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Bergman-Vekua Operators 4 

and "Generalied Axially Symmetric Potential Theory" 

Die verailgerneinerten komplexen Integraloperitren von S. Bergman und I. N. Vekua ergeben 
cine einheitliche Methode zur Konstruktion der Losungen verséhiedenartiger linearér partieller 
Differentialgleichungen mit drei unabhangigen Verändcrlichen. Diese Operatoren verknupfcn 
holomorphe Funktionen zweier komplexer Veränderlicher und die LOsungen der genanziten 
G)eichungen. Hier spezialisieren wir die komplexen Entegraloperatoren Mr den dreidimensio-
nalen Fall auf cine iAnvendung bci amer ipeziellen Gleichung axialsymmetrischcr Probleme 
(d. h. instationärer axialsymmetrischer Problemc in der Ebene oder stationärer axialsymme-
trischer Probleme im Raum). Weiter warden die Beziehungen zwischen der ,,Vera llgemeinerten 
Axialsymmctrischcn Potentialtheorie" von A.. Weinstein u. a. und den 'Bergman-Vekua-
Operatorenangegeben und bei der expliziten Lösungsdarstellung benutzt. 

06o6[1enuaIe xoMELneI-cuHe onepaTophi .Bepu!aHa H Bexya npejcTa13JI}uoT coüofi egmiwft 
anriapaTJIfl nocpoeiinsi peweillifi pa3nix miueflsiaix JunjRjepenuHaiIIHaIx ypaoHeHlln B 
'IacTnux npoHaBoHalx C TMR IIeaaBnduMbIMH flepCMCIIIILIMU. BTH onepaTopal cBflablBaIoT 
I'0J10M0pHMe (PyLlicuhtM C ABYINIH HoMEIJIeKcHbIM11 nepeMeHilalMu it pewenuri 3THX ypaBIIeHIt. 
3eca cneIlnaJIH3iaponaH MTOJ icoMnJle4fcHElx itnerpaiiiux oiiepaopon TpexMepuoro 
cJIy'Iaa jiui upuenennn K cneuaaJlbHoMy ypaneiinio ocecIIMMeTpll'IHbIx npoüJleM (iianp. 
I(ecTaIHoHapIi11x oceduMMeTpn'L}laI)C npo61ee Ha HJIOCKOCTH I114 cTaLHoL1apILh1x oce 
CIIMMeTpUMIIUx npo6.rieM B rlpocTpallcTne). Laiiee noKa3anbl cooTnoweHils sieiy ,,06o6-
aeHHofl Teoplleii oceclIMMeTpu1Hwx noTe,Ii,ulajloB" A. BelIII1lTeftHa it ip. u onepaTopaaiu 
beprMaHa it BeRya it iIcnoJIbaoBaHbl B HBIIofl KoHcTpyFLun peweHilü. 

The generalized complex integral operators of Bergman-Vekua type give .a uniform approach 
to construct solutions to various linear partial differential equations with three independent 
variables. The operators associate holomorphic functions of two complex variables and the 
solutions of the mentioned equations. Here we specify the complex , integral operators for the 
three-dimensional case for application to a special equation for axisym metric, problems (i.e. 
instationary axisymmetric problems in the plane or stationary axisymmetric problems in the*- 
space). Furthermore, the relations bctwcei the "Generalized Axially Symmetric Potential 
Theory", due to A. Weinstein et al., and the Bergman . Vekua operators are given and used in 
the explicit representation of the solutions. 

1. Introduction	 .	 . 

The Laplace potential equation in an x,y-space reads for a function u depending 
only on the 'radial distance r = j/x2 + y 2 and on-the' variable 

a2	ia	92	 - 
ar2 U - rar	aT2 

The theory of generalized axially symmetric potentials is concerned with equations 
of the type	. 

a2	 .	a2

- 
10*
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with a constant c. Here we consider tie equation 

S is an arbitrary linear operator not depending on r (this means, an operator which 
depends only on t), and '-1/2 is a constant. Let 0 r R (R constant) and 
r E T with'a simply connected domain 'J'(if is complex) or an interval T (if v is 
real). Thus, we have an equation (1) describing problems with axial symmetry in. 
an x,y,r-space or instationary processes with radial symmetry in an x,y-plane. 

We use 'a version of the complex integral operators due to I. N. Vekua and 
S. Bergnan to construct (real ors'coniplex) solutions to (1). (If r is real and S[u] is 
real-valued, the real, part of . a solution to (1) is a solution to (1), too.)	- 

2. Construction of the solution 

First we give an operator which transfortñs functions / J( t) into solutions of the 
equation (1), and e' prove the existence of this operator. To 'do this we consider 
the equation . (1) with	—1/2 (everywhere in this section). (If 2 < —1/2, w,e 
rdplac'e ). by —2	1 > —1/2, this means, 2% + 1 by —22 —1, and wefind equa-



tion (5), see below.)  

•	Definition 1 (Transform): Let	.	. 

P2 [f(r)] (r, t) = 221'() ± 1) {(r I)_ 2 Ji(r Vs)} [1(t)]
 00Pt)-f- t1 )	r 2n 

n! I'(n±	1) (T) 8[f(t)}.	'	(2) 

i)efinition 2 (Associated functions): / = /(i) is an associated function (of the 
equation (1)) if all S'[/(r)} n = 0, 1, 2, ..., exi ,t and if constants N > 0, C > 0 
exist with  

Sv [/(r)]J < C(2n)! for r E T0 
• The set of associated funtions may be denoted byY., 

For example, for the ordinary differential operator of second order, S = a0 ' + 1b/ 
Or + a2 b2/bt2 (with constant. 'a 0 , a 1 , a2 ) all (in a certain T0 C T) holomorphic func-
tions- are associated 'functions, see [5]. In this case the domain T0 may be every 
dmain inside the domain T with ft — J > 6 > 0 for' t € '1', E 'j'0, see again [5; 61 
'(also for other operators 8). 

Theorem 1 (Existénce):P[/] exists for t E T0 ,andr2 < 11C if  € 7.

	

Irdeed, in this case we have	- - 

	

P(2 + 1)	'	/ Cr .\'	•	 - 
P[f(r)]=cE,l(+)+l)(2n)...__) 

P(2 + 1)	F(n ± 1/2) Cr2) 

	

.-'0F(n+1±1)	F(1/2) 

-'	
1; 2'	1; Cr2)  

and this hypergeometric series converges for Cr2 < I I
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Theorem 2 (Solution): If / = 1(t). is an associated function, u(r, r) = P[f(r)] 
solves (1).	 V 

Proof: We prove this theorem by inertion of the series (2) into the equation (1). 
The absolute and uniform convergence of the series enables us to differentiate term 
by term with respect to rand also to apply the operator S term by term; see [5]. In 
this way we have, with the abbreviation •	 .	 V 

	

f(2+1)	/ .1\ n	 .	 . 
an!JV(;kl	V 

the derivatives  
V	

V	
V	

V 

rur = Z 2nar2S"[/J 

r2u, = ..V' 2n(2n - 1).a,r2"S[1],,	 V	 .	

V 

and  

V	 r25[u],=X(_4) a. (n ± 2) nr2S 1f]	V:	

V 

thus	-	V V

	 .. 	

: 	

.	 V	

V 

V	 V 

r2 {u} =ar2n5fl[/}. {2(2n - 1 )+(22 ± 1) 2n - 4n(n 

Remark 1: An invctsion formula is seen immediately: /(t) P[/(t)] (0, t).Ttiis 
allows-us to construct the solution from the knowledge of its values on the axis, 
r = 0: u(r,'r) = P[u(O,t)}. This reflects the well-known fact that the solutions to 
(I-) are uniquely determined by their values on the axis r = 0, if 22± 1	0 (but
not if 22 + I < O,see (4) and (5) below).

 

	

Remark 2: If 2 = 0, the transform (2) is the Riemann transform defined by the	
V 

author in [5, 6],	V	 V	 V 

P[/(t)] (r, r) = J?[/(r)] (z, z, 0, 0, r) with r2 = zz'.	 V 

	

Definition 3 (Conjugate functions): Let theoperator	exist. A function 
v = v(r,r) with	 V	 V V	 -' 

r21+1 jls [u] =	v	r21	It =	j1s [v}	 I (3) 

may be called a conjugate fwction of u.	 -	V V 

V	 Definition l (Transform for con jugate functions): Let	
V	

V 

P2 f(	(r, t) = 2) ±2 r22P,1 
WS 

1(r)]

	

V	
V	

V	 V	 V 

	

= 221'(A + 1) r22+1{(r 5)2 JA+I(r i)} [1(r)]'	V	 V	 V 

V	 V 

= P(2 + 1)E ! P(n+ +2)	r2225n 1!(r]. (4)
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We remark that this transform P;. exists if rS1 is an associated function; the 
proof may be given as above. 

Theorem 2c (Solution): 1/ /f is an associated /unction, v(r, r) = Pi [f(r)J is a 
conjugate function of u = u(r, r), defined as in Definition Ic and in Theorem 2. 

The proof can be found as for Theorem 2; we do not repeat this I 

Theorem 3: The conjugate /untion v = v(r, i) is a solution of the equation 

02	2)-f-1 a 

	

V	r	v +S . [VI  = 0.	 ,	 (5) 

Again we do not repeat the proof. The technique is as for Theorem 21 

3. Representation of the solutions 

One of the most significant problems in the use .of th6 above transforimm in appli-
cations is to give a proper representation of the transforms P and P. 

First we consider an elliptic (or hyperbolic) equation (1). To do this let, with 
(e.g.) differentiable coefficients a ==,a(x); b = 

S= 2 with 

that is

aT2	-	ar 

For b = 0 the equation (1) is without interest, because it is an ordinary differen-
tial equation with the prameterr,	- 

d2
u+ 

	

— 	—u+a2(r)u=0, 

	

dr-	r	dr 

and its solution is - as is well-known - in coincidence with (2) 

u(r, r)	const f(r) r_ 1J2 (a(r) r)-

with an arbitrary function f = f(r). 
For b'+- 0 we may assume b = 1 without loss of generality (by a transformation 

of the independent variable r). Thus we have 

-	 a (6) 
Or 

We set for the associated function f € c 

	

f(r)	a(r) h(r) with (r) = exp (- f a(r) dr)); 

from this we get [f] = a() h'(r) and further 

= a(r) h12 ' J (r).	 (7)
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By the useof the Legendre duplication formula of the Ga!ma functioh we have 
from this	 .	. 

['(2 + 1) ['(n + 1/2)	1 it (r, r) 
=	1)' ['(n + 2. + 1)

 
1'(1/2) (2n)! r2t818[/(t)],

	(8) 

this is	 .-	 . 

	

C(2 + 1) I'(n ± 1/2)	2n d28	. 
= (r)E(-1) Rn + ± 1) ['(1/2) (2n)! r

	h(r).	(9) 

Let first = — 1/2; we have P[/(t)] = cos (r j) [/(t)J or 

1	d2 
v(r, t) = (r) £-

	(2n)! 2n
	h(r).	 . 

This is a Taylor series, 

ü(r, r) = (r)	[h(t + i) + h(r - 

or, if. Im h(r) = 0, this means, if h(r) is real for real arguments r, u(r, r) ='a (r) 
 • x Re h(r ± ir). As can be immediately seen by insertion, this is a solution of the 

equation (a2/ar2 + (a ± a/at)2) u = 0.	 . 
Now let > - 1/2. Let the constant C2 be 

CA '= 
2 I'( + 1/2) P(112)	 .	.

We represent the coefficients of the series (8) by the use of the Euler integral 

	

21	2n	I f( + 1/2) Rn + 1/2) •	
-	

cos	sin	d == 2
	F(n -1- ± 1) 

this yields •	 . 

•	•	
• t(r, r)	C()	

(2n)!
 

f(
ir-s in 9,)2fl eos21 tp d	h(t), 

and again this is a Taylor series, 

u(r, x) = -- CA a(T)f [h(r + ir sin ) — h  - ir sin q,)] c0822 9 d9,, 

or, if Im h(r) = 0 for a real r, •	•	-	 .	 • 

n(r, ) =C1 a(r) Ref(r ± ir sin 9,) eb8229,d.	 (10).	•
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Thejransforrn P for the conjugate function v =v(r,T) can be treated in the same 
manner. We do not repeat the calculations, we give only the results: 

a(T) Im h(r +ir) for 2 = —1/2 
Ca(r) r22' 

v(r,r) ==	 :	 (11) 
x liii f h(r.+ irsin ) sin cos22 99 dp for 2 > — 1/2: 

We remark that for 2 = — 1/2 we have 

P_112[/(r)] = sin (r j/) 

Further we remark: The proof for the function , u (constructed by (10)) and v (con- 
structed by (11)) being conjugate functions (with the same associated function I) 
may also be given by partial integration in (10), using 

ir cos 92 - h'(T ± ir sin ) =	h( ± ir sin ). 

Second we consider a parabolic equation (1), let S = . .For the same reasons 
as above we may assume b = 1, and now we have with S'[f] =	= a(t) hlhhl(r) 
the solution	 I	S 

(). + 1)	r2d' 
1)(4)	

h(r). 

Here' we represent the derivatives by the Cauchy integral'	 - 

n 1 r dI 
dr's	' / — 2'ii	'''; (	T)'1  

K, 

with a' circ1 K = {: J — TI = ö > 01 in the complex,---plane and "KC Td for 
e' € 'J'. From this we immediately obtain the solution by a Cauchy-type integral 

= P[/(T)J = ( T)	 H1.

) 

h()	 (12) 

and the generating kernel HA is a generalized hype r'gepmetric function, converging 
everywhere,	 S 

H1(w)=	F(n±2±1)W — 1F 1 (1;2'+ 1;w).  

We have - proven simply — I1(w) = 1 + w f(1 - 8)2 e'' ds This gives H0(w) = eW 
and	 0 

JL j2(w)= 1±2we 0 fe_ u8 ds,	,•	 S	 S 

a function' well-known in the tleory of the equation of heat conduction' 
(a2/ar2 + /&r + a) u 0. The parabolic equatibn (5) (with the operator 'S = 8) 
for the conjugate function may be transformed into a pafabolic equation (5) with
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S = 9/st' (introducing the new function x(r) v(r, r) instead of the function v(r, ')).: 
,. Its solution is given by the expressions (4) and (12) with the associated function 

•	
S.	 [I] 

r(3/2)	

0 

•	Finally we consider	 - 

S[u]=2cf'u(r,.$)ds	-	 .	•• + 

with a constant c, this means, we have the pseudoparabolic equation of third order 
-	2.'+l a 

•-u+2cu=O. r	ara, 
• Hre the functions, integrable with respect to r in TO = T, are associated functions, 

see, [5]. With

= (2c)' _1-- ._f ('r - s)" /(s) ds
ar 

we have the solution, being a convolution integral, 

•	

,	 (r, r) = P[/(r)] =	
f

1^1(cr2(8 - t))/(8) ds;	'	, ,	 (13) 

here the generating kernel "i is again a generalized hypergeotnetric function, 

(1!) 2 f(n+ + 
1) w" .= 0F2 (i,2+. l;w) 

Again we get the related conjugate function, it is a solution of the equation 
a3	•2+1 a2-,	 - 

V -	 v '+	 - 
ar2 ar . 'r	ar &r	2cv = 0, 

by using the expressions (4) and (13); here we have (for 2c = 1) ,	• 

[/] (r) = P(112)f/(8)I 

4. Relations to generalized axially symmetric potential theory'	 I - 

We;return to the expressions (10) (and (11)). (10) may be written as " • 

u(r,r) =	r) f h(r + ir sin ) cos22	•	 .• 

-if2	
I 

or	 S 

-	

(r, r) = const (r)fh(r + ir cos ) sin 21. d. -	 •	 •
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Now we use the half-circle C = = e: 0 	15: }. With this variable we have 

u(r, t) 
= const[i ( + - ( + --)) ( -	

0ir 

• This is the expression mostly used in the generalized axially symmetric potential 
theory, see GILBERT [1], who uses this integral for the investigation of the singu-
larities of the axially symmetric potentials in the space. 

Following the ideas of the generalized axially symmetric potential theory, we 
remark the real part Re h(r -+ ir). - u_ 1/2) (r, *) is a harmonic function, (2/2 
+ 2/2)l(_1/2) = 0, and with this harmonic function we may write (10) as 

'u (r, r) = CA f U(- 1/2)( r sin q, r) cos22 q' d.	 -	 (14) 

(Here we assumed that r ± i'E T0 if T E T0 for all Jj	r) Generalizing this repre. 
•	sentation we have 

Theorem 4:1/ Ili- 1/2) = u( j 2) (r, ) is a solution of the equation (1) with	-1/2,
that i, of the equation 

+S)u(_i/2)=0,	-	 (15) 

•	the integral (14) solves (1).	 •	 .	
0	

• 

Remark: For the-ordinary differential operator of second order with respect 
• to T, S 32/&r2 + a(x) /& + C(T), this result is due to P. HENRICJ [2]. He proposes 

to construct the solution of -the equation (15) (with the mentioned 5) by a Bergman-
Vekua operator in its original version for two-dimensional problems. 

Proof of Theorem 4: Let	r sin 97. We insert (14) into the equation (1). 
First we have	 --

	

0	 0	 f 

S[u] =f *S'[u(_1/2)(91 )] cos21 q dg,,	•	 0 

further	•	
0	

S

U(- 
U 
=f) sin'99 cos22 , 

ar	 0 t) 

and	•	 - 

—	0 • = /	IL(_I/2)(Q, r) sin2 q, cos22 q dq,.	•	 -
.-5r2 U

In the second expression we use partial integration. In this way we find 

	

•	'/2	•	 S 

S	 2A+1	f	0	 5 

r	
-- u 

= 	
-—i- U(_112)(e r) cos2i+2 q, dp.
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• Insertion of all these terms into the equation (1) gives 

{U} =

	
[2 V(_I/2, e) + S[u_ 112 (0,	cos q' dq	0 I 
/  

The following theorem, found by the solution '(11), may be proved in the same 
- way (by insertion) as above.  

Theorem 4c: 1/ U(_ l / 2 ) = u (_ l / 2 )(r, T) is a solution 0/ the equation (5) (or (1)) 
with 2 = . -1/2, that 15, of the equation (15), 

v(r, t) = C2 r224 'f u(_1/ 2)(r sin q, r) sin cos22 op dq. 

- solves (5).'	 '	 S 

5. Examples	 -	S 

We give only sonie hints c oncerning the application of the above resulfs by the con-
struction of special solutions.	 S 

a) Parabolic equations: A solution of the equation (15) with S = /&r is 

U(_i/2) = et LOS (Cr)  

with a constant c.The integral (14) gives 

u(r, r) = C1 e' f 005 (cr 51fl ) Los 21 d.	 . 

By the use of the well-known representation of-the-Bessl function:

.(2 J1(cr) = 2. +1/2) r(1/2)f c (cr sin ) eos21	 • 

we have a solution of (1) 

u(r, -r)	2 1f(). + I) (cr) J2 (cr) e c'.	•	 S 

However, this is a solution of (1) that can also be found by separation of variables. 
b) Elliptic equations: We get sets of. particular solutions to the equation (1) with 

S = a2/a 2 in the same manner, this means, by insertion of special assOciated func-
tions into (10) or (11). We mention without proof that we find, with the help of 
known integral relations containing special functions, e.g.	 - 

u(r, t)= P[ecT J = 2 1V(2 + I) (cr)1J1(cr) e c	•	
• 

(see the fornIer result), or	 - 

-	u(r, r) = P[Tk] = 2 2r(2. + 1) r1Pk (R) '	
. 5
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$	with constants c, k 0, R2 = r • r2 and with the associated Legendre functions 
- A+k' We get from these relationse.g. with 

	

00 1	 - 
P[el] = X	P[r"] 

	

k=Ok.	- 
the series	 - 

J A' (r)	e'	'	(r2 + T2)112	-.'k (	
r	 S 

S	
k=O k.	 \1/.r2+r	 S 

Using these and other solutions we may treat physical problems with axial syrnmery,' 
e.g., with 2 =, 0, the axisyrunietric flow of an incompressible fluid (see [3]) or, with 
A = 1, the torsion of a body of revolution (see [4]). 

e) Pseu4oparabolic equations: For an equation (1) with a more complicated integral 
operator 8, describing the instationary axisymnietric flow of an incompressible 
viscous (non-Newtonian) fluid see [7].	

5 

I -
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