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Abstract. The boundedness of one-sided integral operators in grand variable expo-
nent Lebesgue spaces unifying grand Lebesgue spaces and variable exponent Lebesgue
spaces are established. The conditions on variable exponent is weaker than the log-
Hölder continuity condition.

Keywords. Grand variable exponent Lebesgue spaces, one-sided maximal operator,
one-sided Calderón–Zygmund operators, one-sided potentials, boundedness.

Mathematics Subject Classification (2010). Primary 42B20, 42B25, secondary
46E30

1. Introduction

Our aim is to prove the boundedness of one-sided maximal, singular and po-
tential operators in grand variable exponent Lebesgue space (briefly GVELS).
This space introduced in [12] (see also [13]) unifies two non-standard function
spaces: a variable exponent Lebesgue space and grand Lebesgue space. We refer
also to the recent monograph [15, Section 14.11] for related topics. In [12], the
authors established the boundedness of maximal, Calderón–Zygmund and frac-
tional integral operators defined on quasi-metric spaces with doubling measure
in GVELS Lp(·),θ (see also [15, Section 14.11]). A variable exponent Lebesgue
space Lp(·) (briefly VELS) is the special case of the one introduced by W. Orlicz
in the 30ies of the last century and subsequently generalized by I. Musielak and
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W. Orlicz. Later H. Nakano [21] specified it. The boundedness of one-sided
operators in variable exponent Lebesgue spaces was established in [7] (see also
[14, Chapter 5]). It should be emphasized that in the latter paper, the authors
derived the boundedness of one-sided operators under the condition which is
weaker than the well-known log-Hölder continuity condition. Under the lat-
ter condition the operators of Harmonic Analysis such as maximal, Calderón–
Zygmund, fractional integral operators are bounded in VELS (see, e.g., the
monographs [3, 6] and references cited therein).

The grand Lebesgue space Lr) was introduced in the 90ies of the last century
by T. Iwaniec and C. Sbordone [10] when they studied integrability problems of
the Jacobian under minimal hypothesis. The space Lr),θ, θ > 0, introduced by
L. Greco, T. Iwaniec and C. Sbordone [9] is related to the investigation of the
nonhomogeneous n-harmonic equation divA(x,∇u) = µ. In subsequent years,
quite a number of problems of harmonic analysis and the theory of non-linear
differential equations were studied in these spaces (see, e.g., the papers [8, 11],
the monograph [15] and references cited therein).

The spaces under consideration are non-reflexive, non-separable and non-
rearrangement invariant. We introduce a variant of GVELS denoted by L̃p(·),θ,`

and its one-sided analogs L̃
p(·),θ,`+
+ , L̃

p(·),θ,`−
− . These classes are narrower than the

space Lp(·),θ introduced in [12], and L̃p(·),θ introduced and studied in [15, p. 844].

The third parameter ` of L̃p(·),θ,` is the least upper bound of the best constants
in (one-sided) log-Hölder continuity condition for p.

The main results of this paper are Theorems 4.6–4.8, 5.4–5.6.
Constants (often different constants in one and the same chain of inequali-

ties) will be usually denoted by c or C.

2. Preliminaries

Let I = (a, b) be an open interval and let p be a measurable function on I
satisfying the condition

1 < p− ≤ p+ <∞, (2.1)

where
p− := ess inf

I
p; p+ := ess sup

I
p.

Further, we denote: p−(E) := ess inf
E

p; p+(E) := ess sup
E

p.

By P (I) we denote the class of all exponents on I satisfying (2.1).

Definition 2.1. We say that an exponent p belongs to the class P−(I) if there
exists a non-negative constant c1 such that for a.e. x ∈ I and a.e. y ∈ I with
0 < x− y ≤ 1

2
, the inequality

p(x) ≤ p(y) +
c1

log
(

1
x−y

) (2.2)
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holds. Further, we say that p belongs to P+(I) if there exists a non-negative
constant c2 such that for a.e. x ∈ I and a.e. y ∈ I with 0 < y − x ≤ 1

2
, the

inequality

p(x) ≤ p(y) +
c2

log
(

1
y−x

) (2.3)

holds.

The class P−(I) (resp. P+(I)) is strictly larger than the class of expo-
nents satisfying the log-Hölder continuity condition: there is a non-negative
constant A such that for all x, y ∈ I, |x− y| < 1

2
,

|p(x)− p(y)| ≤ A

− log |x− y|
. (2.4)

We denote the class satisfying condition (2.4) by P(I).
In particular, it is easy to see that if p is a non-increasing function on I, then

condition (2.2) is satisfied, while for non-decreasing p, condition (2.3) holds.

Remark 2.2. Let I be a bounded interval in R and let p be continuous on I.
Then P(I) = P log

− (I) ∩ P log
+ (I).

In the sequel we will use the following notation.

I+(x, h) :=[x, x+h] ∩ I; I−(x, h) :=[x−h, x] ∩ I; I(x, h) :=[x−h, x+h] ∩ I.

Observe that either I+(x, h) = ∅ or |I+(x, h)| > 0 because I is an open set.
The same conclusion is true for I−(x, h) and I(x, h).

Let p(·) ∈ P (I). The Lebesgue space with variable exponent denoted by
Lp(·)(I) (or by Lp(x)(I)) is the class of all measurable functions f on I for which

Sp(f) :=

∫
I

|f(x)|p(x)dx <∞.

The norm in Lp(·)(I) is defined as follows

‖f‖Lp(·)(I) = inf

{
λ > 0 : Sp

(
f

λ

)
≤ 1

}
.

It is known that Lp(·)(I) is a Banach space (see, e.g., [17]). For other
properties of spaces Lp(·) we refer to [17,22,24].

Further, let θ > 0. We denote by Lp(·),θ(X) the class of all measurable
functions f : I 7→ R for which the norm

‖f‖Lp(·),θ(I) := sup
0<ε<p−−1

ε
θ

p−−ε‖f‖Lp(x)−ε(I)
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is finite.
Together with the space Lp(·),θ it is interesting to consider the space Lp(·),θ

which is defined with respect to the norm

‖f‖Lp(·),θ := sup
0<ε<p−−1

∥∥∥ε θ
p(x)−εf

∥∥∥
Lp(x)−ε(I)

.

Lemma 2.3. The following continuous embedding holds:

Lp(·),θ(I) ↪→ Lp(·),θ(I).

Proof. Since p− ≤ p(x), for small positive ε, we have ε
θ

p−−ε ≤ ε
θ

p(x)−ε . Hence,

ε
θ

p−−ε‖f‖Lp(x)−ε(I) ≤ cp

∥∥∥ε θ
p(x)−εf

∥∥∥
Lp(x)−ε(I)

for all ε ∈ (0, p− − 1), where the positive constant cp depends only on p. Now
the result follows.

It is known (see [12]) that there is a function f and θ > 0 such that f ∈
Lp(·),θ(I) but f /∈ Lp(·),θ(I).

If p = pc = const, then Lp(·),θ = Lp(·),θ and it is the grand Lebesgue space
Lpc),θ introduced in [9]. In the case p = pc = const and θ = 1, we have the
Iwaniec–Sbordone [10] space Lpc).

Proposition 2.4 ([12, Proposition B]). Let p ∈ P (I) and let θ > 0. Then

(a) The spaces Lp(·),θ(I) and Lp(·),θ(I) are complete.

(b) The closure of Lp(·)(I) in Lp(·),θ(I) (resp. in Lp(·),θ(I)) consists of those

f ∈ Lp(·),θ(I) (resp. f ∈ Lp(·),θ(I)) for which limε→0 ε
θ

p−−ε‖f(·)‖Lp(·)−ε(I) =

0

(
resp. limε→0

∥∥∥ε θ
p(·)−εf(·)

∥∥∥
Lp(·)−ε(I)

= 0

)
.

The following properties hold for p ∈ P (I):

Lp(·)(I) ↪→ Lp(·),θ(I) ↪→ Lp(·)−ε(I), 0 < ε < p− − 1;

Lp(·)(I) ↪→ Lp(·),θ(I) ↪→ Lp(·)−ε(I), 0 < ε < p− − 1.

The following statement was proved in [7] (see Proposition B) but we have
to repeat the proof to observe the estimates of constants which are important
for us.

Proposition 2.5. Let p be a measurable positive function on I satisfying the
condition 0 < p−(I) ≤ p+(I) <∞. The following conditions are equivalent:

(a) Condition (2.2) holds.
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(b) There exists a positive constant C1 such that for a.e. x ∈ I and all r with
0 < r ≤ 1

2
and I−(x, r) 6= ∅ the inequality

rp−(I−(x,r))−p(x) ≤ C1 (2.5)

holds. Moreover,

C1 = max
{

2p+−p− , e2c1
}
, (2.6)

where c1 is defined in (2.2).

Proof. Let (2.2) hold. Let us take r so that 0 < r ≤ 1
2

and I−(x, r) 6= ∅. Observe
that if

Sr,x :=
1

2
ess sup
y∈I−(x,r)

(p(x)− p(y)) ≤ 0,

then p(x) ≤ p(y) for a.e. y, y ∈ I−(x, r). Therefore p(x) ≤ p−(I−(x, r)) and,
consequently, (2.5) holds for such r and x with C1 = 2p+−p− . Further, if Sr,x > 0,
then we take x0, x0 ∈ I−(x, r), so that

0 < Sr,x ≤ p(x)− p(x0).

Hence,

rp−(I−(x,r))−p(x) ≤
(

1

x− x0

)2(p(x)−p(x0))

≤
(

1

x− x0

)− 2c
log(x−x0)

≤ e2c1 .

Definition 2.6. We say that p satisfies the decay condition at infinity (see [4])
if there is a non-negative constant A∞ such that

|p(x)− p(y)| ≤ A∞
log(e+ |x|)

for all x, y ∈ I, |y| > |x|. In this case we write p ∈ P∞(I).

Let us introduce the following maximal operators:

(
Mf

)
(x) = sup

h>0

1

2h

∫
I(x,h)

|f(t)|dt,

(
M−f

)
(x) = sup

h>0

1

h

∫
I−(x,h)

|f(t)|dt,

(
M+f

)
(x) = sup

h>0

1

h

∫
I+(x,h)

|f(t)|dt,

where I is an open set in R and x ∈ I.
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It is known (see, e.g., [20], Proposition 3.2), that if r is a constant such
that 1 < r < ∞, then the following estimate holds for the Hardy–Littlewood
maximal operator:

‖M‖Lr→Lr ≤ 2(r′)
1
r . (2.7)

Using the pointwise estimate M±f ≤Mf and (2.7), we have

‖M±‖Lr→Lr ≤ 2(r′)
1
r . (2.8)

The boundedness of one-sided maximal, singular and potential operators in
variable exponent Lebesgue spaces under the “the one-sided” local log-Hölder
continuity condition and decay condition at infinity was established in [7]. For
example, for the left maximal operator the following statement holds:

Theorem 2.7. Let I be an interval in R and let p ∈ P (I).

(a) If I is a bounded interval and p ∈ P−(I), then M− is bounded in Lp(·)(I).

(b) If I is R or R+ and p ∈ P−(I)∩P∞(I), thenM− is bounded in Lp(·)(R+).

The next statement was proved in [7] but without clarification of bounds
of norms for operators. We will repeat some arguments of the proof to see the
constants there.

Proposition 2.8. Let I be a bounded interval.

(a) if p ∈ P (I) ∩ P log
− (I). Then M− is bounded in Lp(·)(I). Moreover,

‖M−‖Lp(·) 7→Lp(·) ≤ C(p)

(
‖M−‖Lp−→Lp− + (b− a)

1
p−

)
, (2.9)

where C(p) = C̃
(
p
p−

)
and C̃(p) is defined in (2.11) (see below).

(b) Let p ∈ P (I) ∩ P log
+ (I). Then M+ is bounded in Lp(·)(I). Moreover,

‖M+‖Lp(·)→Lp(·) ≤ C(p)

(
‖M+‖Lp−→Lp− + (b− a)

1
p−

)
,

with C(p) = C̃
(
p
p−

)
and C̃(p) is defined in (2.11) (see below) replaced C1

by C2, where C2 is defined as C1 but taking c2 for c1, and c2 is defined
by (2.3).

Proof. For simplicity let us assume that I = (0, b). First we show that the
inequality(

M−,hf
)p(x)

(x) ≤ C(p)

(
1

h

∫
I−(x,h)

|f(t)|p(t)dt+ 1

)
, 0 < h < x, (2.10)

holds for all f with ‖f‖Lp(·) ≤ 1, where(
M−,hf

)
(x) :=

1

h

∫
I−(x,h)

|f(y)|dy



Operators in Grand Variable Exponent Lebesgue Spaces 283

and, with C1 from (2.6),

C̃(p) = max

{
3p+ , 2

p+
p−C

1
p−
1

}
. (2.11)

If h ≥ 1
2
, then

(
M−,hf

)p(x)
(x) =

(
1

h

∫
I−(x,h)

|f(y)|dy
)p(x)

≤
(

1

h

∫
I−(x,h)∩{|f |≥1}

|f(y)|p(y)dy + 1

)p(x)

≤
(

1

h

∫
I−(x,h)

|f(y)|p(y)dy + 1

)p(x)

≤ (2 + 1)p(x)

≤ 3p+

which proves (2.10) for this case.
Let h < 1

2
. Then using the Hölder inequality we have

(
M−,hf

)p(x)
(x) ≤

(
1

h

∫
I−(x,h)

|f(y)|p−(I−(x,h))dy

) p(x)
p−(I−(x,h))

≤
(

1

h

∫
I−(x,h)∩{|f |≥1}

|f(y)|p(y)dy + 1

) p(x)
p−(I−(x,h))

≤ h
− p(x)
p−(I−(x,h))

(∫
I−(x,h)

|f(y)|p(y)dy + h

) p(x)
p−(I−(x,h))

.

Since
∫ b

0
|f(x)|p(·)dx ≤ 1 and 0 < h < 1

2
, we have that 1

2

∫
I−(x,h)

|f(y)|p(y)dy+ 1
2
h

≤ 1. Consequently, taking into account the last estimate and the condition
p ∈ P log

− (I) we find that

(M−,h)
p(x)(x) ≤ 2

p(x)
p−(I−(x,h))h

− p(x)
p−(I−(x,h))

(
1

2

∫
I−(x,h)

|f(y)|p(y)dy +
1

2
h

)
≤ 2

p−
p+
−1
h
p−(I−(x,h))−p(x)

p−(I−(x,h))

(
1

h

∫
I−(x,h)

|f(y)|p(y)dy + 1

)
≤ 2

p−
p+
−1
C

1
p−
1

(
M−,h(|f |p(·))(x) + 1

)
.

Thus (2.10) has been proved. Inequality (2.10) immediately implies(
M−f

)p(x)
(x) ≤ C̃(p)

[(
M−(|f |p(·))

)
(x) + 1

]
, (2.12)
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where C̃(p) is defined by (2.11).
Using the fact p

p−
∈ P log

− (I), inequality (2.12) and the boundedness of M−

in Lp−(I) we find that

Sp(M−f) =

∫ b

0

(
M−f(x)

)p(x)
dx

≤ C̃

(
p

p−

)p− (∫ b

0

(
M−(|f |q(·)(x))p−dx+ b

)
≤ C̃

(
p

p−

)p− (
‖M−‖p−Lp−→Lp−

∫ b

0

|f(x)|p(x)dx+ b

)
≤ C̃

(
p

p−

)p− (
‖M−‖p−Lp−→Lp− + b

)
:= C̄p.

Hence, Sp

(
(Mf )C

− 1
p(·)

p

)
≤ 1. Consequently,

∥∥∥(M−f)C̄
− 1
p(·)

p

∥∥∥p+

Lp(·)(I)
≤ 1. Finally,

‖M−‖Lp(·)(I)→Lp(·)(I)≤ C̄
1
p−
p , where C̄p=

[
C̃

(
p

p−

)]p−(
‖M‖p−Lp−→Lp−+b

)
.

Locally integrable a.e. positive function w on I will be called a weight.

Definition 2.9. Let I be an interval in R and let r be a constant, 1 < r <∞.
We say that a weight w ∈ A+

r (I) if

‖w‖A+
r (I) := sup

1

c− a

∫ b

a

w(t)dt

(
1

c− a

∫ c

b

w1−r′(t)dt

)r−1

≤ ∞,

where the supremum is taken for all a, b, c ∈ I satisfying the condition a < b < c.
We say that w ∈ A−1 (I) if there exists c > 0 such that (M−w)(x) ≤ cw(x)

for a.e. x ∈ I. The best possible constant in the latter inequality is denoted by
‖w‖A+

1 (I).

We say that w ∈ A−r (I) if

‖w‖A−r (I) := sup
1

c− a

∫ c

b

w(t)dt

(
1

c− a

∫ b

a

w1−r′(t)dt

)r−1

≤ ∞

for all a, b, c ∈ I satisfying the condition a < b < c.
We say that w ∈ A+

1 (I) if there exists c > 0 such that (M+w)(x) ≤ cw(x)
for a.e. x ∈ I. The best possible constant in the latter inequality is denoted by
‖w‖A+

1 (I).

It is easy to verify that A+
1 (I) ⊂ A+

p (I), A−1 (I) ⊂ A−p (I), p > 1. Moreover,
‖w‖A+

p (I) ≤ ‖w‖A+
1 (I); ‖w‖A−p (I) ≤ ‖w‖A−1 (I).
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Let ρ be a weight on an interval I, i.e. locally integrable a.e. positive function
on I. Suppose that 1 < r < ∞, where r is a constant. We denote by Lr(I, ρ)
the Lebesgue space with weight ρ, which is a space of all measurable functions
f : I → R for which

‖f‖Lp(·)(I,ρ) =

(∫
I

(
|f(x)|ρ(x)

)r
dx

) 1
r

<∞.

Further, we denote ‖f‖Lrρ(I) := ‖ρ 1
r f‖Lr(I).

The following statements can be found in [23] for R, and [2] for R+. They
can be obtained for maximal operators defined on a bounded interval I by
using, e.g., the techniques of dyadic maximal operators to obtain the Sawyer-
type criterion. Then it is possible to pass to the Muckenhoupt-type criterion
(see [18] for details).

Theorem 2.10. Let I be an interval in R. Suppose that r is a constant and
that 1 < r <∞. Then

(i) M+ is bounded in Lr(I, w) iff wr ∈ A+
r (I). Moreover,

‖M−‖Lr(I,w)7→Lr(I,w) ≤ Cr‖wr‖γA−r (I)

for some positive constants Cr and γ depending only on r.

(ii) M− is bounded in Lr(I, w) iff wr ∈ A−r (I). Moreover, there are positive
constants Cr and γ depending only on r such that

‖M+‖Lr(I,w)7→Lr(I,w) ≤ Cr‖wr‖γA+
r (I)

.

Remark 2.11 ([16, Theorem 2.1]). Let I := R. Suppose that r is a constant
and that 1 < r <∞. Then the following estimates hold:

‖M+‖Lr(I,w) 7→Lr(I,w)≤Cr‖wr‖r
′−1

A+
r (I)

, resp. ‖M−‖Lr(I,w)7→Lr(I,w)≤Cr‖wr‖r
′−1

A−r (I)
.

In these inequalities the exponent r′ − 1 is best possible.

Definition 2.12. Let I be an interval in R and let p and q be constants such
that 1 < p <∞, 1 < q <∞. We say that U ∈ A+

p,q(I) if

‖U‖A+
p,q(I)

:= sup

(
1

h

∫ x

x−h
U q(t)dt

) 1
q
(

1

h

∫ x+h

x

U−p′(t)dt
) 1

p′

<∞,

where the supremum is taken over all x ∈ I and h > 0 with (x− h, x+ h) ⊂ I.
Further, U ∈ A−p,q(I) if

‖U‖A−p,q(I) := sup

(
1

h

∫ x+h

x

U q(t)dt
) 1

q
(

1

h

∫ x

x−h
U−p′(t)dt

) 1
p′

<∞,

where the supremum is taken over all x ∈ I and h > 0 with (x− h, x+ h) ⊂ I.
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The following statement is known for I := R+, or for I := R (see [2]) but is
can be derived also for finite interval I = (a, b). It is possible, e.g., by obtaining
the one-weight criterion for appropriate one-sided fractional maximal operator
defined on I (see [18]) and then passing to the one-sided potentials by using the
estimate of weighted norms which are true for one-sided A∞ weights. We omit
the details not to repeat the arguments used for unbounded intervals.

Theorem 2.13. Let I := (a, b), r and α be constants. Suppose that 0 < α < 1,
1 < r < 1

α
and s = r

1−αr .

(i) The Weyl operator Wα given by

Wαf(x) =

∫ b

x

f(t)(t− x)α−1dt, x ∈ I,

is bounded from Lr(I,U) to Ls(I,U) iff U ∈ A+
r,s(I). Moreover, there are

positive constants cr,α and γ such that

‖Wα‖Lr(I,U)→Ls(I,U) ≤ cr,α‖U‖γA+
r,s(I)

; (2.13)

(ii) the Riemann–Liouville operator

Rαf(x) =

∫ x

a

f(t)(x− t)α−1dt, x ∈ I,

is bounded from Lr(I,U) to Ls(I,U) iff U ∈ A−r,s(I). Moreover, there is a
positive constants cr,α and γ such that

‖Wα‖Lr(I,U)→Ls(I,U) ≤ cr,α‖U‖γA+
r,s(I)

. (2.14)

Remark 2.14. It is known that in the case I := R the best possible constant γ
in (2.13) (or in (2.14)) is equal to (1− α) max{1, p′

q
}.

3. One-sided extrapolation

The next statement is a modification of the one-sided extrapolation theorem
proven in [12] (see [5] for Euclidean spaces). In what follows the following
notation is used:

q̄(·) :=
q(·)
q0

, where 0 < q0 <∞;

B+
q := ‖M+‖Lq̄′(·)(I)→Lq̄′(·)(I), B−q := ‖M−‖Lq̄′(·)(I)→Lq̄′(·)(I).

In particular, if p0 = q0, then it is assumed p̄ and B±p for q̄ and B±q , respectively.
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Proposition 3.1. Let I := (a, b) be an interval in R (bounded or unbounded).
Let F be a family of pairs of nonnegative functions such that for some p0 and
q0 with 0 < p0 ≤ q0 <∞, the inequality(∫

I

f(x)q0w(x)dx

) 1
q0

≤ c0

(∫
I

g(x)p0w(x)
p0
q0 dx

) 1
p0

(3.1)

holds for all (f, g) ∈ F , where w ∈ A+
1 (I) (resp. A−1 (I)) and the positive con-

stant c0 := c0(‖w‖A+
1 (I)) (resp. c0 := c0(‖w‖A−1 (I))) is independent of (f, g) and

depends on ‖w‖A+
1

(I) (resp. ‖w‖A+
1

(I)). Given p ∈ P (I) satisfying the condition

p0 < p−(I) ≤ p+(I) < p0q0
q0−p0

, define a function q by

1

p(x)
− 1

q(x)
=

1

p0

− 1

q0

, x ∈ I. (3.2)

If M− (resp. M+

)
is bounded in L

(
q(·)
q0

)′
(I), then for all (f, g) ∈ F such that

f ∈ Lq(·)(I) the inequality

‖f‖Lq(·)(I) ≤ b−0 ‖g‖Lp(·)(I)
(

resp. ‖f‖Lq(·)(I) ≤ b+
0 ‖g‖Lp(·)(I)

)
holds, where b−0 := b−0 (B−q , q) (resp. b+

0 := b+
0 (B+

q , q)) is independent of (f, g) and
depends on q and B−q (resp. on q and B+

q ). Moreover, if the mapping x→ c0(x)
is non-decreasing on (1,∞), then there exists a small positive constant δ such
that

sup
0<λ−≤λ+<δ

b−0 (B−q−λ, q−λ) <∞
(

resp. sup
0<λ−≤λ+<δ

b+
0 (B+

q−λ, q−λ) <∞
)
,

where q−λ is defined by (3.2) replaced q by q−λ and p(·) by p(·)−λ(·) (here λ
denotes continuous bounded functions on I).

Proof. For simplicity let us prove the theorem for p0 = q0 and w ∈ A+
1 (I). The

proofs for other cases are the same. Thus, assume that (3.1) holds for p0 = q0

and w ∈ A+
1 (I). First notice that p̄ ∈ P (I), where p̄(·) = p(·)

p0
. Observe that in

this case p(·) = q(·) and, consequently, B−q = B−p .
We set:

Hφ(x) =
+∞∑
k=0

(
M(k)
− φ
)
(x)

2k(B−p )k
,

where

M(k)
− =M− ◦ M− ◦ · · · ◦ M−︸ ︷︷ ︸

k

; M(0)
− = Id.
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From the definition it follows that

(a) if φ ≥ 0, then φ(x) ≤
(
Hφ
)
(x);

(b) ‖Hφ‖L(p̄)′(·)(I) ≤ 2‖φ‖L(p̄)′(·)(I);

(c) M−
(
Hφ
)
(x) ≤ 2B−p Hφ(x) for every x ∈ I.

The latter inequality implies that Hφ ∈ A+
1 (I) with an A+

1 (I) constant inde-
pendent of φ.

Further, by the definition and elementary properties of Lp(·) spaces we have

‖f‖p0

Lp(·)(I)
= ‖ |f |p0‖Lp̄(·)(I) ≤ sup

∫
I

|f(x)|p0h(x)dx,

where the supremum is taken over all nonnegative h ∈ L(p̄)′(·)(I) with the norm
‖h‖L(p̄)′(·)(I) = 1. Let us fix such an h. We will show that∫

I

|f |p0h(x) dx ≤ c ‖g‖p0

Lp(·)(I)
,

where c is independent of h and f ∈ Lp(·)(I). By (a),(b) and the Hölder in-
equality for Lp(·) spaces we have∫

I

|f |p0h(x) dx ≤
∫
I

|f |p0 Hh(x) dx

≤ 2 ‖ |f |p0‖Lp̄(I)‖Hh‖L(p̄)′ (I)

≤ 2c ‖ f‖p0

Lp(·)(I)
‖h‖L(p̄)′(·)(I)

= 2c ‖ f‖p0

Lp(·)(I)

<∞.

Using the fact that A+
1 (I) constant of Hh is bounded by 2B−p , applying (3.1)

and the Hölder inequality with respect to p̄ we find that∫
I

fp0(x)h(x)dµ(x) ≤
∫
I

fp0(x)Hh(x)dµ(x)

≤ c0(‖Hh‖A+
1

)

∫
I

gp0(x)Hh(x)dµ(x)

≤ c0(‖Hh‖A+
1

)
( p0

p−
+
p+ − p0

p+

)
‖gp0‖Lp̄(·)(I)‖Hh‖L(p̄)′(·)(I)

≤ 2c0(2B−p )
( p0

p−
+
p+ − p0

p+

)
‖g‖p0

Lp(·)(I)
‖h‖L(p̄)′(·)(I)

≤ 2c0(2B−p )
( p0

p−
+
p+ − p0

p+

)
‖g‖p0

Lp(·)(I)
.

This completes the proof of the statement.
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4. One-sided maximal and Calderón–Zygmund Operators

We begin this section with the following statement.

Proposition 4.1 (Reduction Statement ([12, Proposition 2.10], [15, p. 841])).
Let I be a bounded interval in R and let p ∈ P (I). Suppose that θ > 0.

(a) Suppose that F is a family of pairs (f, g) such that

‖f‖Lp(·)−ε(I) ≤ cp,ε‖g‖Lp(·)−ε(I),

for all small positive ε. If sup0<ε≤σ cp,ε <∞ for some positive constant σ,
then for all (f, g) ∈ F ,

‖f‖Lp(·),θ(I) ≤ c‖g‖Lp(·),θ(I);

(b) Suppose that F is a family of pairs (f, g) such that

‖ε
θ

p(·)−εf‖Lp(·)−ε(I) ≤ bp,ε‖ε
θ

p(·)−ε g‖Lp(·)−ε(I)

for some positive constant bp,ε. If sup0<ε<σ bp,ε < ∞ for some positive
constant σ, then for all (f, g) ∈ F ,

‖f‖Lp(·),θ(I) ≤ c‖g‖Lp(·),θ(I),

where the positive constant c does not depend on (f, g).

Now we give the definition of the Calderón–Zygmund kernel.

Definition 4.2. Let I := (−a, a), 0 < a ≤ ∞. We say that a function k
in L1

loc(I \ {0}) is a Calderón–Zygmund kernel if the following properties are
satisfied:

(a) There exists a constant A1 such that∣∣∣∣ ∫
ε<|x|<N

k(x)dx

∣∣∣∣ ≤ A1 <∞

for all ε and all N , with 0 < ε < N < a, and furthermore

lim
ε→0

∫
ε<|x|<N

k(x)dx

exists.

(b) There exists a positive constant A2 such that∣∣k(x)
∣∣ ≤ A2

|x|
, x ∈ I \ {0}.
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(c) There exists a positive constant A3 such that for all x, y ∈ I with
|x| > 2|y| > 0 the inequality

|k(x− y)− k(x)| ≤ A3
|y|
|x|2

holds.

It is known (see [1]) that if a = ∞, (a)–(c) are satisfied for the kernel k
defined on R, then the operators

K∗f(x) = sup
ε>0

∣∣Kεf(x)
∣∣, Kf(x) = lim

ε→0
Kεf(x)

where

Kεf(x) =

∫
|x−y|>ε

k(x− y)f(y)dy,

are of weak (1, 1) type and are bounded in Lr(R), 1 < r < ∞. It is clear that
Kf(x) ≤ K∗f(x).

The following example shows the existence of a non-trivial Calderón–Zyg-
mund kernel with a support contained in (0, a).

Example 4.3. The function

k(x) =
1

x

sin(log x)

log x
χ(0,a)(x)

is a Calderón–Zygmund kernel (cf. [1]).

There exists also a non-trivial Calderón–Zygmund kernel supported in the
interval (−a, 0).

The next results are well-known for the Calderón–Zygmund kernels sup-
ported in the interval in the interval (0,∞) (resp. (−∞, 0)) (see [1]), but the
techniques developed in those papers enable us to formulate it for a finite in-
terval.

Theorem 4.4. Let I := (0, a) be a bounded interval and let r be a constant,
1 < r < ∞, and let k be a Calderón–Zygmund kernel with support in (0, 2a).
Then the condition w ∈ A−r (I) implies the inequality∫

I

∣∣K∗f(x)
∣∣rw(x)dx ≤ c

∫
I

∣∣f(x)
∣∣rw(x)dx, f ∈ Lrw(I).

Moreover,
‖T ∗‖Lr 7→Lr ≤ Cr‖w‖γA−r (I)

for some positive constants Cr and γ depending only on r.
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Theorem 4.5. Let I := (0, a) be a bounded interval and let r be a constant
such that 1 < r < ∞. Let k be a Calderón–Zygmund kernel with support in
(−2a, 0). If w ∈ A+

r (I), then it follows that T ∗ is bounded in Lrw(I). Moreover,

‖T ∗‖Lr 7→Lr ≤ Cr‖w‖γA+
r (I)

for some positive constant constants Cr and γ depending only on r.

Theorem 4.6. Let I := (0, a), 0 < a <∞ be a bounded interval and let θ > 0.
Suppose that p ∈ P (I).

(i) If p ∈ P−(I), then the one-sided Hardy–Littlewood maximal operator M−
is bounded in Lp(·),θ(I);

(ii) If p ∈ P+(I), then the one-sided Hardy–Littlewood maximal operator M+

is bounded in Lp(·),θ(I);

Proof. We show only part (i) since part (ii) follows analogously. By Hölder’s
inequality we can easily see that

‖M−f‖Lp(·),θ(I) ≤ Cp,σ sup
0<ε<σ

ε
θ

p−−ε‖M−f‖Lp(·)−ε(I),

where σ is a small positive number. Applying Proposition 2.8, estimate (2.8),
and taking σ sufficiently small, we find that

‖M−f‖Lp(·)−ε(I) ≤ C(p−ε)
(

2[(p−ε)′−]
1

(p−ε)−+|I|
)
‖f‖Lp(·)−ε(I) := bp,ε‖f‖Lp(·)−ε(I),

where, obviously,
sup

0<ε≤σ
bp,ε <∞

for some sufficiently small positive σ (here C(p) is defined by (2.9)). Now the
result follows from Proposition 4.1(a).

In the next statement by the symbol D(I) is denoted the class of bounded
functions defined on I with compact support.

Theorem 4.7. Let I := (0, a) be a bounded interval and let θ > 0. Suppose
that p ∈ P (I).

(i) If p ∈ P+(I), then for the Calderón–Zygmund operator K with kernel
supported on (−2a, 0), there is a positive constant c such that for all
f ∈ D(I), the inequality

‖K∗f‖Lp(·),θ(I) ≤ c‖f‖Lp(·),θ(I);

holds;
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(ii) If p ∈ P−(I), then for the Calderón–Zygmund operator K with kernel
supported on (0, 2a), there is a positive constant c such that that for all
f ∈ D(I), the inequality

‖K∗f‖Lp(·),θ(I) ≤ c‖f‖Lp(·),θ(I);

holds.

Proof. (i). Observe that Theorem 4.4 and Proposition 3.1 yield that there is a
small positive constant σ such that for all f ∈ D(I),

‖K∗f‖Lp(·)−ε(I) ≤ cp,ε‖g‖Lp(·)−ε(I),

with sup0<ε≤σ cp,ε < ∞. Now by using Proposition 4.1 we have the desired
result. Part (ii) follows similarly.

Regarding the space Lp(·),θ(I) we have the following statement.

Theorem 4.8. Let I be a bounded interval and let θ>0. Suppose that p∈P (I).

(i) If p ∈ P−(I), then the one-sided Hardy–Littlewood maximal operator M−
is bounded in Lp(·),θ(I);

(ii) If p ∈ P+(I), then the one-sided Hardy–Littlewood maximal operator M+

is bounded in Lp(·),θ(I).

Proof. We prove (i). First observe that by Hölder’s inequality we have that

‖M−f‖Lp(·),θ(I) ≤ C(p, θ, σ) sup
0<ε≤σ

‖ε
θ

p(·)−εM−f(·)‖Lp(·)−ε(I),

where σ is a small positive number. Further, let

sup
0<ε≤σ

‖ε
θ

p(·)−εf(·)‖Lp(·)−ε(I) ≤ 1.

We will show that

εθ
∫
I

(M−f(x))p(x)−εdx ≤ C, ε ∈ (0, σ],

for some positive constant C independent of ε. Let f ≥ 0. Applying estimates
(2.12),(2.8) we find that

εθ
∫
I

(M−f(x))p(x)−εdx≤ C̃(pε)
p−−εεθ2p−−ε−1

[ ∫
I

[
M−

(
f
p(x)−ε
p−−ε

)]p−−ε
(x) dx+|I|

]
≤ C̃(pε)

p−−ε(p−−ε)′2p−−ε−1εθ
[ ∫

I

(f(x)p(x)−εdx+|I|
]

≤ C̃(pε)
p−−ε(p−−ε)′2p−−ε

≤C,

where ε ≤ σ, pε := p−ε
p−−ε and C̃(p) is defined by (2.11).
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5. One-sided fractional integrals

In this section we study the boundedness of one-sided fractional integral oper-
ators Wα and Rα in GVELSs which are narrower than the space Lp(·),θ(I). To
formulate the main result of this section we introduce new classes of exponents
related to the classes P−(I) and P+(I). The class P̃`−− (I) (resp. P̃`++ (I)) is the
class of all non-negative p ∈ P−(I) (resp. p ∈ P+(I)) such that 0 ≤ `− :=
sup c1(p) <∞ (resp. 0 ≤ `+ := sup c2(p) <∞), where c1(p) (resp. c2(p)) is the
best possible constant in (2.2) (resp. in (2.3)). Analogously, P`(I) is the class of
all p ∈ P(I) such that 0 ≤ ` := supA(p) <∞, where A(p) is the best possible
constant in (2.4).

Let p ∈ P (I) and let θ > 0. We introduce new spaces L̃p(·),θ,`(I), L̃
p(·),θ,`+
+ (I)

and L̃
p(·),θ,`−
− (I) defined with respect to the norms

‖f‖L̃p(·),θ,`(I) := sup

{
η

θ
p−−η+
+ ‖f‖Lp(x)−η(x)(I): 0<η−≤η+<η0, p(·)−η(·)∈P̃`(I)

}
‖f‖

L̃
p(·),θ,`+
+ (I)

:= sup

{
η

θ
p−−η+
+ ‖f‖Lp(x)−η(x)(I) : 0<η−≤η+<η0, p(·)−η(·)∈P̃`++ (I)

}
‖f‖

L̃
p(·),θ,`−
− (I)

:= sup

{
η

θ
p−−η+
+ ‖f‖Lp(x)−η(x)(I): 0<η−≤η+<η0, p(·)−η(·)∈P̃`−− (I)

}
where in the definition of these norms η0 is some positive constant such that
η0 < p−−1 and η(·) is a measurable function defined on (0, η0) with the property
0 < η− ≤ η+ < η0.

It can be checked that the spaces L̃
p(·),θ,`−
− (I) and L̃

p(·),θ,`−
+ (I) are Banach

spaces. Let p ∈ P+(I). Then the closure of Lp(·)(I) in L̃p(·),θ(I) consists of those

f ∈ L̃p(·),θ(I) having the following property: for any sequence ε(n)(·) such that

p− ε(n) ∈ P̃+(I) and ε
(n)
+ → 0,

(ε
(n)
+ )

θ

p−−ε
(n)
+ ‖f(·)‖

Lp(·)−ε
(n)(·)(I)

→ 0.

If p = const, then the spaces L̃
p(·),θ,`−
− (I) and L̃

p(·),θ,`−
+ (I) are constant expo-

nent grand Lebesgue spaces.
The next statement is a corollary of Theorem 2.13.

Proposition 5.1. Let Wα and Rα be one-sided operators defined in Theo-
rem 2.10. Let p0 and α be constants such that 1 < p0 <∞ and 0 < α < 1

p0
. We

set q0 = p0

1−αp0
.

(i) The operator Wα is bounded from Lp0

w
p0
q0

(I) to Lq0w (I) iff w ∈ A+
1+

q0
(p0)′

;

(ii) The operator Rα is bounded from Lp0

w
p0
q0

(I) to Lq0w (I) iff w ∈ A−
1+

q0
(p0)′

.
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Proposition 5.2 ([7, Theorem 4.2]). Let p ∈ P (I). Suppose that α is a constant

such that 0 < α < 1
p+

. We set q(x) = p(x)
1−αp(x)

.

(i) Let p ∈ P+(I). Then there is a positive constant bp,α depending only on p
and α such that the following inequality holds

‖Wαf‖Lq(·)(I) ≤ bp,α‖f‖Lp(·)(I).

(ii) Let p ∈ P−(I). Then there is a positive constant bp,α depending only on p
and α such that the following inequality holds

‖Rαf‖Lq(·)(I) ≤ bp,α‖f‖Lp(·)(I).

Proposition 5.3 (Reduction Statement). Let p ∈ P (I) and let θ > 0. Suppose

that 0 ≤ α < 1
p+

. We set q(x) = p(x)
1−αp(x)

. Suppose that F is a family of pairs

(f, g) such that
‖f‖Lq(·)−ε(·)(I) ≤ cp,α,η‖g‖Lp(·)−η(·)(I)

for all ε(·) and η(·) satisfying the conditions:

(a) 1 < η− ≤ η+ < σ, where σ is a small positive number;

(b) 1
p(x)−η(x)

− 1
q(x)−ε(x)

= α;

(c) p− η ∈ P̃`++ (I) (resp. p− η ∈ P̃`−− (I)).

If sup0<η−≤η+≤σ cp,α,η < ∞ for some positive constant σ, then there exists a
positive constant c such that for all (f, g) ∈ F ,

‖f‖
L̃
q(·),

θq−
p−

,˜̀+
+ (I)

≤c‖g‖
L̃
p(·),θ,`+
+ (I)

(
resp. ‖f‖

L̃
q(·),

θq−
p−

,˜̀−
− (I)

≤c‖g‖
L̃
p(·),θ,`−
− (I)

)
, (5.1)

where ˜̀±(I) = `±
(1−αp+)2 .

Proof. We repeat the arguments of [15, proof of Proposition 14.144, p. 847].
We will prove (5.1).

Observe that it is enough to show that

sup
0<ε−≤ε+<δ

ε
θ
p−
+ ‖f‖Lq(·)−ε(·)(X) ≤ C sup

0<η−≤η+<σ
η

θ
p−
+ ‖g‖Lp(·)−η(·)(X)

for some positive numbers σ and δ, where θ > 0.
We take η so that 0 < η− ≤ η+ < σ. We define ε(·) so that

1

p(x)− η(x)
− 1

q(x)− ε(x)
= α. (5.2)

Observe that if p− η ∈ P̃`++ (I), then by (5.2) we have that q − ε ∈ P̃ ˜̀
+

+ (I),

where ˜̀+(I) = `+
(1−αp+)2 .
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It is easy to see that since the function t 7→ t
1−αt is increasing on [0, 1

α
], we

have

ε+ ≤ q+ −
p− − η+

1− α(p− − η+)
∼ η+ as ε+ → 0.

In particular, it can be checked that ε+
η+
≤ 1

(1−αp−)2 for sufficiently small ε+.
Hence

ε
θ
p−
+ ‖f‖Lq(·)−ε(·)(X)≤cp,α,εε

θ
p−
+ ‖g‖Lp(·)−η(·)(X)≤(1−αp−)

− 2θ
p− cp,α,εη

θ
p−
+ ‖g‖Lp(·)−η(·)(X).

Since sup0<ε−≤ε+<σ cp,α,ε <∞, we have the desired result.

Finally, we can formulate the statement concerning the fractional integrals.

Theorem 5.4. Let p ∈ P (I) and let θ > 0. Suppose that α is a constant such

that 0 < α < 1
p+

. We set q(x) = p(x)
1−αp(x)

. Then

(i) Wα is bounded from L̃
p(·),θ,`+
+ (I) to L̃

q(·), θq−
p−

,˜̀+
+ (I);

(ii) Rα is bounded from L̃
p(·),θ,˜̀−
− (I) to L̃

q(·), θq−
p−

,˜̀−
− (I), where ˜̀+(I) (resp. ˜̀−(I))

is defined in Proposition 5.3.

Proof. (i). Observe that Propositions 3.1 and 5.1 yield that inequality

‖Wαf‖Lq(·)−ε(·)(I) ≤ cp,α,η‖g‖Lp(·)−η(·)(I)

for all f ∈ L̃p(·),θ,`+(I), ε(·) and η(·) satisfying the conditions (a)–(c) of
Proposition 5.3, where σ is a sufficiently small positive number and
sup0<η−≤η+≤σ cp,α,η<∞. Now Proposition 5.3 completes the proof.

Part (ii) follows similarly.

Theorem 5.5. Let p ∈ P (I) and let θ > 0. Then

(i) M+ is bounded in L̃
p(·),θ,`+
+ (I);

(ii) M− is bounded in L̃
p(·),θ,`−
− (I).

Proof. (i). This statement follows in the same way as Theorem 4.6 taking into
account the bounds ofM− andM+ in Lp(·)(I). We only need to notice that if

f ∈Lp(·)−ε(·) with p(·)−ε(·)∈P̃`++ (I), thenM+∈Lp(·)−ε(·) with p(·)−η(·)∈P̃`++ (I).
Part (ii) follows similarly.

Theorem 5.6. Let I := (0, a) be a bounded interval and let θ > 0. Suppose
that p ∈ P (I). Then

(i) For the Calderón–Zygmund operator K with kernel supported on (−2a, 0),
there is a positive constant c such that for all bounded f defined on I the
inequality

‖K∗f‖
L̃
p(·),θ,`+
+ (I)

≤ c‖f‖
L̃
p(·),θ,`+
+ (I)

;

holds;
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(ii) For the Calderón–Zygmund operator K with kernel supported on (0, 2a),
there is a positive constant c such that for all bounded f defined on I the
inequality

‖K∗f‖
L̃
p(·),θ,`−
− (I)

≤ c‖f‖
L̃
p(·),θ,`−
− (I)

holds.

Proof. This statement can be obtained in the same way as Theorem 5.4 was
proved by using Propositions 5.3, 3.1, and Theorem 4.4. Details are omitted.
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