Hypercomplex Factorization of the Helmholtz Equation

K. Gürlebeck

1

Hauptergebnis der Arbeit ist die Angabe einer globalen hyperkomplexen Faktorisierung des Dirichlet-Problems für die Helmholtz-Gleichung. Dieses Resultat gestattét die Zurückführung des betrachteten Randwertproblems auf zwei Randwertprobleme erster Ordnung für verallgemeinert analytische Funktionen.

Основным результатом работы является построение глобальной гипсрвомплексной факторизации задачи Дирихле для уравнения Гельмгольца. Таким образом названная задача может быть сведена к двум краевым задачам первого порядка для обобщенно аналитических фуннцит.
The main result of this paper is the construction of a global hypercomplex factorization of the Dirichlet problem for, the Helmboltz equation. This result permits the reduction of the considered boundary value problem into two boundary value problems of first order for generalized analytic functions.

1. Introduction

In the last years factorizing principles for the solution of elliptic boundary value problems have got an increasing importance. Using the concept of generalized analytic functions [1] ànd an operator calculus [7] global factorizations of such problems for the Laplace equation and for the equations of linear elasticity were found in [4]. The aim of this paper is to state analogous results for the Helmholtz equation.

2. Notations

Let Q be the quaternionic algebra with basic elements $e_{1}=(1,0,0,0), \ldots, e_{4}$. $=(0,0,0,1)$. Each element $a \in Q$ has an 'unique representation $a=\sum_{i=1}^{4} a_{i} \cdot e_{i}$ with real coefficients a_{i} The conjugate element \bar{a} is defined by $\bar{a}=a_{1} e_{1}-\sum_{i=2}^{4} a_{i} e_{i}$ and a norm by $|a|=(a \circ \bar{a})^{1 / 2}$, where \circ denotes the multiplication of quaternions. Let $G \subset \mathbf{R}^{3}$ be a bounded domain with smooth boundary Γ. A quaternionic-valued function f will be written as

$$
f(x)=\sum_{i=1}^{4} f_{i}(x) e_{i} \text { with } f_{i}: G \rightarrow \mathbf{R}^{1}
$$

Define the differential operator $D(F)$ as $D(\nabla)=\sum_{i=2}^{4} \dot{e}_{i} \frac{\partial}{\partial x_{i}}$, let the differential ope-
rator $D\left(\Gamma_{i}\right)_{r}$ be given by $D(\nabla)_{r}=\sum_{i=2}^{4} \frac{\partial}{\partial x_{i}} e_{i}$ and, finally, denote by $D_{\lambda}(V), D_{\lambda}^{*}(V)$, and $!D_{i}(\nabla)_{r}$ the operators $D_{i}(V)=\lambda e_{1} \div \frac{1}{r} D(\nabla), D_{\lambda}^{*}(\nabla)=\lambda e_{1}-D(F)$, and $D_{\lambda}(\nabla)_{r}=\lambda e_{1}$ $+D(\nabla)_{r}$ with a real number 2 . The normalized outer normal to Γ will be denoted by n. Elements $x \in$: \mathbf{k}^{3} will be written in the form $x=\left(x_{2}, x_{3}, x_{4}\right)$ to get simplicity in index-calculation. With every $x \in \mathbf{1}^{3}$ we associate a corresponding element $D(x)=\sum_{i=2}^{4} x_{i} e_{i} \in Q$.

3. Fundamental solutions

The action of $\left(\Delta+\lambda^{2}\right) I$ on quaternionic-valued function f will be defined by action of ($\Delta+\lambda^{2}$) in usual sense on each component of f. A formal factorization of this operator is given by

$$
\left(\Delta+\lambda^{2}\right) I=D_{\lambda}(\grave{V}) D_{\lambda}^{*}(\nabla)=D_{\lambda}^{*}(\nabla) D_{\lambda}(\nabla)
$$

The knowledge of fundamental solutions of the operators $D_{\lambda}(\nabla)$ and $D_{2}^{*}(\Gamma)$ is necessary for defining suitable integral operators and for constructing complete function systems. For the sake of simplicity, all following investigations will be carried out for the operator $D_{\lambda}(\nabla)$ only.

Theorem 1: Let $x, y \leq \mathbf{R}^{3}, x \neq y$ and

$$
\begin{equation*}
F_{\lambda}(x)=\frac{\lambda \cos \lambda|x|}{|x|} e_{1}^{\cdot}+\frac{D(x)}{|x|^{2}} \lambda \sin \lambda|x|+\frac{D(x)}{|x|^{3}} \cos \lambda|x| . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
D_{\lambda}\left(\nabla_{x}\right) F_{\lambda}(x-y)=F_{\lambda}(x-y) D_{\lambda}^{*}\left(\nabla_{x}\right)_{r}=-4 \pi \delta(x-y) . \tag{2}
\end{equation*}
$$

Proof: A simple computation using $D\left(\nabla_{x}\right) \frac{D(x-y)}{|x-y|^{3}}=-4 \pi \delta(x-y)$ (see [2])

4. Operators

Let $G \subset \mathbf{R}^{3}$ be a bounded domain with Ljapunov boundary, f a sufficiently smooth function defined in \dot{G} or on Γ and let F_{i} be given by (1). Define

$$
\begin{align*}
& \left(F_{\lambda} f\right)(x)=-\frac{1}{4 \pi} \int_{G} F_{\lambda}(x-y) \circ f(y) d G_{y} ; \quad x \in \mathbf{R}^{3}, \tag{3}\\
& \left(\dot{S}_{\lambda} f\right)(x)=\frac{1}{4 \pi} \int_{\Gamma} F_{\lambda}(x-y) \circ D(n)_{\nu} \circ f(y) d \Gamma_{\nu}, \quad x \notin \Gamma, \tag{4}\\
& \left(S_{\lambda} f\right)(x)=\frac{1}{2 \pi} \int_{V} F_{\lambda}(x-y) \circ D(n)_{\nu} \circ f(y) d \Gamma_{\nu}, \quad x \in \Gamma . \tag{5}
\end{align*}
$$

Remark 1: The integral operators T_{1}, S_{1}, and S_{2} are defined in analogy to the complex T-operator, the Cauchy integral operator and singular Cauchy integral operator, where the integral $S_{\lambda} f$ is to be understood in the Cauchy principal value sense. In the case $\lambda=0$ we get the operators.investigated in [7].

Lemma 1: Let $G \subset \mathbf{R}^{3}$ be a bounded domain with Ljapunov boundary and $f \in C^{1}(G)$ n $\dot{C}(\bar{G})$. Then

$$
\begin{equation*}
f(x)=\left(\dot{S}_{\lambda} f\right)(x)+\left(T_{1} D_{\lambda}(\nabla) f\right)(x) \quad \text { for any } x \in G \tag{6}
\end{equation*}
$$

Proof: We have
1

$$
\begin{aligned}
\left(T_{\ell} D_{\lambda}(V) f\right)(x) & =-\frac{1}{4 \pi} \int_{G} F_{\lambda}(x-y) \circ D_{\lambda}\left(\nabla_{y}\right) f(y) d G_{y} \\
\vdots & =\lim _{\epsilon \rightarrow 0}\left(-\frac{1}{4 \pi} \int_{G_{\varepsilon}} F_{\lambda}(x-y) \circ D_{\lambda}\left(\nabla_{\nu}\right) f(y) d G_{\nu}\right)
\end{aligned}
$$

.with

$$
\begin{aligned}
& G_{c}=G \backslash\{y:|x-y| \leqq \varepsilon\}=G \backslash K_{x}(\varepsilon), \backslash \\
- & \frac{1}{4 \pi} \int_{G_{\varepsilon}} F_{\lambda}(x-y) \circ D_{\lambda}\left(\Gamma_{\nu}\right) f(y) d G_{v} \\
= & -\frac{1}{4 \pi} \int_{C_{\varepsilon}}(\varepsilon) \\
- & \left.\frac{1}{4 \pi} \int_{\Gamma} F_{\lambda}(x-y) D_{\lambda}{ }^{*}\left(\nabla_{\nu}\right)_{r}\right) \circ f(y) d I_{\nu}
\end{aligned}
$$

From this equation we obtain the desired result by using the forniula (see [7])

$$
\lim _{\varepsilon \rightarrow 0} \int_{G_{\varepsilon}}\left[\frac{D(x-y)}{|x-y|^{3}} D\left(\nabla_{x}\right)_{r}\right] \circ f(y) d G_{y}=-4 \pi f(x)
$$

Lemma 2: Let γ_{0} be the trace operator in the sense of [5]. Under the same hypotheses as in Lemma 1 one has

$$
\begin{equation*}
f(x)=\left(\mathcal{S}_{\lambda} \gamma_{0} f\right)(x) \quad \forall f \in \operatorname{Ker} D_{\lambda}(\Gamma)(G), \quad x \in G \tag{7}
\end{equation*}
$$

Proof: Application of (6) to $f \in \operatorname{Ker} D_{\lambda}(\nabla)(G)$
Lémma 3: Under the hypotheses of Lemma 1

$$
\begin{equation*}
\left(D_{\lambda}(\nabla) T_{\lambda} f\right)(x)=f(x) \quad \text { for any } x \in G \tag{8}
\end{equation*}
$$

Proof: In analogy to the proof of Lemma 1!

- Remark 2: Formula (6) generalizes the well-known Borel-Pompeiu representation of complex function theory, (7) is an analogue of the Cauchy integral formula. Corresponding results for $\lambda=0$ are proved in [1, 7].

Lemma.4: Let $f \in C^{a}(\Gamma)$ and suppose the boundary Γ of G is a Ljapunov surface. Then

$$
\begin{align*}
& \lim _{\substack{x \rightarrow x_{0} \in \Gamma \\
x \in G}}\left(\dot{S}_{\lambda} f\right)(x)=\frac{1}{2}\left[\left(S_{\lambda} f\right)\left(x_{0}\right)+f\left(x_{0}\right)\right]=:\left(I_{\lambda} f\right)\left(x_{0}\right), \tag{9}\\
& \lim _{\substack{x \rightarrow x_{0} G \Gamma \\
x \oplus G}}\left(\dot{S}_{\lambda} f\right)(x)=\frac{1}{2}\left[\left(S_{\lambda} f\right)\left(x_{0}\right)-f\left(x_{0}\right)\right]=:-\left(Q_{\lambda} f\right)\left(x_{0}\right) \text { for any } x_{0} \in \Gamma . \tag{10}
\end{align*}
$$

Proof: A simple computation making use of some properties of weakly singular integral operators shows that

$$
\begin{align*}
\lim _{\substack{x \rightarrow x_{0} \epsilon \Gamma \\
x \in G}}\left(\dot{S}_{\lambda} f\right)(x)= & \frac{1}{4 \pi} \int_{\Gamma}\left[\frac{\hat{\lambda} \cos \lambda\left|x_{0}-y\right|}{\left|x_{0}-y\right|}+\frac{D\left(x_{0}-y\right)}{\left|x_{0}-y\right|^{2}} \lambda \sin \lambda\left|x_{0}-y\right|\right. \\
\therefore \quad & \left.+\frac{D\left(x_{0}-y\right)}{\left|\dot{x}_{6}-y\right|^{3}} \sum_{i=1}^{\infty}(-1)^{i} \frac{1}{(2 i)!}\left|x_{0}-y\right|^{3 i} \dot{\lambda}^{2 i}\right] \circ D(n) \circ f(y) d \Gamma_{y} \\
\therefore \quad & +\lim _{\substack{x \rightarrow x_{0} \\
x \in G}} \frac{1}{4 \pi} \int_{\Gamma} \frac{D(x-y)}{|x-y|^{3}} \circ D(n) \circ f(y) d \Gamma_{\nu} \tag{11}
\end{align*}
$$

(11) combined with the result for $\lambda=0$ contained in [7] gives the assertion of the' lemma. Analogous arguments yield (10)

Lemma 5: Let $f \in C^{\alpha}\left(I^{\prime}\right)$, Γ the Ljapunov boundary of G. Then.

$$
\begin{align*}
& S_{\lambda}^{2} f=f \tag{12}\\
& \dot{S}_{\lambda} P_{\lambda} f=\dot{S}_{\lambda} f \tag{13}\\
& P_{\lambda}^{2} f=P_{\lambda} f \tag{14}
\end{align*}
$$

Proof: It is obvious that $S_{\lambda}^{2} f=f$ iff $P_{\lambda}^{2} f=. P_{\lambda} f$. Formula (14) can be verified by applying (6) to the function $\mathscr{S}_{\lambda} f \in \operatorname{Ker} D_{\lambda}(\Gamma)(G)$. Using (14) and applying (6) to $\dot{S}_{\lambda} f-\dot{S}_{\lambda} P_{\lambda} j$ we arrive at (13)

Remark 3: Note that the above results remain true also under weaker smoothness conditions for the function f.

The purpose of what follows is to investigate the continuity properties of the operators S_{λ}, S_{λ} and T_{λ}. From the representation

$$
\left(T_{\lambda} f\right)(x)=\frac{1}{4 \pi} \int_{G}\left(D_{\lambda}(\nabla) \frac{\cos \lambda|x-y|}{|x-y|}\right) \circ f(y) d G_{y}
$$

। we get

$$
\begin{equation*}
T_{\lambda} f \in H^{s,+1}(G) \text { for } \quad j \in H^{s}(G) \tag{16}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
T_{\lambda} D_{\lambda}(\dot{\nabla}) f \in H^{s}(G) \text { for } f \dot{\in} H^{s}(G) \tag{17}
\end{equation*}
$$

From (16) and (17) it follows that $\dot{S}_{\lambda} \gamma_{0} f \in H^{s}(G)$ for $f \in H^{s}(G)$. Well-known theorenis about traces together with formula (6) iniply that $S_{\lambda} \gamma_{0} f \in H^{s-1 / 2}(\Gamma)$ and $P_{\lambda} \gamma_{0} f$ $\in H^{s-1 / 2}(\Gamma)$ for $f \in H^{s}(G)$. It can be shown that $S_{\lambda}, P_{\lambda} \in L\left(H^{s}(\Gamma)\right)$.

Lèmma 6: Let G be a bounded domain with Ljapunov boundury Γ and $s>3 / 2$. Then

$$
\dot{S}_{\lambda} \in L\left(H^{8-1 / 2}(\Gamma), H^{8}(G) \cap \operatorname{Ker} J_{\lambda}(\nabla)(G)\right)
$$

Proof: It will be shown that

$$
\left(H^{g}(G), H^{8-1}(G), H^{s-1 / 2}(\Gamma), D_{\lambda}(\nabla), \gamma_{0}\right)
$$

is a Sard system with completeness condition (for the definition of Sard systems see [3, 6]). We have

$$
\begin{align*}
& D_{2}(\nabla) \in L\left(H^{s}(G), H^{s-1}(G)\right), \\
& \operatorname{im} D_{\lambda}(\nabla)=\overline{\operatorname{im} D_{\lambda}(V)}=H^{s-1}(G) \cdot(\text { see }(8) \text { and } \cdot(16)), \\
& \gamma_{0} \in L\left(H^{s}(G), H^{s-1 / 2}(\Gamma)\right) \text { and im } \gamma_{0}=H^{s-1 / 2}(\Gamma)[5], \\
& H^{s}(G) \cap \operatorname{Ker} D_{\lambda}(\nabla)(G) \cap \operatorname{Ker} \gamma_{0}=\{0\} \quad \text { (see (12)), } \\
& \gamma_{0}\left(\operatorname{Ker} D_{\lambda}(\nabla)(G) \cap H^{s}(G)\right)=\overline{\gamma_{0}\left(\operatorname{Ker} D_{\lambda}(\nabla)(G) \cap H^{s}(G)\right)} . \tag{18}
\end{align*}
$$

To prove (18) we take a sequence

$$
\left\{y_{n}\right\}_{n-1}^{\infty} \subset \dot{H}^{s-1 / 2}(\Gamma) \cap \gamma_{0}\left(\operatorname{Ker} D_{\lambda}(\nabla)(G)\right)
$$

with $y_{n} \xrightarrow[n \rightarrow \infty]{\dot{\infty}} y_{0}$ in $H^{s-1 / 2}(\Gamma)$. Then one has:

$$
\begin{aligned}
S_{\lambda} y_{n} & =y_{n} \Rightarrow S_{\lambda} y_{0}=y_{0} \Rightarrow P_{\lambda} y_{0}=y_{0} \\
& \Rightarrow \dot{S}_{\lambda} y_{0} \in \operatorname{Ker} D_{\lambda}(\nabla)(G) \cap H^{s}(G)
\end{aligned}
$$

and

$$
y_{0}=\gamma_{0} \dot{S}_{\lambda} y_{0} \in \gamma_{0}\left(\operatorname{Ker} D_{\lambda}(\nabla)(G)\right) \cap \dot{H}^{s-1 / 2}(\Gamma)
$$

From [3: Lemma 4] and from what has just been proved we obtain the estimate

$$
\begin{equation*}
C_{1}\|/\|_{H^{2}(G)} \leqq\left(\left\|D_{i}(\nabla) f\right\|_{H^{j^{-1}(G)}}^{2}+\left\|\gamma_{0} f\right\|_{H^{s-1 / 2}\left(a_{\Gamma}\right)}^{2}\right)^{1 / 2} \leqq C_{2}\|f\|_{H^{*}(G)} \tag{19}
\end{equation*}
$$

or any $f \in H^{s}(G)$ with $0<C_{1}, C_{2}<\infty$ independent of f. For $f \in \operatorname{Ker} D_{\lambda}(\nabla)(G)$. $\cap H^{s}(G)$ the inequality (19) implies that

$$
\begin{equation*}
C_{1}\|f\|_{H^{\bullet}(G)} \leqq\left\|\gamma_{\mathrm{o}}\right\|_{H^{s-1 / 2}(\Gamma)} \leqq C_{2}\|f\|_{H^{\prime}(G)} \tag{20}
\end{equation*}
$$

From (20) and the continuity of P_{λ} in $H^{s-1 / 2}(\Gamma)$ the statement of the lenma follows

5. Factorization

In the following we shall show the main result of this paper, namely, that the Dirichlet problem for the Helmholtz equation permits a global factorization into two boundary value problems of first order.

- Lemma 7: Let $G \subset \mathbf{R}^{3}$ be a bounded domain, $\Gamma=\partial G$ a Ljupunov surface, and $s>3 / 2$. Then the boundary value problem

$$
\begin{align*}
& D_{i}(\nabla .) u=0 \quad \text { in } G, \\
& \gamma_{0} u=g \quad \text { on } \Gamma^{\top} \tag{21}
\end{align*}
$$

- has a solution $u \in H^{s}(G)$ iff $g \in H^{s-1 / 2}(\Gamma) \cap$ im P_{λ}.

Proof: 1. Let $u \in H^{s}(G)$ be a solution of (21). From (7) and (9) then results that $\gamma_{0} u=P_{i} \gamma_{0} u$.
2. Let $g \in H^{s-1 / 2}(\Gamma) \cap \operatorname{im} P_{\lambda}$. Then (6), (7), (9), and Lemma 6 imply that $u=\dot{S}_{\lambda} g$ $\epsilon \operatorname{Ker} D_{\lambda}(\nabla)(G) \cap H^{s}(G)$ is a solution of the problem (21)

Remark 4: The solution of (21), if it exists, is unique.

Theorem 2: Suppose $\hat{\lambda}^{2}>0$ is not an eigenvalue of the Δ-operator, G is a bounded domain with Ljapunov boundary $\Gamma=\partial G, s>3 / 2$. Then the boundary value problem

$$
\begin{align*}
& \Delta u+\hat{\lambda}^{2} u=0 \quad \text { in } G, \\
& \gamma_{0} u=\dot{g} \text { on } \Gamma \tag{22}
\end{align*}
$$

admits a factorization into two boundary value problems of first order

$$
\begin{array}{ll}
D_{\lambda}(\nabla)=0 \text { in } G, & D_{\lambda}^{*}(\nabla) w=0 \text { in } G, \\
\gamma_{0} v=P_{\lambda} g \text { on } \Gamma, & \gamma_{0} T_{\lambda} w=Q_{\lambda} g \text { on } \Gamma . \tag{23}
\end{array}
$$

and the solution u of (22) is given by $u=v+T_{\lambda} w$.
Prọof: The existence of a solution of the problem (23) has been shown in Lemma 7. From the solvability of the problem

$$
\begin{aligned}
& \Delta z+i^{2} z=0 \text { in } G \\
& \gamma_{0} z=Q_{1} g \text { on } \Gamma
\end{aligned}
$$

and from (6) we deduce that

$$
z=\stackrel{\circ}{\Lambda}_{\lambda} \gamma_{0} z \cdot{ }^{\top} T_{\lambda} D_{\lambda}(\nabla) \ddot{z}=\mathfrak{S}_{\lambda} P_{\lambda} Q_{\lambda} \gamma_{0} z+T_{\lambda}\left[D_{\lambda}(\nabla) z\right]=T_{\lambda} w
$$

Because $\dot{z} \in \operatorname{Ker}\left(\Delta+\dot{\lambda}^{2}\right)(G)$, we get $\dot{w}=D_{\lambda}(\nabla) z \in \operatorname{Ker} D_{\lambda}^{*}(\nabla)(G)$
Remark 5: Corresponding results for the case $\lambda=0$ are contained in [7]. In [2], Goldschmidt considered factorization problems for the equation ($4-\dot{\lambda}^{2}$) $u=0$, $\lambda \in \mathbf{R}$.

6. Complete function systems

For the application of a numerical method based upon the result of Theorem 2, it is necessary to construct complete function systems in $\operatorname{Ker} D_{\lambda}(\nabla)(G) \cap H^{s}(G)$. For the sake of brevity the result will be given without proof.

Theorem 3: Let G and G_{A} be bounded domains with Ljapunov boundaries $\partial G=\Gamma$. and $\partial G_{A}=\Gamma_{A}$ such that $\bar{G} \subset G_{A}$. Further let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a dense subset of Γ_{A} and the functions $\varphi_{i}(x)=F_{\lambda}\left(x-x_{i}\right)$ be defined as in Section 3. Then the system $\left\{\varphi_{i}\right\}_{i-1}^{\infty}$ $\subset L_{2}(G) \cap \operatorname{Ker} D_{\lambda}(\nabla)(G)$ is complete in $L_{2}(G) \cap \operatorname{Ker} D_{2}(\nabla)(G)$.

Remark 6: Starting from this theorem, one can show the completeness of the system $\left\{\varphi_{i}\right\}_{i=1}^{\infty}$ in $H^{s}(G) \cap \operatorname{Ker} D_{\lambda}(\nabla)(G)$ and then, using theorems about traces, its completeness in $H^{\varepsilon}(\Gamma) \cap \operatorname{im} P_{i}$.

Remark 7: Using the systeni $\left\{\varphi_{i}\right\}_{i-1}^{\infty}$, function, systems with better numerical properties can be constructed with the method demonstrated in [4].

REFERENCES ${ }^{\wedge}$

[1] Brackx, F., Delanghe, F.; and F. Sommen : Clifford analysis (Research Notes in Mathematics 76). London: Pitman 1982.
[2] Goldschmidt, B.: Verallgemeinert analytische Vektoren im . \mathbf{R}^{n}. Dissertation B. Halle: Martin-Luther-Universität Halle-Wittenberg 1980.
[3] Gürlebece, K.: Zur optimalen Interpolation verallgemeinert analytischer Funktionen. Wiss. Z. Téchn. Hंochschule Karl-Marx-Stadt $\mathbf{2 5}$ (1983), 324-325 (Depotinformation).
[4] Gürlebeck, K.: Uber die optimale Interpolation verallgemeinert analytischer quaternionenwertiger Funktionen und ihre Anwendung zur näherungsweisen Lösung wichtiger räumlicher Randwertaufgaben der Mathematischen Physik. Dissertation. Kárl-MarxStadt: Techn. Hochschule 1984.
[5] Лионс, Ж.-Л., и Э. Мадженес: Неоднородные граничные задачи и их прило́жения. Москва: Изд-во Мир 1971.
[6] Sard, A.: Approximation Based on Nonscalar Observations. J. Approx. Theory 8 (1973), 315-334.
[7] Sprössicia, W.: Uber eine mehrdimensionale Operatorrechnung mit Operatoren über beschränkten Gebieten des Enklidischen Raumes und deren Anwendung zur Lösung partieller Differentialgleichungen. Dissertation B. Karl-Marx-Stadt: Téchn. Hochschule. 1979.

Manuskripteingang: 14.12. 1984
VERFASSER:
Dr. Klaus Gürlebeck
Scktion Mathematik'der Technischen Hochśchule
DDR-9010 Karl-Marx-Stadt, PSF 964

