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Non-Negative Trigonometric Polynomials with Constraints	 - 

ST. RUSCHEWEYa 

Eswerden Extremalprobleme Mr nicht-negative trigonometrische Polynome mit vorgegebenei 
Nulistellen behandelt In Anwendung des ailgetneinen Satzes wird als Verscharfung eines Er-
gebnisses von Fejr das Wachstum eines soichen Polynoms in der Nähe einer Nullstel!e disku-
tjert. °Eine weitere Anwendung betrifft das Koeffizientenproblem für typisch reelle (algebra-
ische) Polynome.	 -	 -	 - 

PacctaTpIIBaIoTcH DHGTpe ,.iajibuwe 3aaq u 11J19 HOTII[T8MbL1h1X TpIiI'OnOMeTpMiecIilIx 
MFIoroqsIeI(oB, o6ia)aiouux 3JIIIIbIMH IlyMHin. [IpusleHeHiteM oGwefl TeopeMbl paGoTIJ 
noiylaeTCH yciulenue peay;IbTaTa (Deilepa o pocre raHoro MJIorOI;IeHa B OHCTHOCTH IlyJifi. 
J pyroe npiisieiieiiue lacaeTca oeiiiut I. oa411[neF1ToB n cJ1yiae Tnnhr'IHo BeIlLecTIseHHbIx 
(a.nue6paii'ieciitx) eiiorojieiion.	 - 

- We discuss extremal problems for non-negative trigonometric polynomials with prescribed 
zeros. The general result is used to'refine a former theorem of Fejér concerning upper bounds - 
of those polynomials near to a zero. Another application deals with the coefficient problem for 
typically real (algebraic) polynomials..  

1. Introduction 

A real trigonometric polynoniial t of degree n is non-negative if and only if it has a 
representation 

1(0) = Re p(e'°) 
where	 I	 . 

p(z) =Epkzk with PoE IR,	Rep(z)	0,	IzI	1. 

Let k denote the class of such polynomials p and Jet M = IR xC. With every 
p-E Jt, we assign the coefficient vector p = (Po, ..-.,) € M. Let e € M. In the 
present note we are interested in estimates for linear functionals like Re c p for p 
in 5qa or suitable subsets of A, It is known since lone that such problems for the 
whole of .fl 5 are closely related to the eigenvalUes of the Toeplitzniatrix 

/coc1.....cn	 - 

C:= ( .1o. .	
. Cni 

/	 .co . 

The following , elegant theorem is due to Szisz [7] and has found numerous appli-
cations.
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Theorem A: Let 9 rn1n, 2m6x denote the smallest and the greatest elgenvalve of C. Then 
'for p E 71,, we have., 

(0) A min	Rec . p _^p(0)Amax	 (1)
and these bounds are best possible for every c E M,,. 

Thus the estimation of those linear functionals is reduced to the solution of alge-
braic equations. We'shall deduce similar results for p € Jl which have zeros of Rep 
at given points on !zI = 1. In terms of th e 	non-negative trigonometric 

• polynomials this means that we prescribe certin zeros. A first application of our 
general result is a refinement of an estimate of L. FEJER [1] dealing with the maxi-
mum of a non-negative trigonometric polynomial with constant term 1. , This in.turn 
can be used to improve a root-finding algorithm for complex polynomials which 
was recently established [5]. Our theorem applies also to the estimation of linear 

• functionals of typically real, polynomials. As an example we solve the coefficient 
problem fOr the third coefficient of such polynomials. Partial results for this problem 
have recently been obtained by StJFFRIDQE [6]. We also give a table of the numerical 
values Of the hounds for the coefficients of all typically real polynornials'with degree 
^ 10.	•'	 S 

2. The main result  

Let n  N be fixed. Let (9—. {z 1 , ..., ;}, s ;5 n,where' z1 E C are disjoint with 
z,I = 1. By A.((9) we denote the set of polynomials p'€ i n with Rep(z,) = 0, 

z1 € 0. A vector d E M is called a positive multiplier for fl,,(0) if Re d . p > 0 
holds in .7I,,(0) except for p = 0. With 0 we assign the matrix 

*ZI... ;0 

S	 D9 := ( 
1i

/ 

0 is tle null matrix. With 'C € M, 0 as above we assign' the hermitian matrix 

C Do 

(De l 0

	

•	: 

Theorem 1: Let c, d e M,,, d a positive multiplier for 71,,(0). Let; min, 2mx be the 
smallest and the greatest solution ,of the equation.

 

det (T(e — Ad, 0)) = 0.	 •.	 (2)

Them for p € J1,,((9), p * 0, we have  

41	. 	),ma x	 ,	 •	
(3)

These bounds are best possible for any admissible choice of e, d, 0.' 

Remarks: 1. The extremal polynomials for (3) can be obtained via the solution 
of a linear equation system involving 2mIfl, ) max, respectively. 2. The case 0 = 0, 
d = e := (1, 0,..., 0)1 of Theorem 1 is Theorem A. 3. It is not difficult to see that 
911 solutions of (2) are real (this was observed by Dr. R. FREUD).
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Theorem 1 itself supplies a necessary and sufficient criterion for d E M to be a 
positive multiplier for J18(0). 

Co.iollary 1: 4 € M ia positive multiplier for 7(0) if and only 1/ all solutions 
of det (T(d - Ae, El)) = 0 are positive. 

Proof of Theorem 1: Itfollows from Fejér's theorem [1] that p € fl if and 
fl\	 - 

only if there exists a; polynomial (z) = Z qzL such' that q(eiO)2 = Rep(e°), 
k=O 

o € JR. Furthermore, p .€ fl(El) if and only if the corresponding q has zeros at 
z, E El. Now let '-x = (q0, ..., ,, Pi, .'.., 1u3)t be arbitrary in C+8+1 and choose 
it> 2max With the subv,ector (q0, ..., q)t we construct a polynonuial'q and' then the 
corresponding p € R,. The following relation is easily verified:' 

F(x) = x 1 . T(c — Ad, El) .	Re [(e — Ad) p + 2X /21g(zj)]. 

Hence F is the Lagrange multiplier function for the extremization of 

Re (c — Ad) . p	 '	'	'	-	(4) 

in Jl(El). Since the z, are disjoint the manifold descrihd by the constraints has 
maximal rank. Hence for an extremum we'must have 

VF, =T(cL-2d,O).=0.	 '	'	 (5) 

But A > Amax implies that (4) has only the trivial solution and in this case (5) is 
zero for the extremuni. Therefore (4) has constant sign on çfl(El). But for A large and 
non-trivial p E7l(0) this sign is obviously —1. which, by. continuity, implies 

Rec.p 
Red•p=''	p€Jln (El),'p*O,	A>itmax. 

If A Amax (5) has a non-trivial solution which is,also non-trivial in the first n + 1 
components q0, ..., qn, which produce a non-trivial p € fl(El). Clearly (4) vanishes 
for that' p which proves the sharpness of the upper bound Amax. The other estimate 
follows similarly I  

3. The range oItrigoiionietric polynomials 

Let I be a non-negative trigonometric polynomial of degree n with constant term 1. 
FEAR [1] proved  

1(0) :^, n -+ 1,	0 € IR,	,	 '	.	, (6)
with equality (at-0 = 0)-only for 

sin	

\+2	. 

1	 2 t(0) =	+	(	 .	',	' \ sin --0  

The following theorem is a refinement of (6).
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Theorem  2: Let t be a non-negative trigonometric polynomial of degree n with 
constant term 1 and t(0) = 0. Then 

t(0) + 1(0)	n + 1,.	0 E R.	 (7)

For each 0 0 E JR there exists an admissible t such that equality holds in (7)/or 0 = 00. 

Proof: Let 0 be fixed, z = e. Our problem to to maximize 1(0) is obviously equi-
valent to the following extremal problem: 

niax,	p 	fl((z}),	pO.	 - 

In view of Theorem 1 the solution to the latter problem S 2max, the greatest solution 
of Act (T(d - ).e, {z})) = 0, where d = (J, 1, ..., l)t € Mn - Denote this determinant' 
by D(2) (it has n + 2 rows). We perform the following operations to evaluate D(2) 
(assupiing 2 > 0).: 

1. Subtract the first row fronithe other rows except for the last one; 
2. Add the first , column multiplied by 1/2 to the last one; 
3. Add all columns except for the first and the last one to the first column; 
4. Expand with respect to the first column (only the first and the last element is 

non-zero). 
The remaining two determinants (with n + 1 rows each) are easily evaluated and 
we finally obtain	- 

D(2) = (-2)+ [(n ± 1 - 2) (n ± I)'- E 

Solving D(2) = 0,2	0, yields 2 = n + 1 - t0 (0) which gives (7)..Our claim about
equality is a consequence of the sharpness of Theorem I I 

As a consequence of Theorem 2 we get 

Corollary 2: Let p(z) = 1 +Ebkzk be a polynomial with Iv(z) -	I in

Izi s- 1. Then. for 0 :s^ 2 !s^- 1 there exists an are Ton zi = 1 of lenqth 

L(T)	1	l/241 - 2) 
.n+ 1 V n+1

(8) 

such that

p(z)1 2 f ibk I,	z.€ F. 

In [5] we proved Corollary 2 with the bound 

L(T)  
•V n+l 

instead of (8). Hence (8)is better by a factor of aboit V3. This can be used to reduce 
the number of search points in the global descent method for solving polynomial 
equations described in [5] by about 40%. 

Proof of Corollary 2: Lets = min Jp(eiO). By the minimum principle we hav e 
s	1'and we inay assume s < l.,Furthermore, we can assume (')I = s. The tn-
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gononietric polynomial 

1(0) =, (Ip(ebo )1 2 - 8 2)/(v2 - 2)	where v2 = 1	! bkl 2;	 -

satisfies the assumptions of Theorem 2 and hence 
p(e iO )1 2 < 2 + (v2 - 82) (n + 1 - t(0)). 

It is known [5: Th. 3] that v2	2 - 52 and'a simple calculation shows that Ip(e°)12 
< 1 -2(v2 - 1) holds for all 0 with.1(0) ^ + + . Now, for, 0 ;S

/6(1-2)	 2	 n1 

'X	771 =:00wehave 

1. n+i \2	 /n+1	1 fn+'l \32 

	

___	

2 Oo)	

1( 
2	 2 

n 
	.00) 

\
sin	00 /	.

2 

00 

2.

	

+	
4(n + 1))	

n +	2: 

Hence the are F = {e' 0 : 01	01 has the desired property I 
4. Application to typically real polynomials 

If the vectors c, d have real components and.if 0 E 0 implies 2v - 0€ 0 one easily 
deduces that the bounds in (3) are attained for polynomials p €8l(0) with real 
coefficients. Let flr(0) denote the subset of polynomials fl(0) with real coefficents. 
We have the following corollary to Theorem1. 0 

Corollary 3: Let c, d € IR', d a positive mult iplier /or7I r(0). Then for ),in, .2max 
as in Theorem 1 we have	 - 

4m	 X. I	p € 7'(0),	p	0. 

These bounds are best possible. 

A polynomial s(z) = E skzk is said to be Iypica'lly real if S = (s i , ..., s).E lR'3; 
0	

k=1 
and Ins(z) Tin z	0 in zj	1. Let S, denote the set of those polynomials. It is
well-known that s E S if and only if  

p(z) = (1 - 'z2 ) ±f € fl 1 ({-1 1 i}).	
0	

+	 (9) 

Let c = (c 1 , ..., c)t € 1R', c- = (co+, ..., c_1 , 0, 0)"E R'	where 
[n_i_i]	. 

=	
2 = 0, 1,  

TI s, p are related by (9) we find C S =. C'- p. Hence f roin Corollary 3 we get
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Theorem 3: Let c, d E IR', d a positive multiplier for '-S,,. Let A,,,, 2max be the 
'smallest and the greatest solution of 

det (T(c' — 2d', {— 1, 1})) = 0.	 (10) 

Then we have 

-	Arnie	 ^ A,ax,	S E 5,,,	S	0. 

These bounds are sharp. 

We note that in case of "odd" multipliers c, d, i.e. if the components with even 
index are zero, w&can replace (10) by the simpler equation 

det (T(c" — Ad", {1})) = 0	 (11) 

.where e" (c1 ', c3', ...; 0) E JR, d" = (d 1 ', d3', ...; 0) € lRm with m= [(n. ± 3)/2]. 
Note that the determinant in (11) has only m ± 1 rows instead of n ± 4 in (10). 
This-simplification is due to the fact that in this case we only need to consider odd 

• polynomials s € S,, which are in one-to-one correspondence, with the polynomials 
p E Jl,_1 ({1})and we hae.e . 5 = e" . P. We omit the details 

- 5. The coefficient problem for typically real polynomials 

Let 5,,N denote the set of normalized typically real polynomials 
-	

s(z) = z ±Eszk 

The coefficient problem for 5N is the determinant of the best constants Ak(n), Bk(n) 
such that for k€{2,1..,n} 

—Bk(n)	8k	Ak(n),	's E 5,, N	 I 

This problem has been' studied' several times.( - see, for instance, ROYSTR and 
SUFFRIDOE [4], SUFFItIDGE [6]). For arbitrary n it is solved in the cases k = 2, 
n - 1, n. Also A 3 (n) is known and B3 (n)in the cases 4 In — 1,41 n — 2. Specializing 
Theorem 3 we obtain 

Thoreni 4: A(n), —Bk(n) are the greatest and the smallest solution;. o/ the equation 

det (T(c	Ac, (-1, 1)), = 0,	Ic even, 	2 
'dcl (T(d — 2, {1})) = 0,	Ic odd.	 ,	

(1 

Here c=(co,...,c,,+1)t with c,-=1 for j=1,3,...,k-1 and c,=O otherwise; 
d=(do,...,dm)tflithm[(n+1)I2]a'nddj'z l for 'j0,1,...,(k-1)/2,d,=0 
otherwise. 

This result gives a means to calculate Ak(n), Bk(n) at least numerically. This has been done 
for a 10 and the results — rounded to 6 decimal places — are given in Table 1. It may be 
possible, however, to simplify (12) considerably and to obtain a theoretically satisfying solution 
to the coefficient problem. In the sequel we do so for k = 3 thereby completing the solution 
of the third-coefficient-problem for typically real polynomials.
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Table 1	
0	 . 

n A 2(n) A3(n) 44(n) A5(n) A6(n) A7(n) A8(n) A9(n) A10(n). 

10 1.768177 2.246980 2.331017 2.246980 1.889229 1.618034 1.29172'ë 1.000000 .833333 
9 1 1.732051 2.246980 2.135779 2.246980 1.618034 1.618034 1.000000 1.000000 .500000 2 
8 1.677 193 2.000000 1.878 133 1.618034 1.266451 1.000000 .800000 .333333 1.000000 3 7 1.618034 2.000000 1.618034 1.618034 1.000000 1.000000 .666667 .333333 1.215250 4 
6 1.520315 1.618034 1.240597 1.000000 .750000 .500000 1.000000 .618034 1.414214 Q o 1.414214 1.618034 1.000000 1.000000 .750000 .500000 1.240597 .618034 1.520315 6 4 1'.215250 1.000000 .666667 .600000 1.000000 0.618034 1.618034 .716515 L618034 7 
3 1.000000 1.000000 .800000 .600000 1.266451 .618034 1.878133 .716515 1.677 193 8 2 .500000 .666667 1.000000 .618034 1.618034 .801938 2.135779 .801938 1.732051 9 

.833333 .666667 1.291726 .618034 1.889229 .801938 2.331017 .801938 1.768177 10 
B 0(m) B9 (-)' B8 (m) B7(m) B6(m) B5(m) B4(in) B3 (n) B0(m) rn

	

Theorei'5: Let  € N, m	
[n 1]. 

Then wehae	0	

0	

0 

A 3(ñ)= 1 +2cos 
2	

B3(n)= -1 _2cosmyr, modd. 

1/ m is even, B3(n) is the largest rot'),	1 of the equation '+2 (i/-- (1 - 2)) = 0.	
0 

Tk , Uk denote the Chebychev polynomials of the first and second kind, respec-
tively. For the proof we need a lemma	 0	

0 

Lemma: Let	 .	 0	

0 

	

-2	1	0	0	.	00	.1 

	

1-2	1'	0	.. 0	1 

	

0	1-21.	0	1	 .'	 0 

• Em(2) =	 0 

	

0.0	01	.-2	1	
•	 0 

0	

1	1	1.	1	.	1	0 (m+2)	 0 0 

Then we have	 0 • 

(-1) +	U. I 
(V (f+ 2)).	

0	

0	

(13). 

Proof: We expand Em(2) vitli respect to the first column. One of the three result-
ing determinants is Em_ i (A). After expanding the remaining two determinants with 
respect to *the first row we arrive at	-	

0 

- Em_ 2 (2) - 2(_1)m Qrn(2)	1?m(2)	 (14) 
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where
-	i—A	10.0	0 

o 1  .0 0 
Qrn(') = ............... 

0	
.... 

0	0 0 .1-2 
1	1.11	.1	1(m) 

and	.	. 
—À

	

1,	0 1	 0 

	

1—A	1.0.0 
Rrn(1.) ..........	. ........ .

0	

...... ... I 

0	0	.	1	A(rn). 

Expansion of Qm(A) with respect to the first column yields Qrn(A) = Qrn_ i (2) ± (	)-
X R,,_1 ().) which, by induction,'leads to 

rn—i 
Qrn(2) = Z(-1)Rk2).	 .	 (15) 

k=O 

It is known [3: p..528) that ' J?k(A) (—x) = 11 - Ax ± x2 ) and together with 
(15) we obtaii .' Qm(A) Xm = x/(1 - x) (1 - Ax + x2). Multiplying (14) by xm and 
summing with respect to m gives

x—l.	1	 1—x2 
'2"'—	 -- - rn's / x - (1 + x) (1 + Ax + x2 ) 2 - x aA (1 + x)? (1 + Ax ± x2) 

— FEAR [2] has shown that 

(1 + x) 2 (l+).x + x2) =mo(_1)tm Urn2 (/ (A ± 2)) 

which completes the proof of the lemma I 

A simple discussion of the representation (13) shows that the largest root of 

	

2
i	

m+1 
= 0 is 2 cos	'r. If m s odd, the sjiiallest root is 2 cos	v while for 

-	m+2	 m+2______ 

even m the smallest root coincides with the smallest root> —2 of U	(A + 2)). 

The proof of Theorem 5 follows now from Theorem 4 since 

Ern(A	1) ± dët( T(d - Ac, {i})) with d = (1; 1, 0, ..., 0)' E 1Rm1 

and from th'3 relation m + 2) U 1\=,To I 
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