Topological Realizations of Calkin Algebras on Frechet Domains of Unbounded Operator Algebras

K. SCHMÜDGEN

Let \(D \) be a dense linear subspace of a separable complex Hilbert space \(X \) endowed with the graph topology \(\tau_G \) (see Section 1 for precise definitions). Suppose \(X \) is a Frechet space with respect to the graph topology of \(L^+(D) \). Let \(\mathcal{E}(D) \) denote the set of all operators in \(L^+(D) \) which map each bounded subset of \(D[1] \) into a relatively compact subset of \(D[1] \). Then \(\mathcal{E}(D) \) is a \(\tau_G \)-closed two-sided \(\star \)-ideal of \(L^+(D) \) which contains the finite rank operators in \(\mathcal{F}(D) \) as a dense subset [15, 7]. (Note that in [15] the ideal \(\mathcal{E}(D) \) is denoted by \(\text{Vol} (t, t) \).) The quotient algebra \(\mathcal{A}(D) := L^+(D)/\mathcal{E}(D) \) is called the Calkin algebra on the domain \(D \). Let \(\pi \) denote the quotient topology on \(\mathcal{A}(D) \) of \(L^+(D) \) [\(\tau_G \)]. Obviously, \(\mathcal{A}(D) \) is a topological \(\star \)-algebra. If \(D = X \), then \(\mathcal{A}(D) = \mathcal{A}(X) \) is the usual Calkin algebra on the Hilbert space \(X \). It should be mentioned that if \(D[1] \) is a Montel space, then \(\mathcal{E}(D) = L^+(D) \) and hence the Calkin algebra \(\mathcal{A}(D) \) is trivial.

In his classical paper [3] CALKIN constructed a class of faithful isometric \(\star \)-representations of the C*-algebra \(\mathcal{A}(X) \) (see [11] for a modern treatment). In this paper we investigate the corresponding problem for the Calkin algebra \(\mathcal{A}(D) \) on the Frechet domain \(D[1] \): Does there exist a faithful \(\star \)-representation \(\pi \) of \(\mathcal{A}(D) \) which is a homeomorphism of \(\mathcal{A}(D) \) [\(\pi \)] onto \(\pi(\mathcal{A}(D)) \) [\(\tau_G \)? For the domain \(l_2 \otimes d \), \(d \) the space of all finite complex sequences, this problem has been considered in [9]. Note that \(l_2 \otimes d[t] \) is not a Frechet space.
Let us briefly describe our main results concerning the above question.

Given a free ultrafilter \(\mathcal{U} \) on \(\mathbb{N} \), we define in Section 2 a \(*\)-representation \(\pi_\mathcal{U} \) of \(\mathcal{A}(\mathcal{D}) \) in a similar way as in the case \(\mathcal{D} = \mathcal{H} \). We show that \(\pi_\mathcal{U} \) is faithful and that \(\pi_\mathcal{U}^{-1} \) is continuous (Theorem 2.1). Let \(\tau_\mathcal{U} \) denote the finest locally convex topology on \(\mathcal{L}^+(\mathcal{D}) \) for which the positive cone \(\mathcal{L}^+(\mathcal{D})_+ \) is normal [12]. If \(\tau_\mathcal{U} = \tau_\mathcal{D} \) on \(\mathcal{L}^+(\mathcal{D}) \), then each \(*\)-representation \(\pi_\mathcal{U} \) is continuous and hence a homeomorphism (Theorem 2.2).

In Section 3 we obtain a converse of the latter in some sense. Suppose that the graph topology \(\tau_{\mathcal{D}} \) on \(\mathcal{D} \) is generated by a sequence of strongly commuting self-adjoint operators whose restrictions to \(\mathcal{D} \) are in \(\mathcal{A}(\mathcal{D}) \). Under this additional assumption we prove that if \(\tau_\mathcal{U} \neq \tau_\mathcal{D} \) on \(\mathcal{L}^+(\mathcal{D}) \), then there is no continuous faithful \(*\)-representation of \(\mathcal{A}(\mathcal{D}) \) [13] (Theorem 3.1).

1. Preliminaries

In this section we collect some definitions and notations (see e.g. [8, 10]) needed later and we prove some preliminary lemmas.

1.1 Let \(\mathcal{D} \) be a dense linear subspace of a complex Hilbert space \(\mathcal{H} \) and let \(\mathcal{L}^+(\mathcal{D}) := \{a \in \text{End} \mathcal{D} : \mathcal{D} \subseteq \mathcal{D}(a^*) \text{ and } a^* \mathcal{D} \subseteq \mathcal{D} \} \). \(\mathcal{L}^+(\mathcal{D}) \) is a \(*\)-algebra endowed with the involution \(a \mapsto a^* := a^\dagger \) \(\mathcal{D} \). An \textit{Op*algebra} \(\mathcal{B} \) on \(\mathcal{D} \) is a \(*\)-subalgebra of \(\mathcal{L}^+(\mathcal{D}) \). In what follows we assume that \(\mathcal{B} \) is an \textit{Op*algebra} on \(\mathcal{D} \). Define \(\mathcal{D}(\mathcal{B}) = \cap \{ \mathcal{D}(b) : b \in \mathcal{B} \} \), where \(\mathcal{D}(b) \) is the closure of the operator \(b \).

Let \(\{\phi_n : n \in \mathbb{N}) \) be a sequence of vectors \(\phi_n \in \mathcal{H} \) and let \(\mathcal{B} \subseteq \mathcal{X} \). Suppose \(\mathcal{U} \) is a filter on \(\mathbb{N} \). We write \(\phi = \text{w-lim}_\mathcal{U} \phi_n \) if \(\lim_{\mathcal{U}} \langle \phi_n, \psi \rangle = \langle \phi, \psi \rangle \) for all \(\psi \in \mathcal{H} \) and \(\phi = \text{w-lim}_\mathcal{U} \phi_n \) if \(\lim_{\mathcal{U}} \langle \phi_n, \psi \rangle = \langle \phi, \psi \rangle \) for all \(\psi \in \mathcal{H} \).

Lemma 1.1: Suppose \(\mathcal{U} \) is an ultrafilter on \(\mathbb{N} \). Let \(\{\phi_n : n \in \mathbb{N}\) be a bounded sequence of vectors of \(\mathcal{D}(\mathcal{B}) \). Let \(\phi := \text{w-lim}_\mathcal{U} \phi_n \).

(i) Then, \(\phi \in \mathcal{D}(\mathcal{B}) \) and \(b\phi = \text{w-lim}_\mathcal{U} b\phi_n \). In particular, if \(0 = \text{w-lim}_\mathcal{U} \phi_n \), then \(0 = \text{w-lim}_\mathcal{U} \phi_n \) for each \(b \in \mathcal{B} \).

(ii) If \(\lim_{\mathcal{U}} \|\phi_n\| = 0 \), then \(\text{lim}_{\mathcal{U}} \|b\phi_n\| = 0 \) for each \(b \in \mathcal{B} \).

(iii) If \(\phi = 0 \) and if the set \(\{\phi_n\} \) is relatively compact in \(\mathcal{D}(\mathcal{B}) \), then \(\lim_{\mathcal{U}} \|b\phi_n\| = 0 \) for each \(b \in \mathcal{B} \).

Proof: (i) Suppose \(b \in \mathcal{B} \). Since the set \(\{b\phi_n\} \) is bounded, \(\lim_{\mathcal{U}} \langle \phi_n, \psi \rangle = \langle \phi, \psi \rangle \) for all \(\psi \in \mathcal{H} \) and \(\phi \in \mathcal{D}(\mathcal{B}) \), this gives

\[
\langle \phi, \psi \rangle = \lim_{\mathcal{U}} \langle \phi_n, \psi \rangle = \lim_{\mathcal{U}} \langle \phi_n, b^*\psi \rangle = \langle \phi, b^*\psi \rangle.
\]

Therefore, \(\phi \in \mathcal{D}(\mathcal{B}^{**}) = \mathcal{D}(\mathcal{B}) \) and \(\phi_n = b^{**}\phi^* = b\phi_n \). Since \(b \in \mathcal{B} \) is arbitrary, \(\phi \in \cap \{ \mathcal{D}(b) : b \in \mathcal{B} \} = \mathcal{D}(\mathcal{B}) \).

(ii) Since \(\{\phi_n\} \) is \(\mathcal{B} \)-bounded, \(C_b := \sup \{\|b^*\phi_n\| : n \in \mathbb{N}\} < \infty \) for \(b \in \mathcal{B} \). Now the assertion follows from

\[
(\lim_{\mathcal{U}} \|b\phi_n\|)^2 = \lim_{\mathcal{U}} \langle b^*b\phi_n, \phi_n \rangle \leq C_b (\lim_{\mathcal{U}} \|\phi_n\|) = 0.
\]

(iii) Let \(b \in \mathcal{B} \). Since \(\{\phi_n\} \) is relatively compact in \(\mathcal{D}(\mathcal{B}) \), the set \(\{b\phi_n\} \) is relatively compact in \(\mathcal{H} \). Given \(\varepsilon > 0 \), there is a finite rank projection \(F_\varepsilon \) on \(\mathcal{H} \) such that \(\|(I - F_\varepsilon)\phi_n\| \leq \varepsilon \) for \(n \in \mathbb{N} \). Since \(0 = \text{w-lim}_\mathcal{U} b\phi_n \) because of (i) and hence \(\lim_{\mathcal{U}} \|F_\varepsilon b\phi_n\| = 0 \), we have \(\lim_{\mathcal{U}} \|b\phi_n\| \leq \lim_{\mathcal{U}} \|(I - F_\varepsilon) b\phi_n\| \leq \varepsilon \), thus \(\lim_{\mathcal{U}} \|b\phi_n\| = 0 \).

The following corollary is of some interest in itself:
Corollary 1.2: Suppose \(\varphi \in \mathcal{H} \). If there is a bounded sequence \((\varphi_n : n \in \mathbb{N})\) in \(\mathcal{D}[\mathcal{B}] \) such that \(\varphi = \text{w-lim}_n \varphi_n \), then \(\varphi \in \mathcal{D}(\mathcal{B}) \).

Proof: Take an ultrafilter \(\mathcal{U} \) on \(\mathbb{N} \) which contains all sets \(\{n \in \mathbb{N} : n \geq k\}, k \in \mathbb{N} \). Then \(\varphi = \text{w-lim}_n \varphi_n \) and Lemma 1.1 (i) applies.

1.2 Next we briefly discuss the topologization of the Op*-algebra \(\mathcal{B} \) on \(\mathcal{D} \). Let \(\mathcal{B}_b := \{b \in \mathcal{B} : b = b^*\} \). Suppose \(b, b_1, b_2 \in \mathcal{B}_b \). We write \(b_1 \geq b_2 \) if \(\langle b_1 \varphi, \varphi \rangle \geq \langle b_2 \varphi, \varphi \rangle \) for all \(\varphi \in \mathcal{D} \). Define \(\mathcal{B}_+ := \{b \in \mathcal{B} : b \geq 0\} \) and \(\{b_1, b_2\} := \{b \in \mathcal{B}_b : b_1 \leq b \leq b_2\} \). The uniform topology \(\tau_{\mathcal{B}} \) is the locally convex topology on \(\mathcal{B} \) defined by the seminorms

\[p_{\mathcal{B}}(x) := \sup \{|\langle x \varphi, \varphi \rangle| : \varphi, \varphi \in \mathcal{M}\}, \mathcal{M} \subset \mathcal{D}[\mathcal{B}] \text{ bounded}. \]

It has been introduced in \([8]\). We denote by \(\tau_{\mathcal{D}} \) the finest locally convex topology on \(\mathcal{D} \) for which the positive cone \(\mathcal{B}_+ \) is normal. (All notions and facts concerning ordered vector spaces we need can be found in \([12]\).) Since \(\mathcal{B}_+ \) is \(\tau_{\mathcal{B}} \)-normal \([13]\), we have \(\tau_{\mathcal{B}} \subseteq \tau_{\mathcal{D}} \). Let \(\tau_0 \) denote the finest locally convex topology on \(\mathcal{D} \) for which every order interval \(\{b, \varphi : b \geq 0\} \) is bounded. Since \(\mathcal{B}_+ \) is \(\tau_{\mathcal{B}} \)-normal, all order intervals are \(\tau_{\mathcal{B}} \)-bounded \([12; p. 216]\) and hence \(\tau_0 \subseteq \tau_{\mathcal{B}} \). In \([1]\) the topology \(\tau_0 \) is called the \(\mathcal{G} \)-topology.

1.3 Let \(\mathcal{A} \) be a *-algebra with unit element denoted by 1. By a *-representation of \(\mathcal{A} \) on \(\mathcal{D} \) we mean a *-homomorphism \(\pi \) of \(\mathcal{A} \) into \(\mathcal{L}^* (\mathcal{D}) \) satisfying \(\pi(1) = 1 \), where 1 is the identity map of \(\mathcal{D} \). We then write \(\pi(\mathcal{D}) \) for \(\mathcal{D}(\mathcal{A}) \) as the graph topology of \(\mathcal{A}[\pi] \) on \(\mathcal{D}(\mathcal{A}) \). Suppose \(\pi \) is a *-representation of \(\mathcal{A} \) on \(\mathcal{D}(\mathcal{A}) \). \(\pi \) is called weakly continuous if for each \(\varphi \in \mathcal{D}(\mathcal{A}) \) the linear functional \(\langle \varphi(\cdot), \varphi \rangle \) is continuous on \(\mathcal{A} \). If \(\pi \) is a continuous mapping of \(\mathcal{A} \) onto \(\mathcal{D}(\mathcal{A}) \), we say \(\pi \) is continuous.

As above, let \(\mathcal{B} \) be an Op*-algebra on \(\mathcal{D} \). Let \(\pi \) be a *-representation of \(\mathcal{B} \) on \(\mathcal{D}(\mathcal{A}) \). We say \(\pi \) is positive if \(\pi(b) \geq 0 \) on \(\mathcal{D} \), i.e., if \(b, b_1 \in \mathcal{B} \) and \(b \geq 0 \) on \(\mathcal{D} \) always implies that \(\pi(b) \geq 0 \) on \(\mathcal{D} \). A linear functional \(f \) on \(\mathcal{B} \) is called positive if \(f(b) \geq 0 \) for all \(b \in \mathcal{B} \).

Lemma 1.3: Each positive *-representation \(\pi \) of the Op*-algebra \(\mathcal{B} \) is a continuous mapping of \(\mathcal{A}[\pi] \) onto \(\pi(\mathcal{D}) \).

Proof: By the polarization formula it is easy to see \([13]\) that the uniform topology \(\tau_{\mathcal{B}} \) on \(\pi(\mathcal{D}) \) is generated by the family of seminorms

\[p_{\mathcal{B}}(x) := \sup \{|\langle x \varphi, \varphi \rangle| : \varphi, \varphi \in \mathcal{M}\}, \mathcal{M} \subset \mathcal{D}[\mathcal{B}] \text{ bounded}. \]

Fix the bounded set \(\mathcal{M} \). Since the set \(\{x \in \mathcal{B} : p_{\mathcal{B}}(x) \leq 1\} \) is absolutely convex and \(\tau_{\mathcal{B}} \)-saturated, it is a \(\tau_0 \)-neighborhood of zero in \(\mathcal{B} \). This proves the continuity of \(\pi \).

Lemma 1.4: Suppose that \(\mathcal{D}(\mathcal{A}) \) is a Frechet space. Let \(\mathcal{A} \) be a weakly continuous *-representation of \(\mathcal{L}^* (\mathcal{D}) \) on \(\mathcal{D}(\mathcal{A}) \). Then:

(i) \(\pi \) is positive.
(ii) If \(x \in \mathcal{D}(\mathcal{A}) \) is bounded, then \(\pi(x) \) is bounded on \(\mathcal{D}(\mathcal{A}) \) and \(\|\pi(x)\| \leq \|x\| \).
(iii) Suppose \(x_n \in \mathcal{L}^* (\mathcal{D}) \) for \(n \in \mathbb{N} \). If \(\{\|\cdot\|_{\tau_{\mathcal{B}}} : n \in \mathbb{N}\} \) is a generating family for the graph topology \(\tau_{\mathcal{B}} \) on \(\mathcal{D}(\mathcal{A}) \), then \(\{\|\cdot\|_{\tau_{\mathcal{B}}} : n \in \mathbb{N}\} \) is a generating family of seminorms for the graph topology \(\tau_{\mathcal{B}} \) on \(\mathcal{D}(\mathcal{A}) \).

Proof: (i) Suppose \(x \in \mathcal{L}^* (\mathcal{D}) \) and \(\varphi \in \mathcal{D}(\mathcal{A}) \). By \([6; \text{Theorem 6.1}]\) there is a net \(\{q_j\} \) of orthogonal projections \(q_j \in \mathcal{L}^* (\mathcal{D}) \) (that is, \(q_j = q_j^* \) and \(q_j = q_j^2 \)) such that \(q_j \mathcal{H} \subseteq \mathcal{D} \) for all \(j \) and \(x = \tau_{\mathcal{B}} \lim_j q_j xq_j \). Let \(x \) denote the operator \(q_j xq_j \) on the Hilbert
space $g_j \mathcal{H}$. Since $x \in \mathcal{L}^+(\mathcal{D})$, x_j is closed and hence bounded. Let y_j denote the positive square root of the bounded self-adjoint operator x_j on the Hilbert space $g_j \mathcal{H}$. Then $y_j g_j \in \mathcal{L}^+(\mathcal{D})$ and

$$||x(y_j g_j)\varphi||^2 = \langle x(y_j g_j^2 y_j) \varphi, \varphi \rangle = \langle x(y_j x y_j) \varphi, \varphi \rangle \geq 0.$$

Since π is weakly continuous, $\langle x(\varphi, \varphi) \rangle = \lim \langle x(y_j^2 y_j) \varphi, \varphi \rangle \geq 0$. That is, $\pi(x) \geq 0$ on $\mathcal{D}(x)$.

(ii): First let $x \in \mathcal{L}^+(\mathcal{D})$. Since π is positive by (i) and $\pi(I) = I$, inf $\{ \lambda \in \mathbb{R} : -\lambda I \leq \pi(x) \leq \lambda I \}$ \leq inf $\{ \lambda \in \mathbb{R} - \lambda I \leq x \leq \lambda I \} = ||x||$, which implies that $\pi(x)$ is bounded and $||\pi(x)|| \leq ||x||$. For arbitrary $x \in \mathcal{L}^+(\mathcal{D})$ the assertion follows from $||\pi(x)||^2 = ||\pi(x^* x)|| \leq ||x^* x|| = ||x||^2$.

(iii): Suppose $x \in \mathcal{L}^+(\mathcal{D})$. By assumption, there are a positive constant C and a natural number s such that

$$||x \varphi||^2 \leq C \left(||\varphi||^2 + \sum_{n=1}^s ||x_n \varphi||^2 \right) \text{ for all } \varphi \in \mathcal{D}.$$

Therefore,

$$y := C \left(I + \sum_{n=1}^s x_n + x_n^* \right) - x^* x \in \mathcal{L}^+(\mathcal{D}) \text{ and } \pi(y) \geq 0 \text{ on } \mathcal{D}(\pi).$$

The latter implies that

$$||\pi(x) \varphi||^2 \leq C \left(||\varphi||^2 + \sum_{n=1}^s ||\pi(x_n) \varphi||^2 \right) \text{ for all } \varphi \in \mathcal{D}(\pi).$$

1.4 From now on we assume that $\mathcal{D}(\pi)$ is a Frechet space and that the underlying Hilbert space \mathcal{H} is separable. To simplify the notation we adopt the following notational convention: We shall denote an operator whose domain contains \mathcal{D} and its restriction to \mathcal{D} by the same symbol. This will be mainly used in Section 3. Let $\mathcal{F}(\mathcal{D})$ denote the finite rank operators contained in $\mathcal{L}^+(\mathcal{D})$. For a linear subspace \mathcal{D}_1 of \mathcal{H}, let $\mathcal{F}(\mathcal{H}, \mathcal{D}_1)$ be the set of all bounded finite-ranked operators on \mathcal{H} mapping \mathcal{H} into \mathcal{D}_1. Moreover, we let $\mathcal{B}_{\mathcal{D}_1} := \{ \varphi \in \mathcal{D}_1 : ||\varphi|| \leq 1 \}$.

2. Generalized Calkin representations of $\mathcal{A}(\mathcal{D})$

2.1 Suppose that \mathcal{U} is an ultrafilter on \mathbb{N}. Let $\mathcal{D}_\mathcal{U}$ denote the set of all bounded sequences $(q_n : n \in \mathbb{N}) = (q_n)$ in the locally convex space $\mathcal{D}(\pi)$ satisfying $0 = w$-$\lim \varphi_n$. Let $\mathcal{H}_\mathcal{U}$ be the set of all bounded sequences (q_n) in \mathcal{H} with $0 = w$-$\lim \varphi_n$. $\mathcal{D}_\mathcal{U}$ and $\mathcal{H}_\mathcal{U}$ are vector spaces in the obvious way. Let $\mathcal{N}_\mathcal{U}$ be the set of all $(q_n) \in \mathcal{H}_\mathcal{U}$ with w-$\lim \varphi_n = 0$. We define a scalar product on the quotient space $\mathcal{D}_\mathcal{U} := \mathcal{D}_\mathcal{U}/\mathcal{D}_\mathcal{U} \cap \mathcal{N}_\mathcal{U}$ by $\langle (q_n), (p_n) \rangle := \lim u (q_n, p_n)$. In the same way, the quotient space $\mathcal{H}_\mathcal{U} := \mathcal{H}_\mathcal{U}/\mathcal{N}_\mathcal{U}$ becomes a Hilbert space (see e.g. [11: Section 2]). By an abuse of notation we denote the elements of the quotient spaces again by (q_n). Since $\mathcal{D} \subseteq \mathcal{H}$, $\mathcal{D}_\mathcal{U}$ can be considered as a linear subspace of $\mathcal{H}_\mathcal{U}$.

Define $\sigma_\mathcal{U}(x)(q_n) := (x q_n)$ for $(q_n) \in \mathcal{D}_\mathcal{U}$, and $x \in \mathcal{L}^+(\mathcal{D})$. Each operator $x \in \mathcal{L}^+(\mathcal{D})$ maps a bounded sequence in $\mathcal{D}(\pi)$ into a bounded sequence. By Lemma 1.1, (i) and (ii), $x \mathcal{N}_\mathcal{U} \subseteq \mathcal{N}_\mathcal{U}$ and $x \mathcal{D}_\mathcal{U} \subseteq \mathcal{D}_\mathcal{U}$. Therefore, the above definition makes sense and defines a linear operator $\sigma_\mathcal{U}(x)$ which maps $\mathcal{D}_\mathcal{U}$ into $\mathcal{D}_\mathcal{U}$. It is straightforward to check that the mapping $x \rightarrow \sigma_\mathcal{U}(x)$ is a positive *-representation of $\mathcal{L}^+(\mathcal{D})$ on $\mathcal{D}_\mathcal{U}$.

Let \mathcal{J} denote the quotient map of $\mathcal{L}^+(\mathcal{D})$ onto $\mathcal{A}(\mathcal{D}) = \mathcal{L}^+(\mathcal{D})/\mathcal{B}(\mathcal{D})$. Suppose $x \in \mathcal{E}(\mathcal{D})$ and $(q_n) \in \mathcal{D}_\mathcal{U}$. Then the set $\{x q_n\}$ is relatively compact in $\mathcal{D}(\pi)$ and hence $\lim u ||x q_n|| = 0$ by Lemma 1.1 (iii). This shows that $\mathcal{E}(\mathcal{D}) \subseteq \ker \sigma_\mathcal{U}$. Therefore, $\pi_\mathcal{U}(\mathcal{J}(x)) := \sigma_\mathcal{U}(x)$ for $x \in \mathcal{L}^+(\mathcal{D})$ defines a *-representation of the *-algebra $\mathcal{A}(\mathcal{D})$ on $\mathcal{D}_\mathcal{U} = \mathcal{D}(\pi_\mathcal{U})$.

2.2 Recall that an ultrafilter on \(\mathbb{N} \) is said to be \textit{free} if the intersection of all its members is empty.

Theorem 2.1: Suppose that \(\mathcal{U} \) is a free ultrafilter on \(\mathbb{N} \). Then \(\pi_\mathcal{U} \) is a faithful \(* \)-representation of the Calkin algebra \(\mathcal{A}(\mathcal{D}) \). Its inverse \(\pi_\mathcal{U}^{-1} \) is a continuous mapping of \(\pi_\mathcal{U}(\mathcal{A}(\mathcal{D})) \) onto \(\mathcal{A}(\mathcal{D}) \).

Proof: The quotient topology \(\hat{\tau} \) on \(\mathcal{A}(\mathcal{D}) \) is generated by the seminorms

\[
\rho_{\mathcal{M}}(\{x\}) := \inf \{p_{\mathcal{M}}(x + c) : c \in \mathcal{C}(\mathcal{D})\}, \quad \mathcal{M} \subset \mathcal{D}[1] \text{ bounded.}
\]

Fix such a set \(\mathcal{M} \). Suppose for a moment we have shown that there exists a bounded subset \(\mathcal{R} \) (depending on \(\mathcal{M} \)) of \(\mathcal{D}[\pi_\mathcal{U}] \) such that

\[
\rho_{\mathcal{M}}(\{x\}) \leq \rho_{\mathcal{M}}(\pi_\mathcal{U}(x)) \quad \text{for all } x \in \mathcal{L}^+(\mathcal{D}).
\]

The latter means that

\[
\rho_{\mathcal{M}}(a) \leq \rho_{\mathcal{M}}(\pi_\mathcal{U}(a)) \quad \text{for all } a \in \mathcal{A}(\mathcal{D}).
\]

Since \(\mathcal{C}(\mathcal{D}) \) is \(\tau_\mathcal{D} \)-closed in \(\mathcal{L}^+(\mathcal{D}) \) and hence \(\hat{\tau} \) is Hausdorff, it follows from (2) that \(\ker \pi_\mathcal{U} = \{0\} \), that is, \(\pi_\mathcal{U} \) is faithful. Moreover, (2) proves the continuity of \(\pi_\mathcal{U}^{-1} \), and the proof would be complete.

It remains to show that there is a bounded set \(\mathcal{R} \) in \(\mathcal{D}[\pi_\mathcal{U}] \) such that (1) is satisfied. According to [6: Theorem 4.1] there is a bounded self-adjoint operator \(z \) on \(\mathcal{K} \) such that \(\ker z = \{0\} \), \(z\mathcal{K} \subseteq \mathcal{D} \) and \(\mathcal{M} \subseteq z\mathcal{B}_{\mathcal{K}} \). If \(x \in \mathcal{L}^+(\mathcal{D}) \), then \(zx \) is a closed operator defined on \(\mathcal{K} \) and hence bounded. Now fix an operator \(z \in \mathcal{L}^+(\mathcal{D}) \). Since \(\mathcal{F}(\mathcal{D}) \) is \(\tau_\mathcal{D} \)-dense in \(\mathcal{C}(\mathcal{D}) \), we obtain

\[
\rho_{\mathcal{M}}(\{x\}) \leq \inf_{c \in \mathcal{F}(\mathcal{D})} \rho_{\mathcal{M}}(x + c)
= \inf_{c \in \mathcal{F}(\mathcal{D})} \sup_{\varphi \in \mathcal{K}} |(x + c) \varphi| = \inf_{c \in \mathcal{F}(\mathcal{D})} \|z(x + c) z\|.
\]

Since \(\ker z = \{0\} \), we have \(\{cz : c \in \mathcal{F}(\mathcal{D})\} = \mathcal{F}(\mathcal{D}) \). Moreover, \(\{cz : c \in \mathcal{F}(\mathcal{D})\} \) is norm dense in \(\mathcal{F}(\mathcal{K}) \). Using these facts, we get

\[
\rho_{\mathcal{M}}(\{x\}) \leq \inf_{c \in \mathcal{F}(\mathcal{K})} \|zxz + cz\|
= \inf_{c \in \mathcal{F}(\mathcal{K})} \|zxz + c\| = \inf_{c \in \mathcal{F}(\mathcal{K})} \|zxz + c\|.
\]

On the other hand, let \(\omega_{\mathcal{H}} \) denote the \(* \)-representation of \(\mathcal{B}(\mathcal{K}) \) on \(\mathcal{K}_{\mathcal{U}} \) defined by

\[
\omega_{\mathcal{H}}(y) := (y \varphi_n) \quad \text{for } (\varphi_n) \in \mathcal{K}_{\mathcal{U}} \text{ and } y \in \mathcal{B}(\mathcal{K}).
\]

Since \(\omega_{\mathcal{H}} \) obviously annihilates \(\mathcal{C}(\mathcal{K}) \); \(\omega_{\mathcal{H}} \) defines a \(* \)-representation of the C*-algebra \(\mathcal{A}(\mathcal{K}) \) on \(\mathcal{K}_{\mathcal{U}} \) (see [11: Section 2]). Since \(\mathcal{U} \) is assumed to be free and \(\mathcal{A}(\mathcal{K}) \) is simple, this \(* \)-representation of the C*-algebra \(\mathcal{A}(\mathcal{K}) \) is faithful and hence isometric. Since \(zxz \in \mathcal{B}(\mathcal{K}) \), this yields

\[
\|\omega_{\mathcal{H}}(zxz)\| = \inf \|zxz + c\| : c \in \mathcal{C}(\mathcal{K}) \].
\]

By (3), we obtain

\[
\rho_{\mathcal{M}}(\{x\}) \leq \|\omega_{\mathcal{H}}(zxz)\| \quad \text{for all } x \in \mathcal{L}^+(\mathcal{D}).
\]

Now define

\[
\mathcal{R} := \omega_{\mathcal{H}}(z) \mathcal{K}_{\mathcal{U}} = \{(z \varphi_n) : (\varphi_n) \in \mathcal{K}_{\mathcal{U}} \text{ and } \|(\varphi_n)\|_{\mathcal{K}_{\mathcal{U}}} \leq 1\}.
\]

If \((\varphi_n) \in \mathcal{K}_{\mathcal{U}} \) and if \(x \in \mathcal{L}^+(\mathcal{D}) \), then \(zx \) is bounded on \(\mathcal{K} \) and thus

\[
\sup_{n \in \mathbb{N}} \|z \varphi_n\| \leq \|zx\| \sup_{n \in \mathbb{N}} \|\varphi_n\| < \infty.
\]
This implies $\mathcal{R} \subseteq D_{\mathcal{U}}$. From

$$\|\omega_{\mathcal{U}}(x)(z\varphi_n)\| = \|z\varphi_n\| = \lim_{n \to \infty} \|z\varphi_n\| = \|z\varphi\|$$

we see that \mathcal{R} is bounded in $D_{\mathcal{U}}[\mathcal{U}]$.

Finally, by (4), if $x \in L^+(\mathcal{D})$, then

$$\hat{p}_{\mathcal{U}}(i(x)) \leq \|\omega_{\mathcal{U}}(x)z\| = \sup_{\varphi, \psi \in \mathcal{K}} |\langle \omega_{\mathcal{U}}(x) \varphi, \omega_{\mathcal{U}}(x) \psi \rangle|$$

$$= \sup_{\varphi_n, \psi_n \in \mathcal{K}} |\langle z\varphi_n, \psi_n \rangle|$$

$$= \sup_{\varphi_n, \psi_n \in \mathcal{K}} |\langle \omega_{\mathcal{U}}(x)z\varphi_n, \psi_n \rangle| = p_{\mathcal{U}}(\omega_{\mathcal{U}}(x)),$$

which proves (1). The proof of Theorem 2.1 is complete.

2.3 From Theorem 2.1 and Lemma 1.4 we obtain

Theorem 2.2: Suppose that $\tau_n = \tau_\mathcal{U}$ on $L^+(\mathcal{D})$. Let \mathcal{U} be a free ultrafilter on \mathcal{N}. Then, $\pi_{\mathcal{U}}$ is a faithful $*$-representation of $A(\mathcal{D})$ and a homeomorphism of $A(\mathcal{D})[\mathcal{U}]$ onto $\pi_{\mathcal{U}}(A(\mathcal{D}))[\mathcal{U}]$.

1. In general the domain $D_{\mathcal{U}}$ is not dense in $\mathcal{K}_{\mathcal{U}}$. 2. If the domain is of the form $\mathcal{D} = \cap \{D(T): n \in \mathcal{N}\}$ for some self-adjoint operator T on \mathcal{K}, then $\tau_n = \tau_\mathcal{U}$ on $L^+(\mathcal{D})$ (see also Section 3).

3. Existence of continuous faithful $*$-representations of $A(\mathcal{D})[\mathcal{U}]$

3.1 We first recall the setup of [14: Section 4]. However, the notation is slightly changed.

Suppose a is a (bounded or unbounded) self-adjoint operator on the Hilbert space \mathcal{K} with spectral decomposition $a = \int \lambda \lambda \lambda d\lambda(a)$. Let $(f_k(t): k \in \mathcal{N})$ be a sequence of real measurable functions on the spectrum $\sigma(a)$ of a. All measure-theoretic notions refer to the spectral measure of a. We assume that

$$f_1(t) = 1 \text{ and } f_k(t) \leq f_{k+1}(t) \text{ a.e. on } \sigma(a) \text{ for } k \in \mathcal{N}. \quad \text{(1)}$$

Set $a_k = f_k(a)$ and $\mathcal{D} = \cap \{D(a_k): k \in \mathcal{N}\}$. Then, by (1), the operators a_k (more precisely, their restrictions to \mathcal{D}) are in $L^+(\mathcal{D})$ and the graph topology l on \mathcal{D} is generated by the seminorms $\|a_k, k \in \mathcal{N}$.

In our next theorem the following condition (\ast) plays an important role:

For each sequence $\gamma = (\gamma_k: k \in \mathcal{N})$ of positive numbers γ_k there is a $k = k_0 \in \mathcal{N}$ such that all functions f_n, $n \in \mathcal{N}$, are bounded on R_k, where

$$R_k := \{ t \in \sigma(a): f_1(t) \leq \gamma_1, \ldots, f_n(t) \leq \gamma_n \} \text{ for } n \in \mathcal{N}.$$

The following assertions are equivalent:

(i) Condition (\ast) is fulfilled.

(ii) $\tau_0 = \tau_\mathcal{D}$ on $L^+(\mathcal{D})$.

(iii) $\tau_n = \tau_\mathcal{D}$ on $L^+(\mathcal{D})$.

(iv) Each positive linear functional on $L^+(\mathcal{D})$ is $\tau_\mathcal{D}$-continuous.
This is essentially [14: Theorem 4.1]. The equivalence of (i), (ii) and (iv) has been stated therein. Since $r_n \geq r_n \geq r_n$, (ii) \implies (iii). Since each positive linear functional is r_n-continuous, we have (iii) \implies (iv).

3.2 The following theorem may be considered as a supplement to [14: Theorem 4.1]. Among other things it shows that if $r_n \equiv r_n$, then there is no continuous faithful $*$-representation of $A(D)$ [1]. In particular, the $*$-representations π_γ occurring in Theorem 2.1 are not continuous.

Theorem 3.1: Let D be as above. Then (i) is equivalent to each of the following conditions:

(v) There exists a faithful $*$-representation π of $A(D)$ which is a homeomorphism of $A(D)$ [\ref{1}] onto $\pi(A(D)) [\tau_D, n]$.

(v) There exists a continuous faithful $*$-representation of $A(D)$ [\ref{1}].

(vi) Each positive $*$-representation of $L^+(D) [\tau_D]$ is continuous.

(vi)' Each weakly continuous positive $*$-representation of $L^+(D) [\tau_D]$ is continuous.

Proof: Theorem 2.2 shows that (iii) \implies (v). (iii) \implies (vi) follows from Lemma 1.3. Since (v) \Rightarrow (v)' and (vi) \Rightarrow (vi)' are trivially fulfilled, it suffices to prove that (v)' \Rightarrow (i) and (vi)' \Rightarrow (i). Both proofs will be indirect (see e.g. the argument in [14: p. 366]).

(v)' \Rightarrow (i): Suppose that π is a continuous faithful $*$-representation of $A(D)$ [\ref{1}]. Then, $\varrho(x) := \pi(\{x\})$, $x \in L^+(D)$, defines a continuous $*$-representation of $L^+(D) [\tau_D]$. To prove (i), we assume the contrary, that is, condition (*) is not satisfied. Then there are a positive sequence $\gamma = (\gamma_k)$ and a sequence (i_k) of natural numbers such that f_{i_k} is not essentially bounded on the set $\mathcal{S}_{k,n}$ for each $k \in N$. There is no loss of generality if we assume that $\gamma_{k+1} > \gamma_k \geq k$ and $i_k = k$ for all $k \in N$. Then there are measurable subsets $\mathcal{S}_{k,n}, n \in N$, of \mathcal{S}_k of non-zero measure such that $f_{i+1}(t) \equiv \gamma_n$ a.e. on $\mathcal{S}_{k,n}$ for all $k, n \in N$. Let $\varphi_{k,n}$ be a unit vector from $e(\mathcal{S}_{k,n}, D)$.

Let A denote the family of all sequences $\delta = (\delta_k)$ of natural numbers δ_k satisfying $\delta_k \leq i + 2$ for $k \in N$. Fix a $\delta \in A$. We first show that for $r \in N$ and $\varphi \in D(\varphi)$

$$\|\varrho(a_r) \varphi \left(\bigcup_{k \geq r+1} \mathcal{S}_{k,n} \right) \varphi \| \leq r \|\varphi\| \quad (2)$$

and

$$\|\varrho(a_r+1) \varphi (e(\mathcal{S}_{r,n}, A)) \varphi \| \geq r_n \|\varrho(e(\mathcal{S}_{r,n}, A)) \varphi\|. \quad (3)$$

For let χ denote the characteristic function of the set $\bigcup \{ \mathcal{S}_{k,n}, k \geq r+1 \}$. By construction, $f_t(t) \chi(t) \leq r_\gamma$ a.e. on $\sigma(a)$. Define a function g on $\sigma(a)$ by $g := (r_\gamma^2 - f_t^2 \chi)^{1/2}$. Obviously, $g(a) \in L^+(D)$. For $\varphi \in D(\varphi)$, $\langle \varrho(g(a))^2 \varphi, \varphi \rangle = \|\varrho(g(a)) \varphi\|^2 \geq 0$ and hence

$$\|\varphi\|^2 \gamma_n^2 = \langle \varrho(r_\gamma^2 I) \varphi, \varphi \rangle \geq \langle \varrho(f_t^2 \chi(a)) \varphi, \varphi \rangle = \|\varrho(a_r) \left(\bigcup_{k \geq r+1} \mathcal{S}_{k,n} \right) \varphi\|^2.$$

(2) follows by the same argument.

Let q_δ be the orthogonal projection onto the closure of $D_\delta := 1.h. \{ \varphi_{k,n} : k \in N \}$. Next we prove that $q_\delta D \subseteq D$. For let $r \in N$. Each $\varphi \in D_\delta$ can be written as a finite sum

$$\sum_{k=1}^s \lambda_k \varphi_{k,n} \varphi_{k,n}, \quad \lambda_1, \ldots, \lambda_s \in C \text{ and } s \in N, s \geq r.$$

Suppose, $k, n \in N, n > k$. Since $f_{i+1}(t) \equiv \gamma_n \geq \gamma_{k+2} > \gamma_{k+1}$ a.e. on $\mathcal{S}_{k,n}$ and $f_{i+1}(t) \leq \gamma_{k+1}$ on $\mathcal{S}_{n,n}$, it follows that $\mathcal{S}_{k,n} \cap \mathcal{S}_{n,n}$ has measure zero. Therefore, $\varphi_{k,n}$
Using the latter, we obtain
\[
\|a_r \varphi\|^2 = \sum_{k=1}^{r} |\lambda_k|^2 |a_r \varphi_{k, \delta_k}|^2 + \sum_{k=r+1}^{s} |\lambda_k|^2 |a_r \varphi_{k, \delta_k}|^2
\]
\[
\leq \max (\|a_r \varphi_{1, \delta_1}\|^2, \ldots, \|a_r \varphi_{r, \delta_r}\|^2, \gamma_r) \sum_{k=1}^{s} |\lambda_k|^2 = \max (\ldots) \| \varphi \|^2.
\]

This implies \(q_\delta \mathcal{H} \subseteq \mathcal{D}(a_r) \). Since \(\mathcal{D} = \cap \{ \mathcal{D}(a_r) : r \in \mathbb{N} \} \) by definition, this shows that \(q_\delta \mathcal{H} \subseteq \mathcal{D} \).

We define \(\mathcal{M} := \bigcup \{ q(\varphi) : \delta \in \Delta \} \), where \(\mathcal{B} := \mathcal{B}_{2(\varphi)} := \{ \varphi \in \mathcal{D}(\varphi) : \| \varphi \| \leq 1 \} \).

We prove that \(\mathcal{M} \) is bounded in \(\mathcal{D}(\varphi) \) [\(\ell_\varphi \)]. For take \(r \in \mathbb{N} \) and \(\delta \in \Delta \). Let \(c_{r, \delta} \) denote the orthogonal projection on \(\mathcal{H}^* \) with range \(\varphi_{1, \delta}, \ldots, \varphi_{r, \delta} \). Since obviously \(a_r c_{r, \delta} \in \mathcal{C}(\mathcal{D}) \), we have \(a_r c_{r, \delta} \in \text{ker } q_\delta \).

From
\[
q_\delta - c_{r, \delta} = e \left(\bigcup_{k \geq r+1} \mathcal{S}_{k, \delta_k} \right) (q_\delta - e_{r, \delta})
\]
and (2) we therefore obtain
\[
\| \varphi(a_r) q(\varphi) \| = \| \varphi(a_r) q(\varphi) - c_{r, \delta} \varphi \|
\]
\[
= \| \varphi(a_r) \left(e \left(\bigcup_{k \geq r+1} \mathcal{S}_{k, \delta_k} \right) \right) (q_\delta - c_{r, \delta}) \varphi \|
\]
\[
\leq \gamma_r \| q(\varphi) - c_{r, \delta} \varphi \| \leq \gamma_r \text{ for each } \varphi \in \mathcal{B}.
\]

By Lemma 1.4 (iii) the graph topology \(t_\varphi \) on \(\mathcal{D}(\varphi) \) is generated by the seminorms \(\| \cdot \|_{\varphi(a_r)} \), \(r \in \mathbb{N} \). Therefore, the preceding proof shows that \(\mathcal{M} \) is bounded with respect to the graph topology \(t_\varphi \).

Since the \(* \)-representation \(\varphi \) of \(\mathcal{L}^+(\mathcal{D})[\tau_\varphi] \) is continuous, there exists a bounded subset \(\mathcal{M} \) of \(\mathcal{D}(\mathcal{I}) \) such that
\[
\mathcal{P}(\varphi(x)) \leq \mathcal{P}(\mathcal{M}) \text{ for all } x \in \mathcal{L}^+(\mathcal{D}). \tag{4}
\]

Since \(\mathcal{M} \) is \(l \)-bounded, \(C_r := \sup \{ \| \varphi(a_r) \| : \varphi \in \mathcal{M} \} < \infty \) for each \(r \in \mathbb{N} \). We choose natural numbers \(\delta_k \) such that \(\delta_k \geq k + 2 \) and \(\gamma_{\delta_k} \geq C_{k+1} 2^k \) for \(k \in \mathbb{N} \). This is possible because \(\gamma_n \geq n \) for \(n \in \mathbb{N} \). Define an operator \(x \) by \(x := e(\bigcup_{k \geq r+1} \mathcal{S}_{k, \delta_k}) \). Clearly, \(x \in \mathcal{L}^+(\mathcal{D}) \). Our aim is to show that for this operator \(x \) (4) is not true. By (3), we have
\[
\gamma_r \| \varphi(e(\mathcal{S}_{r, \delta_r})) \| \leq \| \varphi(a_{r+1}) (e(\mathcal{S}_{r+1, \delta_{r+1}})) \| \leq C_{r+1} \| \varphi(\mathcal{S}_{r, \delta_r}) \| \leq C_{r+1} \gamma_{\delta_r}^{-1} \text{ for } r \in \mathbb{N} \text{ and } \varphi \in \mathcal{M}.
\]

That is,
\[
\sup_{\varphi \in \mathcal{M}} \| \varphi(e(\mathcal{S}_{r, \delta_r})) \| \leq C_{r+1} \gamma_{\delta_r}^{-1} \text{ for } r \in \mathbb{N}.
\]

Using this inequality, we obtain
\[
\mathcal{P}(\mathcal{M}) = \sup_{\varphi \in \mathcal{M}} \| \varphi(e(\bigcup_k \mathcal{S}_{k, \delta_k})) \| \leq \sup_{\varphi \in \mathcal{M}} \sum_{k=1}^{\infty} \| \varphi(e(\mathcal{S}_{k, \delta_k})) \| \leq \sum_{k=1}^{\infty} C_{k+1} 2^k \leq \sum_{k=1}^{\infty} 2^{-2k} < 1. \tag{5}
\]

Since \(a_r q_\delta \) is \(a \)-bounded operator on \(\mathcal{H} \) for \(r \in \mathbb{N} \) as shown above, the sequence \((q_\delta \varphi_{k, \delta_k} : k \in \mathbb{N}) \) is bounded in \(\mathcal{D}(\mathcal{I}) \). But the set \(\{ q_\delta \varphi_{k, \delta_k} \} = \{ \varphi_{k, \delta_k} \} \) is certainly not relatively compact-in \(\mathcal{D}(\mathcal{I}) \), since \((\varphi_{k, \delta_k}) \) is an orthonormal sequence in \(\mathcal{H} \). This proves that
Comparing (5) and (6) with (4), we obtain the desired contradiction.

(vi) → (i): This will be similar as the preceding proof. Again we assume that condition (⋆) is not fulfilled. We keep the notation introduced above. Let \(\mathcal{U} \) be an arbitrary free ultrafilter on \(\mathbb{N} \). As already mentioned in Section 2, \(\varphi_\mathcal{U} \) is a positive *-representation of \(\mathcal{L}^+(\mathcal{D}) \). It suffices to show that \(\varphi_\mathcal{U} \) is weakly continuous, but not continuous. Let \(\varphi = (\varphi_n) \in \mathcal{D}_\mathcal{U} \). By definition of \(\mathcal{D}_\mathcal{U} \), the set \(\mathcal{M} := \{\varphi_n\} \) is bounded in \(\mathcal{D}_\mathcal{U} \): If \(x \in \mathcal{L}^+(\mathcal{D}) \), then

\[
|x(\varphi_\mathcal{U}(x) \varphi, \varphi)| = \lim_{n \in \mathbb{N}} |x(\varphi_n, \varphi_n)| \leq \sup_{n \in \mathbb{N}} |x(\varphi_n, \varphi_n)| \leq p_M(x).
\]

That is, \(\varphi_\mathcal{U} \) is weakly continuous. From Theorem 2.1 we know that \(\ker \varphi_\mathcal{U} = \mathcal{C}(\mathcal{D}) \). Therefore, the preceding proof in the case \(\varphi = \varphi_\mathcal{U} \) shows that \(\varphi_\mathcal{U} \) is not \(\tau_\mathcal{D} \)-continuous.

Results similar to those proved in this paper are true for the topologies \(\tau(\mathcal{D}) \) and \(\tau^0 \) (see also [14]).

Addendum: After completing the manuscript the author has learned that in the case \(\mathcal{D} = n [\mathcal{D}(\mathbb{F}^n) : n \in \mathbb{N}], \) \(T \), a self-adjoint operator, the existence of a topological realization of \(\mathcal{A}(\mathcal{D}) \) [1] has been independently obtained by F. LÖFFLER and W. TIMMERMANN in “The Calkin representation for a certain class of algebras of unbounded operators”, Dubna-Preprint E 5-84-807, 1984.

REFERENCES

Manuskripteingang: 16. 01. 1985

VERFASSER:

Prof. Dr. Konrad Schmüdgen
Sektion Mathematik der Karl-Marx-Universität
DDR-7010 Leipzig, Karl-Marx-Platz