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On the Optimality of Methods for fl-Posed Problems 

G. VAINIKK0 

Es wird die Optimalitateiner Kiasse von Regularisieruñgsverfahren für lineare inkorrekte Auf- 
gaben untersucht. Die ailgemeinen Resultate werden für die Lawrentjewsche und Tichonowsche 
Methode sowie für eine Kiasse von Iterationsverfahren und ihre stetigen Versionen präzisiert. 
1I3yaeTctl onTuMaJlbHocTb iciacca MeTojxa peryinpisaistst .nIule(tilbix HeloppeKTHMx3aja. 
Oöique pe3ymTaTbr HnjnocTPHpY 10TCF1 npHMeHellReM ic i eToga ,-,i Jianpeimetia H Tnxonoa,., 
H.naccv HTepa[HoIlHbIx MTO)OB H IIX H[1CbIBHLIM aHaJioraM. 

Th6 optimality of a class of regularization methods for linear ill-posed problems is investigated. 
The general results are applied to Lavrentjew's and Tikhonov's methods and to a class of itera-
tion methods and their continuous versions.	 - 

•	 /	 .•	 • 

1. Introduction 

Consider an ill-posed problem (see [15])	 - 

Au=/	 (1.1) 
where A E Y(H, F) is  linear bounded operator between Hilbert spaces H and F. Any 
mapping: P : F - H can be treated as a method to solve equation (1.1) - the approx-
imate solution is given by P/, or by P/6 if only a polluted value of is given (II/o - Ill 

6): For a set M H let us introduce the function 

zl ( ô ; M; P; A)	sup 11PI6 - u,	0<6	60, 
UEM.fôEF 

- !IAu—f6II6 

which indicates the maxinialerror of the method P provided that the exact solution 
of (1.1) varies in M and the corresponding right-hand term / € AM has the accuracy 6 
(see [10]). A method P6 : F —> H is called optimal on M if 

zl(6;M;P0 ;A)=infzl(ô;M;P;A)	 .-	 (1.2) 
-	 P. 

where the infimum is taken over all methods P: F - H. It is well known (sec [10]) 
that

inf 4(6; M; P; A) 2^ -- Q(26; M.; A)	 (1.3) 

where Q(; M; A) = sup {IIu j — u211 : u1 , u2 € M and JjAu, — Au211	e}.	. 
Below we shall consider methods of special type. Let's take a family of continuous 

functions gr: [0, a] — It depending on a positive parameter r. In case H = F, 
A	A*	0, hAll	a we define the apprbximatè solution via the formula (see [1, 2, 
69]	 • 

Ur =(I - AMA)) Uo + gr(A)/o	 (1.4). 

\
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where u0 EH is a given initial approximation (e.g. u0 = 0). In case of a non-self-ad-
joint operEtor A E %(H, F), IJAI I 2 :!E^ a, we first symmetrize the problem (A*Au 
= A*/) and then apply a method similar to (1.4):	 - 

= (I — A*Ag,(A*A))uo ± g(A*A ) A*/o.	 (1.5) 
Let us introduce the set	H of so called sourcelike elements, 

= {u E H: u — u0 = AlP v, 1 1VII	e},	 (1.6) 

where p > 0 and e > 0, I A I	(A*A)h12 € Y'(H, H). Formula (1.3) takes the form 

infzl(c5;	P;A) ^ w(ö; M 5 ; A) 
P	 - 

where M. = M 0 and w(ô; M; A) = sup (h uh : u E M, IlAuhl ;5 ô}. It is easy to prove 
the following assertion (see e.g. [7]): 

if (/&"t E a(A), then w(ô; M 5 ;A) = &I(P+1)6PI(P±I) 

and hence 

inf 4(5;	P; A) 	 (1.7) 
P 

It is a typical situation for the ill-posed problems that the range 7l(A) of A is non-
closed, and then the spectrum o(IAI) of JAI contains at least a sequence of positive 
numbers 2k such that A —>- 0 as k —> co. For the corresponding ô = = 

k = 1, 2, .:., inequality (1.7) holds. 
Now it is natural to ask, under which conditions upon the functions g,.: [0, a] —> R 

there is a parameter choice r = r(ô; M 5 .) such that 

sup	hlu — uhl :!^	 (1.8) 
U EMp5 u,.foE F. 

lAu—foflo 
(Comparing (1.8) with (1.7) we see that the corresponding method is optimal on 
Mpeu..) We shall answer this question assuming that 

g().)=rg(rA),	0)<00, r>0,	 (1.9)

with a given generating function g: [0, co) —> R such that 

sup ;Y1 1 — Ag(A)j <co	(0 < p f^ Po, P ER).	/	(1.10) 
O2o 

Many concrete methods fit in the setting defined by (1.4), (1. 9), (1.10) or (1.5), (1.9), 
(1.10). We shall apply the general results to the Lavrentiev and Tikhonov's methods 
and to continuous versions of iteration methods. Finally we transfer the results to a 
class of iteration methods. Note that for all those and many other methoçls, it is easy 
to propose parameter choices r = r(6; M 5 ,) for which (see e.g. [7, 8]) 

SLIP	lkr — u ll < ceh/( + uÔPRP ±1)	 (1.11) 
UEMp5 u,.16E F. 

IAu—/oIIo 

with a constant c> 1 (order optimality on M9.). 

A most practical way for an order optimil choice of r provides the residual (or discrepancy) 
principle (see [7-9]). For a fixed / € (A) this principle yields a suitable value of r, whereby 
it is not necessary to know, to which concrete set	p> 0, 0 > 0, the exact solution of 
(1.1) belongs. But we fight for c	1 in (1.11), and in order to determine the corresponding value
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of r, the information about  ande is needed. Note also that itis not needed constructing approx- 
imations (1.4) and (1.5); only the choice of the parameter r depends on Another idea is 
exploited on [4]: the authors construct a special version of Tikhonov's method depending on 
the set M H on which an optimal method is searched. 

2. Formulae for maximal error 

Let, •B be a linear bounded operator from a Hubert space G into H. Let us introduce 
the set

Mau, = {uEH:u_uo=Bv,lIvIJ^5e},. e>O, u0€H.
Lemma 2.1: 1/ H = F, A = A* > 0, hAll a then, for U,. defined in (1.4), 

	

sup	ftur —U lh	- 
U€M5,,.f6EF. 
flAu—fjJo

62	 111/2 

	

= inf	(I - Agr(A)) BB*(I - Ag,.(A))	g2(A).	(2.1)o<t<1 

- Proof:FOru,. and for uEH 

- u = (I - Agr(A)) (u0 - u) + g,(A) (16 - Au). 
Hence

	

Sup
	

1 1u, - U11 	sup	- Ag,(A)) By + g,(A) 
•	 UEMBQUJÔEF.	 HvIIp.IIzllo 

IIAu—f6JIo

= sup hle('I - Ag,(A)) By + ôg,(A) zhl. 
II v D	I.IzII	I 

According to MELKMAN and M1CCHELI1 [4], for any Hilbert spaces X and Xi and for 
any operators Ci € .Z'(X, X . ), i = 0, 1, 2, 

	

sup	11c0x ii= inf	sup	hlCoxJl. 
J C,zll 1 ,fl C fl5 1	 0<1<1 tflC,zfl*+(I_i)IIC.zfl*1 

In our case X =* G x F, X0 = H, X = C, X2 = F(= H), 

•C0 (v) =	- Ag,(A)) By + ôg,(A)z, 
c1 () 

= v, c2 (v) 
= z, 

X 
= (v) E X = GxF, 

and the Melkman-Micchelli's formula yields 

	

sup	lU,	uhl UEM BPU .IoE F. 
I!Au—foI!o 

= inf	sup	iIe(' - Ag,(A)) By + ôg,(A) zJ 
0<1<1 1IJVjI+(1-0tlzIJ1

	

1	gI12 .flG,X F,_,If)	inf hl_0C0 lb!(lf. = inf II0oh1 H), 

	

0<1<1	 0<1<1 

where 0 1 X F1_1 as a set coincides with 0 x F but is equipped with the scalar product 

((VI),::(V2))
) 	

= t(v 1 , V2)G +(1	t) , Z2)., 

23 Analysis Bd. 6, 1-left 4 (1987)
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and C0 t € .' ( H, G 1 X F) is adjoint to CO € Y(Gj x F 1 , H), 

	

- /g1*( - Ag(A))	
U E H 

0 U - \ ( 1 - t)'
 

	

6g(A) U	
'.  

This leads to formula (2.1) I 

	

Lemma 2.2: 11 A € 1(HF), IJAII I	a, then, /or , defined in (1.5), 

slip	lu, - ull 
UEMBUO./oEF. 

jAu—f5IIo 

= inf	- (I - A*Ag(A *A)) BB*(I A*Ag,(A*A)) 
0<1<1

1/2 
+ 1	

2*A)A*	.	 (2.2)1 

The proof is similar to that of Lemma 2.1. 

Below we restrict us to the case (1.9) and  = AlP (then M B,,,. =	see (1.6)).
Denoting h(2.) = 1 - 1g(A), formula (2.1) takes the form 

SUP	lU, - till
UEMPE,U./oE F. 
iAu—f6II6

12	 11/2 
= inf sup -- 22P(1 - r2g(r)))2 +	r2g2(rA) 

0<1<1 AEG(A) L	 t 
I 2'	 ô2	]1/2 

= inf sup I -f--- (i/r)2P h2 ( 1i) +	r2g2(1u) 
-0<1<1 UEo(rA). L	 1 - t.	j 

and the following result is an immediate consequence from Lemma 2.1. 
Lemma 2.3: Let H = F, A = A* 0 and let (1.9) and (1.10) hold. Then, for U, 

defined in (1.4), with	- 

r = de''', d >0, 0< P	Po,	 (2.3)

the following formula is true: 

sup	( LU, - u((	cje+'	 (2.4) 
uEM,,.foE F, 

IAU—f6II5 

whereby

dpg6c' = inf	sup	q,Rl(d, t, /1),	
0	

(2.5) 

-	
o<t<1 ea(deh/tP+1)6_h/(P4)A) 

d-2P	 d2	1/2 
('](d, t, e) 

=	
42Ph2(t) + T_ 

92(s)] 	h(i) = 1 .- ig(i). (2.6) 

Disregarding the fine structure of the spectrum i(A) we can recommend the choice 

	

of d, solving the mfriimax problem	 S 

•	inf inf	sup q 1 ](d, t, a)	 -	 -	(2.7) 
d>0 0<1<1 O<	

0
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Instead of equality (2.4) we then obtain the estimate 

SUJ	! I Ur - u ll 5	 0	

(2.8) UEMppuo,faEF.	 - 
Au-foIo 

which is precise for sufficiently small ô> 0 if a(A)	[0, eJ, e >00. Note that due to 
( 1.10), the function "] (d, t, u) with p E (0, Pd] is bounded in i (0	AU < co). 
0 From Lemma 2.2 we obtain.	 0 

Lemma 2.4: Let A E 2'(H, F) and let (1T.9) and (1.10) hold. Then; for u, defined in (1.5), with	
0	

0 

r = d 2I(p+ 1)6- 2Iv+ ,	d' > 0, 0 < p <2Po,	.	(2.9) 
the following formula is true:	 0	 0	 0	

0 

0 SUp	JJU,	2(11 = C1j+1)1(p+1)	 (2.10) foe F.	
0 jJAu-foIl6 

whereby	 .	
0	

0 

0	

'o = inf	sup	 12](d, t, Au),	 0	 (2.11) 
0<t<1 pea(de2/(p + )o_ 2/( p+ 1 )AsA)	. 

12(d,t, ) =
	

P2() +	g2()]/, h(Au) =1 - Aug (Au) . (2.12)	
0 

Disregarding the fine structure of a(A*A) again, we can recommend the choice of 
parameter d,olving the minimax problem 

inf inf	sup	[2J (d,t, ,u)	c[2I.	
0	

(2.13)	
0 d>O O<t<1 Op<oo 

Instead of (2.10) we then obtain the estimate 0	

0	

0	 0 

sup	fta,. - u :5 c[2lQ1/(P+1)6P/(P+1)	
0	 (2.14)UEMPQU,.foEF. 

lIAu-foIIo	 •. 
which is precise for small 6> 0 if a(A*A.)	CO, e], e> 0. Due to (1.10) the function
91P 

( 21 (d, t, Au) is bounded in AU (0 S Y < co) if p E (0, 2po]. 
To solve mininiax problems (2.7) and (2.13), it is useful to know stationary points 

of the functions pp(l] and l21 introduced in (2.6) and (2.12). 
Lemma 2.5: Let a differentiable function g :.[0, 00) .-). It' satisfy (1.10) and let h(A) = 1 —2g(A) decrease, h'(A) < 0 for 0 <2 < oo. Then both of the functions t'J	0 

0 (d, t, so) with 0 <	and [23 (d, t, a) with 0 <p	2Po have a unique stationary point in. the region d >- 0, 0 < t < 1, AU> 0, namelythe point, defined by coordinates 

0 

d = h-' ____	
1 1' AU = h_1(. ±

	
( 2.15) 

0

	

	 Proof: The proof is straightforward, equalizing the first derivatives of 9 E1l (d, t, AU) 
0	 0 

or TP E21(d, t, o) to zero and examining the corresponding system of three equations I 
23*.	 .	 0
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3. Optimality conditions 

Now we are ready to prove the main results of the paper. 

Theorem 3.1: Let H = F, A = A* > 0 and let a differentiable function g: [0, oo) 
-^ R satisfy (1.10) whereby h(.) = 1 - .g(,),) decreases, h'(). ) .< 0 for 0 < < oo. If, 
for a p E (0, pa], the inequality 

	

(p + i Ih - 1
	

2vh2() 

	

+ (p + 1) P-1 [h1 
(_1 )]2g2() ^ 1,	-	(3.1)

0 < u < oo, holds then, for u defined by (1.4), (1.9) with the parameter choice 

r	h ((3.2) 
1) 
011(p+I)ö_i(p±l)  p + 

the following error estimate is true: 

	

SUP	1 1u, — uIl	 (3.3) 
UEM,u.foEF. 

IiAu—fo! 

Conversely, if (3.1) is violated for a 1u € [0, oo), and a(A)	[0, e}, e > 0, then, /or all
sufficiently small ô> 0 and all r > 0 

	

P	kr	nil > 01/(p+1)6p/(p±1)	 (14) 

	

F.	 - 
IlAu—foIIo 

The point 1u = h_ 1(11(p+ 1)) is a stationary point of V,111 whereby 

1 (- (__1__ = i. 
' \	\p+i/J 

Corollary 3.1 (see Section 1): Under conditions of Theorem 3.1, if (3.1) holds,then 
method {( 1.4), (1.9), (3.2)1 is optimal on	provided that (ô/) II(P+n € i(A). 11(3.1) is 
violated and a(A)	[0, e], s > 0, then method {(1.4), (4.9)}, with an arbitrary choice of 
parameter r = r(ô, Mfl ,,) is non-optimal on	for all sufficiently small ô > 0. 

Proof of Theorem 3.1: Note first that 

	

=	 [11 (h-i (  
with 971 defined in (2.6). It follows from Lemma 2.5 that ,u = h(11(p + 1)) is a 
stationary point of ipplll . Obviously [')(d, h(d), d) = I for any d > 0 and hence this 
equality holds for point (2.15): 

	

iii (h-i T+- )	
1	h-' (__	=	 (h-* I (__1__\\ = 1 

9P \ 	1' p + 1'	\p ± 1 	'	 \n + 1/f 

Fixing u = h(11(p + 1)) we obtain from [ 9 111 (d,.t, u)]2 a strictly convex function 
in d and t which attains its minimum in its stationary point: for (d, t)	(h- 1( l /(p + 1)), 

i/(p+ 1)),	 - 
Ill	t, h-1TP 

(d,	
p (_	> pri] (- (

	
h-1 (_ 1)) 

= 1.
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On the other hand, in view of (3.1) 

Ill h	1	\	1 
(	(p + i)' , + 1' ) 

= [v 111()]112 ^ 1	(0 --< oo). 

Thus the minimaxin(2.7)is attainable at the point d = h(11(p + 1)),t = l/(p + 1), 
it = h(l/(p + 1)) whereby c (' J = 1. This means that, with p

arameter choice (3.2), 
error estimate (2.) takes form (3.3). 

If (3.1) is violated, then (2.7) yields c I ' l > 1. If thereby a(A)	[0, e], e.> 0, then 
(see (2.5))	 k 

inf C 0 -> c 1 as 6 -- 0, 
d>O 

and (3.4) is a consequence of (2.4). This completes the proof of Theorem 3.1 I 

In a similar way one can prove 

Theorem 3.2: Let A E Y(H, F) and let a differentiable function g: [0, oo) -- R 
satisfy the same conditions as in Theorem 3.1. 1/, for it p E ( 0,. 2poI the inequality 

VP 
l21()	(p + 1) [h-i (1 )] 

+ (p + 1)p'h'
(_	g2(<l,	 (3.5) 

(0	< co) holds, then., for Ur defined by (1.5), (1.9), vith the parameter choice 

r	h1( 02/(p+1)-2/(pI)	 (3.6) 
\p+lJ	 S 

error estimate (3.3)'holds. conversely, if (3.5) isviolated for a y E (0, oc), and a(A*A) 
[0, e], e > 0, then, for all sufficiently small ô > 0 and all r > 0, inequality (3.4) holds. 

The point ,u = h1(11(p + 1)) is a stationary point of [2] whereby 

,E21fh-1 ( 1 
\P+1)) 

Corollary 3.2: Under conditions of Theorem 3.2, if (3.5) holds, then method ((1.5), 
(1.9), (3.6)) is optimal on	provided that (o/e)uI(P+l) E a(A*A). If (3.5) is violated 
and a(A*A)	[0, e], e > 0, then method ((1.5), (1.9)), with an arbitrary choice of 
r = r(ô, Mpeu,) is non-optimal on	for all sufficiently small 6 > 0. 

4. Optimality of Lavrentiev and Tikhonov methods 

The Lavrentiev method (see [12]) 
u = (+ A-i fo	(' = r, A = A* 0)	 (4.1) 

's an example of methods ((1,4), (1.9)) with no = 0 and g(A) = h(2) = (1 + A)' 
Condition (1.10) is fulfilled with Po = 1; so is the condition of Theorem 3.1 on h(2). 
Condition (3.1) takes the form 

-	(iz)	(p + 1) (p 2P,u2P + p) (1 + u)-2	1	(0^ u < oo).	(4.2)
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It is easy to verify that (4.2) is fulfilled for 0 <p ;5 (j/ - 1)/2	0.618 and is violated 
for p> (jf - 1)/2 (namely, 113(0) = (p + 1) p> 1). According to Theorem 3.1, - 
the choice of the parameter = p1Q-1I(P+1)1I(P+I) provides the optimal estimate 

sup	11U.	u ^	/(P+1) Ô PI(P4-I)	 (4.3) 
uEMp.f6EF. 
II Au —foIIo 

for 0 < p	(3/5_ - 1)/2; on the other hand, for p > (j/ - 1)/2 there isnoparameter 
choice = a(b, Mpg ) that makes Lavrentiev method optimal on	But it is known
that, with a = d-l/(P+I)âL/(P+'), d = const > 0, Lavrentiev niethodisorderoptimal 
on *31P, also for (j/g - 1)/2 < p	1; for p > 1 there is no parameter choice which
could provide evenorder optimality of the method on M0. 

The Tikhonov method (see [14, 15]) 

u. = (al + A*A) i A*fo	(	r, A € 1(H, F))	 (4.4) 
corresponds to the same generating'function g(2) = (1 + A)_1. Condition (3.5) takes 
the form	 S 

(p + 1) (p_P/iP + z) (1 + )_2	1	(0 :!z^ ) z < oo)	(4.5) 

and is fulfilled for 0 <p :!E^ 2. According to Theorem 3.2,.Tikhonov method (4.4), 
with the parameter choice a = p_1-2/(P+1)62/(P.+1) is optimal on M 0 ((4.3) holds) for 
0 < p :E^: 2. It is known that; forp'> 2, there is no parameter choice which provides 
even order optimality of the method on M. 

5. Optiiiiality of continuous versions of iteration methods 

The following two methods car be considered as continuous versions of. iteration 
methods (see [13]) 

u'(t) + Au(t) = /, u(0) = u0	(t = r, A = A* > 0),	 (5.1) 
u'(t) + A*Au(t) = A h, - u(0) = u0 (t = r, A, € 1(H, .F)).	(5.2) 

Methods (5.1) and (5.2) belong to the class of methods (I.4) (1.9) and (1.5), (1.9), 
respectively, whereby g(2) = 2'(l - e), h(A) = e'. Condition (1.10) is fulfilled 
with Po = °°. Optimality conditions (3.1) and (3.5) have the form 

= (p + 1) ([In (1 + p)]-2p 2e2 
+ p[In (1 + p)12 -2(1 - e)2 }	1, 

	

= (p	1) {[ (1 + p)]P e2 
+ p[ln (1 + p)] a_ 1 (1 - e)2	1 

(0	u < co), respectively. An analytical check ot these conditions occured to he 
complicated and so they were examined numerically. The result is as follows: the 
first inequality js fulfilled for 0 <p ^-,p	1.043 (this number appears from the 
condition v ["(0) = (p + 1) p'[ln (1'+ p)]2 :!E^ 1); the second inequality is fulfilled 
for 0 < p P2	7.124. According to Theorem 3.1, the choice of the parameter 
= [In (1 + p)]	 in method (5.1) yields, forO < p :!E^ pj, the optimal esti-



mate
sup	Iu(t) - uII s- i 1 I(P+ 1 >PP+ i );	 ,	 (5.3)

UEMpu,.f6EF. 
jAu—foII6
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- there is no parameter choice t = t(ô, M) which-provides the optimality of method 
(5.1) on MpQU, for p > p. According to Theorem.3.2, the parameter choice t = 
[In (1 + p)] 02/(P+I)52/(p+1) in method (5.2) provides, for 0 <p P2, optimal estimate 
(5.3); there is no parameter choice t = t(ó, M7,,) which makes method (5.2) optimal 
on Mpeu. for P> Pi- It is known that method (5.1) with t =	and 
method (5.2) with t =	d = const> 0, are order optimal on 
'for allpE(0,00).	 V	 -	 V 

6. Asymptotical optimality of iteration methods 

Consider the iteration methods (see [5, 7-9]) 

u =- —B(Au_ 1 —fe),	(n = 1, 2, ...;B=b(A),A = A* 0) 
(6.ly 

and

= u_ — C(Au_	to),	1, 2,...; C = b(A*4) A* , A E'(H, F)), 
(6.2) 

- where b: [0, a] —> R with a jAil (case (6.1)) or a	jAil2 (case (6.2)) is a continuous	V 

function such that	 V	

-. 	 V 

'2	
V 

0 < b(2) <—i- for 0	a.	 (6.3) 

Most usual iterations, introduced in [3, 11-131, correspond to the functions b2) 
• fi € (0, 2/a) and b(2) = (fl + 2)_1, a = const> 0. Iteration methods (6.1) and (6.2) 
present a special case of methods (1.4) and (1.5) in which the parameter r = n takes 

V only integer values and the function g = g is defined by 

g(),) = j' (1 — ;.b(2)y b(2)= -[i —(1 — 1b(1))].	 (6.4) 

As far as r = n cannot take all positive real values, it is impossible to establish the 
optimality of iteration methods on a set M. But it is possible to indicate a choice 
n= n(ô, p, ) so that iteration method (6.1) or (6.2) occurs to be asymptotically 
optimal on	in the following sense (compare with (1.8)):	

V 

5Uf	llUnö.p,Q — 
im 

tiEMp0,.fôEF.IlAUfoIIö 
	 (6.5) l 1/(p±1)p/(p+l)	— 

More precisely, such a choice of n = n(ô, p, ) is possible only for those p > 0 for which 
the corresponding continuous version of iterations ((5.1) or (5.2)) is optimal on MQU,: 

Theorem 6.1: Let H = F, A = A* 0, MAil a and let a continuous function 
•b: [0, a] — R satisfy inequalities (6.3) Then, for 0 < p *^S Pi	1.043 the choice 

V 

n = n(ô, p,	= mt {ln (1+ ) e1+1_P+1)}	 (6.6) 

in iteration method (6.1) 
V
provides asymptotic error estimate (6.5)..	

V 

*V
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• Theorem 6.2: Let  E 1(H, F), hAil2 :!^ a and let a continuous function b: [0, a]-- R 
satisfy inequalities (6.3). Then, for 0 <p	P2	7.124 the choice

+ p ) *
n = n(â, p, e) = mt 

{
In (1 (6.7) 

in iteration method (6.2) provides asymptotic error estimate (6.5). (Here mt 2 denotes the 
integer part of a real number 2.) 

The proof of Theorem 2 is alike that of Theorem 1. For the latter one we establish 
first 

Lemma 6.1: The following statements are consequences from (0.3), (6.4) and the 
continuity of b:	- 

• a)g().)>0, max g(2)	n for r>0,n> i; 
T 

b) for any s> 0 and p> 0 there is a t = r(-e, p) > 0 and an0 = n0(c, p) such that 
max AP I 1 - 2g,(2)	enP for t	r0 , n	no. 

Proof: Statement a) is obvious. Let Us prove h). Choose an a E (0, a) such that 
0 1 — Ab(2) ;5 1 — A for 0 a with a positive constant fl. it is clear that 
a:E7,-'and 

0	max 1 1 — 2b(2)i < 1. 

The function 2P(1 — j ). is non-negative and decreasing in 2 on [p/j (n + p), 1/a] 
Assuming that r> p,8 1 (then t/n > p/(n + p)) and r/n < a (that mans taking 
sufficiently great n) we have 

max 2 1 — 2g(2) = max ).P 11 — 2b(2) I' 
Tfl

	

max max A(1 —	max )T 1 1 — ).b(A ) In 

(/ t \ / 
max (—) (1 — —) a'0" n	 • 

	

[\/\	/ / 

max {iPe', aP0'nP } n-n. 

The result is not greater than	if re	e, (an) P On	e which hold for suffi-
ciently great 	t0 and n	no I	 •	 - 

Proof of Theorem 6.1: According to Lenima2.1, for any n	1 we have (putting
t = l/(p + 1)) 

sup - Hun — Ui 
uEMpu,.foE F. 

iIAu-f6IIo
/	 \ 

= inf max (-f 
2 

— 22P(1 — 2g	
â2	 I/2 

(2))2 +	g2(2) 
0<t<1 A(a(A) \ t	 I — t 

max [(P + 1) e 2) 2P(1 — ).g.(;.))2 + 
P ±I 62g2().)] 

0!9A^-.a	 P 
= max {8(ô, p, ), i,1 (â, p, )}
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where
s(ô, p, ) = max []1/2 and	p, )	max 

- 

Due to Lemma 6.1, 

a(ô, p' )	[ p + 1) ,22 ' 2n- 2v  +	tô2(n/2]' 

	

with an arbitrary E > 0 assuming that r > r(,-, p), n	n0(e, p). Taking a sufficiently 
small €> 0 and choosing n = n(ô, p, ) according to (6.6) we obtain . 

,(&p,)(& 7), ) !E^: .o1±')ôP+ 

It remains to show that 

urn Sfl(,5,p,)(ô, 2'	^ 1 
s-go c h l( P+ 1 IÔP/( p + 1 )	 .	 .	. 

By means of substitution 2 = /n and.(6.4) rewrite 

[(p + 1)o2m 2Pu2P (i _._b))2
n. 

I	1	/ .	 /	\\n\21i/2 
o2n2-2(1_(J_bi 

P	 \	\	fl\fl 

Note that
/	u	/\\n	 S 

max— - g e -g(0)' —>0 as it —> co. 
•	O	 fl. \fl// 

	

\Choosing n = n(ô, p, ) according to (6.6) we obtain.	. 

:'	
max ( ±1) [In (1 + p)] 2 ' [(0)/Ll2P e-29(0)y 

	

+	[In (1 ± p)]2 [g(0) u]-2 (1 — e_5(0))2} 

= max [('](g(0) /L )1" -	. 

	

with ,E11 defined in Section & But L ' )()	1 for 0 5: y <cc in so far as 0 <p :!E-^ 
1.043 (see Section 5). This completes the proof I 
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