •	- 

•	

•	 Ilext fl L1	€ ilext / I F Il + c / IL(Q)lI, .	. -	• •	 • (•') -
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where > 0 is at our disposal. Now by Theorem 2.2.2 with R n it follows 
JI/ I F(Q)	Ilext / -.	 \1/q 

^ It I L(Q)I + IR 	j8q Osc /(., c2_i))	L(Q) 
I 

C' I If I F,q(Q)M.	 •	 (3.65) 
In other words, the last but one term is an equivalent quasi-norm on F' (Q) provided 
that L = 2M with M ^ [s] and r in the sense —of Theorem 2.2.2. How-
ever we 'can extend this assertion immediately to all L E N0 with L: [s]. This follows 
again from (3.11). Finally* we assume / E L t(Q) (with a support near the origin) such 
that the quasi-norm in (2.19) is finite. Then we have (3.63) by the above arguments. 
Hence ext / E Fpq, again by Theorem 2.2.2, and consequently / E "pq (Q): Hence 
Theorem 2.2.2 is proved provided that the hypotheses of 3.1.2 are satisfied, / has a - 
support near the origin and 1	it < r. 

k 

3.4.3. Now let f€ F,(Q) and let I = -!' q5'(x) if-x E Q be an appropriate resolution of 
k=l 

unity. If supp 99k n aQ == 0, then we may assume that we can apply the middle part 
of (3.65) to q/ instead of /. We choose L large and apply the counterpart of (3.45). 
By the same technique as above we estimate	 - 

II(It'	I Lp (Q)	C II(I/i u )*	L(Q)II	C' 11f Lr(Q)II	 (3.66). 

by the Hardy-Littlewood maxima' inequality, where we assumed 1 :E^;- u <r 

without restriction of generality (the case it = r= 00 fits also in this sch eme). We 
use (3.64) with L instead of Li and obtain the desired estimate. Let supp pk n t9Q 0, 
then we have 

osc'91k/(x, c2) = OscuL pkt(x, c21) 
at least for j J. The terms with 1	j < J can be treated in the above way. This 
proves the middle pai"t of (3.65) provided that / E F,q (Q), L is large and 1	u <r. 

- -This inequality can be extended to all LE No with L [s]-by the same arguments as' 
in 3.4;2. Furthermore the first inequality in (3.65) is obvious and the last inequality 
follows from Theorem 2.2.2 with It s . Hence the last but one quasi-norm in (3.65) is 
an equivalent quasi-norm OflF q(Q) for all L E No with L [s] and 1	u r. If
/ E L 1 (Q) with £ = max (p, r), then we argue in the same way as at thC end of 3.4.2. 
This complete the proof of Theorem 2.2.2 provided that u ^ 1. 

3.4.4. Let 0 < u < 1. By the same argumentsas in 3.2.4 it follows that the last but 
one term in (3.65) is an equivalent quasi-norm in F q(Q), now for all 0 <u r.-Now 
let / E L(Q) such that the corresponding quasi-norm in (3.65) is finite. By the same 
arguments as at the beginning of 3.2:5 we may assume that the hypotheses-of 3.1.2 
are satisfied and that / has a support near the origin. Now we combine the mollifi-
cation. 3.2.5 with an additional translation /(x) -* /(x', x + ,) for some t > 0 and 

—* 0. The rest is the same as in 3.2:5. The proof is complete.	- 

3.5. Proof of-Theorem 2.2.7 

3.5.1. Part (iii) of the theorem follows from (2.24) and (2.19), see also (2.22) and (2.17). 

3.5.2. We prove part (ii). We compare (2.23) and(2.30). Then it is clear that the proof 
is reduced to	-	S 

I	 - 

Ill I L8(Q)IF3	c IJ/ I L (Q )II M '	 (3.67)
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for some c> 0 and all / E L98(Qprovide4 that M € ?L 1 and —n/p s M + 1. 
However (3.67) follows from (3.11). 

3.5.3. We prove part (i). Let s = —n/p, then we have 
g8 oscp ' /(x, 1) =	f /(y)P dy\ 1 IP = c .(	J(y)jP dy'1 

/	\BCXM	 I 

Now by (2.17) and (2.23) it follows L(Q) = LIP(-Q). Let s> 0 and / € 8(Q), see 
(2.27). In order to prove t	 /( he second equality in (2.29) we hae to calculate oscpM , t) 

where 1 ^ p < oo and M ^ [s]. We assume without restrictiQn-of generality that 
the hypotheses of 3.1.2 are satisfied and thatall calculations take place near the 
• origin. We use the same technique as in 3.1.4, in particular (35), (3.8) and (3.13) 

(with M + 1 instead of M). We obtain 

osc /(x, 2)	C SU	f k1 M t@)i dy.	 (3.68) 
zE B(z,2 5 ) VM+(z,C25) 

Now it follows 

I If I L8(Q)ll	IllI L(Q) + su l? 2is osc' /(x, 21 

^ c / L(Q)If + sup hf -8 IA''t(x)I	Ill I • 8 (Q)ll	(3.69) 

where the first supremum is taken over all x E Q and j € N, whereas the second sup- 
remum is taken over x E £7, 0 < t < 1 and h € Vt'(x, t), see (2.27). In particular 
/ E L(Q). We prove the converse inequality to (3.69), temporarily under the assunip- 
tiofl,/ E 8(0). By (2.11), (2.10) and the propertiesof the kernel k(x) it follows 

I/(x)i = E/(x)	
•;.	

S 

If k0(y) /(x ± y) dy l + f if k() (I -. P,) (x + 2y) dy	(3.70) 
S	

N 

with P, € PM. In particular	- 

ItI L(Q)tI	c lit I 1(Q)Il+ sup 2i' oscpM /(x, c2) 
zEQ.jEN 

' ill I L8(Q)f1	
0	 (3.71) 

where 0 < e <s is at our disposal. Next we estimate A' /(x) with M [s] and 
hI	2. We use (2.11) and (3.2) and obtain 

•	 -	 •	AM+1/(x) _AM+1/i+R() +EJ'1tj+R+r(X),	 (3.72) 

where R * E N0 will be determined later on. By (3.4) we have	- 

M+1/R(x)=	f k(2y - 2x) 1(y) dy	 S 

= f LL 2i+R,ko(y) /(x + 2y) dy.	 ():' 

We can'replace / on the right-hand side of (3.73) by / - P with P € PM . It follows 

-.	IAhM+1P+R(x)l	c osc/(x, c'2,	 (3.74) 

where c' depends on B. Similar as in (3.33) we introduce the maximal function	- 

•	

-	 Ik°(X)	sup I/(x + y)I/( 1 + 2kyG)	with a > 0 3	 (375)



284	H. TRIEBEL	 - 

where k = j + R -{- r with r € N' and the suprernum is taken over y with x + y 
€ B(x, c2 1 ) for sonic c> 0. Then we have	- 

I'd h'/j+R+r(X)i '	C2+ /,(x)	 (3.76) 
and

h18 J J h ' Vj +R+r(X )i	c2-+	2(i+R+r)8 /7+R T (x)	 (377) 
and finally

1hL 8 lJh'/j±4r(X)I	eSup 2/k0(x),	 (378)	-: kEN. 

where e> 0 is at our disposal (if 0 <a <8 and f 1? is chosen large enough) We may 
'assume that / € 8(Q) is the restriction of g €	= 68(R). However '8 = B 0 , see 

•

	

	[28: 2.5.7] and we can use the theory of these spaces developed in [28] and [29]. In.' 
particular by [29: Corollary 7] and the extension property for 8 spaces it follows 
that the right-hand side of (3.78) can be estimated from above 'by R li/i 68 (Q )11 . Now' 
(3.71), (3.72), (3.74);and (3.78) yield Il/i 8 (Q)ii	c li/i	8(Q)ii + eli/i 8 (Q)Ii and 
hence	 -	-.	 -	- 

Ill I 8(D) ^ C j / LLp8(Q)iI.	 S	 ,,	 (3.79) 

	

Let / € L,8 (-Q). Then we use the approximation procdiire from 3.2.5 and 3.414: trans-	'- - 
lations and mollifications. For the approximating functions -we hav (3.79). Now by 
the same limiting arguments as in 3.2.5 and-3.4.4 we can extend (379) to the given 
function / E L,8 (-Q). The proof of(2.29) is complete.  

3.5.4. We prove part (iv). The case k-= 0 follows from the Hardy-Littlewood maxi-
mal inequality. Let / E WP k(jQ) with k E N and 1 <p < 00. Let 1 u <p. We use 

- again the above technique, in particular	 - 

•	 -	 ose'/(x, 2-i)	E ( f /jr(Y)I U dyV. IuS + c21k	p •	 r=1 \Bz.2-') ,	/	zEB(z,2-J) IJ-=k 

see (3.8), (2.11) and (3.2). By (3.4) we have  
iD/i(z)i	If k(y) D-/(z + 2iy) dyj	c(D/)* (x),	 (3.81) 

where again the star indicates the Hardy-Litt .lewood maximal function, z € B(x, 2). 
Then (3.80) yields 

2jk osc' '/(x, 2 1 ) :5 c	- (D/)* (x) + c (sup 2Tku itri' (x).	 (3.82) 
P	 / 

We take the suprernum with respect to j on the left-hand side of (3.82) and obtain 

c	ii(D /) I L(2) + c (sup 2Tj/JU*1/U L(Q) .	 , '(3.83) -	 \ r	 / 

Recall 1 —< . 0 <p < co. By the Hardy-Littlewood maximal inequalit5 we have 

iI/k_1k I . L(Djii	c E ilD/ I 9()ii + c sup 2r -J/J L - (Q) I	- (3.84) 
r 

As we nientioied in 3.5.3 we may apply the Fourier-analytical characterization of 
- the spaces	In particular the last term on the right-hand side of (3.84) equals
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lit I F1.611,  viich is less thanlit  Wpk(Q)II; Consequently,'	 - 
Ill L(Q)[-- llf 1	L(-Q)(	c lit I W (Q )I1 .	 (3.85) 

,Next we prove the converse inequality. Let I E L(Q) such that the left-hand side 
of (3.85) is finite. We assume temporarily that (211) with Th/ instead, of I holds 
pointwise almost *everywhere, l al = k. Then we have by (3.2) and (3.4) 

D"/(x) '= lim D'/(x) = Jim f k0(y) D/(x + 2y) d1,'	 . 

	

j-00	j-00 -	- 
=lim 21k f Dk0(j,) (/ - P,) (x -J-	y) dy	 (3.86) 

with H = k andP € Pk-1 . We obtain	- 
lDf(x)l ;5 c/k_I(x),	H = k,	 •,(3.87) 

and consequently / E W"(Q), including the converse inequality to (385). If / € L(Q) 
such that the left-hand side of (3.85) is finite, then we use the same limiting argu-
ments as in 3.2.5 and 3.4.4, see also.the-end of 3.5.3. We obtain (3.87) and hence 
I € Wk(Q): The proof is complete..  

• 3.6. Proof of Theorem 2.3.6  

3.6.1. There is no difference in the proof whetherQ is R,R + " or a bounded C domain 
inR'. So we may assume that Q is a bounded C domain. All considerations are local 
and we may assume that the hypotheses of 3.1.2 are satisfied and that the points 

• x E Q of interest are near the origin. Recall that the supports of the kernels-of all 
involved means are located, in R, 11 . This justifies all the considerations below. Fur-
thermore we restrict ourselves to the-proof of (2.42). The proof of (2.43) is the same 
but'simpler.	.. 
3.6.2. Let 0 'p co, 0 <q < oo, let s be retricted'by (2.41) and let M € No with 
M [s]. Then we have to prove (2.42) with Al -F 1 instead ofM. Let  E'F 5(Q). We - 
use the same splitting technique as in (3.31)'with.0 = 1. Then (2.40) yields 

d'f(x) ^ E . f	inM + hI . i (X )I dh + - -	I hM +i(t	P) (x)l dh, 
•	..	.	 1=1 V'(z,2)	 VWf"(1,2-1)	 -	

(3.88) 
where we choose the same polynomial P E PM as in (3.31). We obtain :	. 

-	di'/(x)	cE fl/+:()l - +	iI±z(y)i dyl + c sup..., .	-	3.89) 
I1	

-_	 B(x.c2-J)  

where sup ;.. is the same supremum as in (3.31). By the -same arguments as in 3.2.3 
we arrive at (3.38) with d, '1(x) instead of osc,M /(., 2- I ).	. 
3.6.3. Next we prove the converse inequality again under the assumption € F(Q). 

'Let 0 < ,u < mm (p,.q, 1), then we wish to estimate OSc M /(x,	where we assume 
that we can apply (3.3). We have by (3.5) and (3.21) •	•	 •	- - 

	

1	•'	-	
' U-, 

(DV') (x) (y - x)	 .	,. -	 -	-	- 

^ /(y) - P(Y) l , + /1(y) -	(.D/) (4 (y - x)	c'd-'/(y) 

- .

	+ c'2,J0f±	(j'IDP/1(x ± r(y _X))IU	sup 
•	-	IM+, \o  

-	,	•	• 

•	(3.90)
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where the last supremum is taken over l yl = M + 1 and z E B(x, c2' 1 ). However 
multiplied with 2–)(M+1)t(1 u) it is the same supremum as in (3.31) which fits in our 
scheme, see also (3.9) with M + 1 instead of M. We obtain	- 

oc M /(x,'2i)	c' ( f- d l /(y)u dylIu ± e2_j(M+I) sup I D YNO 
/  

IN 
-	 + c, E 2-i('' ( f	• D/(x ± t(y — x))Itdydt -	 -	1P1M+l	0 B(x.2-5)  

(3.91) 

where the supremum is the same as in (3.90) and e > 0 is at our disposal. As for the 
inner integral we have (3.22) with. I . I L instead of I - 1. We use (3.13) with 1#1 M + 1 
instead of jocl = M and arrive at 

oseuM /(x,2 1) c(dh/u)*1Iu (x) + €2- j ( M ± 1 ) SUP (3.92) 

where the supremum has the same meaning as in. (3.91) and the star indicates the 
Hardy-Littlewood maximal function restricted to Q. We multiply (3.92) with 
take the 10-quasi-norm with respect to j and the L(Q)-quasi-norrp. By Theorem 2.2.2 
and t.he'remarks after (3.31) we obtain 

•	 Ill Ig()II	e' I!f I L(Q)II +	Ill I F(QI	. 
/ •	 -	\lIq 

•	 .	 +C	' 28Q(d-,.'/u)*IIu( )q)	J(Q) .	 (3...93) 
1=1	 - 

Because u < mm (p, q) we can apply the vector-valued maximal inequality and 
arrive at

1/q Ic	 \ 

lit I 1 q(Q)lI	c' i/ L(Q)Il + c' 	2i8q', 1/( . )Q) . i ( o) .	(3.94) 

The terms dJ' in (3.94) with c2	1/2 can be estimated from above either by 
c' / J L(Q)lI if p	1 or by c'	L1 (Q)II if p < 1, which in turn can be estimated by 
c / I L(Q)II + e / I F(Q)II where e > 0 is at our disposal. Hence we may assume 
c = 1 in (3.94) which yields the desired estimate.	 .	

., 
3.6.4. Let / € L(Q) such that, the quasi-norm in (2.42) with M ± 1 instead of M is 
.finite. We use the same approximation scheme as in 3.4.4 and 3.2.5, translation and 
mollification, and apply (3.94) to the approximating functions. Then by the above 
limiting arguments '(3.94) with c = 1 can be extended to all functions / € L(Q) with 
a finite quasi-norm. . The proof is complete.	 -.	- 
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