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Global Well-Posedness for the
Gross–Pitaevskii Equation with

Pumping and Nonlinear Damping

Binhua Feng, Xiangxia Yuan and Jun Zheng

Abstract. This paper deals with the Cauchy problem for the Gross–Pitaevskii equa-
tion with pumping and nonlinear damping which describes the dynamics of pumped
decaying Bose–Einstein condensates. This paper establishes global existence of solu-
tions for general initial data in the energy space.
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1. Introduction

In this paper we study the Cauchy problem for the following Gross–Pitaevskii
equation with linear pumping and nonlinear damping,

i∂tψ = −1

2
∆ψ+V (x)ψ+λ|ψ|2αψ+ i(a− b|ψ|2p)ψ, (t, x) ∈ [0,∞)×RN , (1)

where ψ = ψ(t, x) represents the wave function, V (x) is the trapping potential,
a > 0 is the pumping term, and b > 0 is the strength of the decaying term.
Equation (1) was proposed by Keeling and Berloff [15] to study pumped decay-
ing condensates, particularly the Bose–Einstein condensates (BEC) of exciton-
polaritons. When V = 0, equation (1) describes the optical beam dynamics in
nonlinear media, see [1].
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When a = 0 and b > 0, equation (1) appears in different physical con-
texts. For example, in considering the three-body interaction in collapsing
Bose–Einstein condensates (BECs), within the realm of Gross–Pitaevskii the-
ory, the emittance of particles from the condensate is described by the dissipa-
tive model involving a quintic nonlinear damping term [14]; in nonlinear optics,
equation (1) with V = 0 describes the propagation of a laser pulse within an op-
tical fiber under the influence of additional multi-photon absorption processes,
see, e.g., [4, 12]. From a mathematical point of view, the last term in (1) is
dissipative. Therefore, the energy of (1) is no longer conserved, in contrast to
the usual case of Hamiltonian for nonlinear Schrödinger equations. Numerical
studies of (1) can be found in [13, 16]; in particular, the nonlinear-damping
continuation of singular solutions for (1) with critical and supercritical nonlin-
earities has been considered in [13]. When V ≡ 0, under some assumptions,
Feng, Zhao and Sun [9] have showed that as b→ 0 the solution of (1) converges
to that of (1) with b = 0. Some sufficient conditions for global existence of
solutions to (1) have been established in [2, 3, 7, 8, 10,11].

When a > 0 and b > 0, Sierra etc. in [17] explore numerically the behavior
of solutions of (1). As far as we know, there are no any rigorously mathematical
results about (1), despite the physical significance of the involved applications.
The aim of this paper is to establish the global existence of solutions to (1).
Due to the appearance of linear pumping, the result in [6] suggests that the
solution ψ of (1) with b = 0 blows up in finite time for a sufficiently large. This
bring some difficulties for our analysis.

To solve this problem, we set ψ(t, x) = eatu(t, x) in (1), then (1) can be
transformed to

i∂tu = −1

2
∆u+V (x)u+λe2aαt|u|2αu− ibe2apt|u|2pu, (t, x)∈ [0,∞)×RN.

For mathematical interesting, we consider more general equation: i∂tu = −1

2
∆u+V (x)u+f(t)|u|2αu− ig(t)|u|2pu, (t, x)∈ [0,∞)×RN,

u|t=0 = u0∈Σ,
(2)

where N ≥ 1, 0 < α, p < 2
N−2

(0 < α, p <∞, if N = 1 or N = 2). The external
potential V is supposed to be an anisotropic harmonic confinement, i.e.,

V (x) =
1

2

N∑
j=1

ω2
jx

2
j , ωj ∈ R. (3)

Denote by Σ the energy space associated to the harmonic potential, i.e.,

Σ = {u ∈ H1(RN) and xu ∈ L2(RN)},
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equipped with the following norm:

‖u‖Σ := ‖u‖L2 + ‖∇u‖L2 + ‖xu‖L2 .

In order to state our main results, we first give the definition of solutions
to (2).

Definition 1.1. A strong Σ-solution u of (2) on [0, T ] is a function

u ∈ C([0, T ),Σ) ∩ C1([0, T ],Σ∗)

such that i∂tu = −1
2
∆u+ V (x)u+ f(t)|u|2αu− ig(t)|u|2pu for all t ∈ [0, T ] and

u|t=0 = u0, where Σ∗ is the dual of the energy space Σ.

In the following, we shall establish the global existence for (1) and (2).

Theorem 1.2. Let g be a positive continuous function defined in [0,∞),
f ∈ W 1,∞

loc (0,∞), u0 ∈ Σ. Assume that V satisfies (3) and suppose further
that

(i) 0 < α, p < 2
N

or

(ii) 2
N
≤ α < p < 2

(N−2)+
or

(iii) α = p = 2
N

or

(iv) 2
N
< α = p < 2

(N−2)+
and f(t) ≥ −g(t)

p
for every t ∈ [0,∞).

Then, the Cauchy problem (2) has a unique global solution u ∈ C([0,∞),Σ).

As a direct corollary of this theorem, we can obtain the global well-posedness
for (1).

Corollary 1.3. In either of the cases mentioned in Theorem 1.2, for any
λ ∈ R, a > 0, b > 0, and ψ0 ∈ Σ, equation (1) has a unique global solution
ψ ∈ C([0,∞),Σ).

Remark 1.4. This result suggests that for every initial data, under the as-
sumption α < p, the corresponding solution is global no matter how the system
gain energy. In addition, when V (x) ≡ 0, under the condition α < p, a similar
result on the global existence was established by Yokota in [18].

This paper is organized as follows: in Section 2, we will collect some lemmas
such as the local well-posedness, and a-priori estimates for the solutions of (2).
In Section 3, we will show Theorem 1.2.
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2. Some lemmas

First, let us recall the local theory for the initial value problem (2). When
f(t) ≡ C, g(t) ≡ C, in [2,5] and references therein, the authors showed that (2)
is local well-posedness. For our case, since f ∈ L∞loc(0,∞) and g ∈ L∞loc(0,∞), we
only need to take their L∞-norms when the nonlinearities have to be estimated
in some norms. Keeping this in mind and applying the method in [2, 5], one
can show the local well-posedness of (2). For the sake of conciseness, we only
state the results without detailed proof.

Proposition 2.1. Let u0 ∈ Σ, 0 < α, p < 2
N−2

, f, g ∈ L∞loc(0,∞) and V
satisfy (3). Then, there exists T = T (‖u0‖Σ) such that (2) admits a unique
solution u ∈ C([0, T ],Σ)∩C1([0, T ],Σ∗). Let [0, T ∗) be the maximal time interval
on which u is well-defined. If T ∗ < ∞, then ‖∇u(t)‖L2 → +∞ as t → T ∗. In
the case α = p = 2

N
, if T ∗ <∞, then∫ T ∗

0

‖u(t)‖2+ 4
N

L2+ 4
N
dt =∞.

In the following, in order to extend the obtained local in-time solution to
arbitrary time intervals, we will derive several a-priori estimates.

Lemma 2.2. Let u(t) ∈ Σ be a solution of (2) defined on the maximal interval
[0, T ∗), V satisfy (3), and g(t) > 0. Then

‖u(t)‖L2 ≤ ‖u0‖L2 , ∀ t ∈ [0, T ∗), (4)

and ∫ T ∗

0

g(t)

∫
RN
|u(t, x)|2p+2dxdt ≤ C(‖u0‖L2). (5)

Proof. We multiply (2) by ū and integrate with respect to x ∈ RN . Taking the
imaginary part, we have

1

2

d

dt

∫
RN
|u(t, x)|2dx = −g(t)

∫
RN
|u(t, x)|2p+2dx ≤ 0, (6)

which implies that (4) holds. In addition, integrating (6) with respect to t, we
can obtain (5).

Lemma 2.3. Let u(t) ∈ Σ be a solution of (2) defined on the maximal interval
[0, T ∗), α < p, V satisfy (3), f, k ∈ W∞

loc(0,∞). Moreover, assume that k and g

are two positive continuous functions defined in [0,∞) and 0 < k(t) < g(t)
p(p+1)

for every t ∈ [0, T ∗). Then, for every 0 < T < T ∗,

E(t) ≤ E(0) + C(T, ‖u0‖L2), ∀ t ∈ [0, T ],
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where

E(t) =
1

2

∫
RN
|∇u(t, x)|2dx+

∫
RN
V (x)|u(t, x)|2dx

+
f(t)

α + 1

∫
RN
|u(t, x)|2α+2dx+ k(t)

∫
RN
|u(t, x)|2p+2dx.

Proof. We first assume that u(t) is sufficiently regular and decaying so that all
of the following formal manipulations can be carried out. Once the final result
is established, a standard density argument allows to conclude that it also holds
for u ∈ C([0, T ],Σ).

Since
∆ū = 2i∂tū+ 2V (x)ū+ 2f(t)|u|2αū+ 2ig(t)|u|2pū,

it follows that

d

dt

∫
RN
|∇u(t)|2dx

= −2Re

∫
RN
∂tu∆ūdx

= −2Re

∫
RN
∂tu(2i∂tū+ 2V (x)ū+ 2f(t)|u|2αū+ 2ig(t)|u|2pū)dx

= −2
d

dt

∫
RN
V |u|2dx− 2f(t)

α + 1

d

dt

∫
RN
|u|2α+2dx+ 4g(t)Im

∫
RN
∂tu|u|2pūdx.

(7)

For the last term, using (2) and integration by parts, we have

Im

∫
RN
∂tu|u|2pūdx

= Im

∫
RN

(
i

2
∆u− iV (x)u− if(t)|u|2αu− g(t)|u|2pu

)
|u|2pūdx

=
1

2
Re

∫
RN

∆u|u|2pūdx−
∫
RN
V (x)|u|2p+2dx− f(t)

∫
RN
|u|2α+2p+2dx

= −1

2

∫
RN
|u|2p|∇u|2dx− p

∫
RN
|u|2p|∇|u||2dx−

∫
RN
V (x)|u|2p+2dx

− f(t)

∫
RN
|u|2α+2p+2dx.

(8)

To treat the last term in (8), we compute

d

dt

∫
RN
|u(t)|qdx = qRe

∫
RN
∂tu|u|q−2ūdx

= −q
2

Im

∫
RN

∆u|u|q−2ūdx− qg(t)

∫
RN
|u|q+2pdx

=
q

2

∫
RN
∇|u|q−2 · Im(∇uū)dx− qg(t)

∫
RN
|u|q+2pdx,

(9)
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where q > 2. By the same limit process as in [2], we can show that∫
RN
∇|u|q−2 · Im(∇uū)dx = (q − 2)

∫
RN
|u|q−2Re(φ̄∇u) · Im(ū∇u)dx,

where φ is defined by,

φ(t, x) :=

{
|u(t, x)|−1u(t, x) if u(t, x) 6= 0,

0 if u(t, x) = 0.

In view of the identity

2Re(φ̄∇u) · Im(ū∇u) = −|Re(φ̄∇u)− Im(ū∇u)|2 + |∇u|2,

we obtain:

d

dt

∫
RN
|u(t)|qdx = −q(q − 2)

4

∫
RN
|u|q−2|Re(φ̄∇u)− Im(ū∇u)|2dx

+
q(q − 2)

4

∫
RN
|u|q−2|∇u|2dx− qg(t)

∫
RN
|u|q+2pdx.

(10)

Taking q = 2p+ 2, we deduce from (7)–(10) that

d

dt
E(t) =

f ′(t)

α + 1

∫
RN
|u(t)|2α+2dx− g(t)

∫
RN
|u|2p|∇u|2dx

− 2pg(t)

∫
RN
|u|2p|∇|u||2dx− 2g(t)

∫
RN
V |u|2p+2dx

− 2g(t)f(t)

∫
RN
|u|2α+2p+2dx− (2p+ 2)k(t)g(t)

∫
RN
|u|4p+2dx

+ p(p+ 1)k(t)

∫
RN
|u|2p|∇u|2dx+ k′(t)

∫
RN
|u(t)|2p+2dx

− p(p+ 1)k(t)

∫
RN
|u|2p|Re(φ̄∇u)− Im(ū∇u)|2dx

≤ |f
′(t)|

α + 1

∫
RN
|u(t)|2α+2dx+ |k′(t)|

∫
RN
|u(t)|2p+2dx

+ 2g(t)|f(t)|
∫
RN
|u|2α+2p+2dx− (2p+ 2)k(t)g(t)

∫
RN
|u|4p+2dx

+ (p(p+ 1)k(t)− g(t))

∫
RN
|u|2p|∇u|2dx.

(11)

On the other hand, since α < p, we deduce from the interpolation inequality
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and the Young inequality with ε that

‖u‖2α+2p+2
L2α+2p+2 ≤ ‖u‖

(1−α
p

)(2p+2)

L2p+2 ‖u‖
α
p

(4p+2)

L4p+2 ≤ C(ε)‖u‖2p+2
L2p+2 + ε‖u‖4p+2

L4p+2 , (12)

‖u‖2p+2
L2p+2 ≤ ‖u‖L2‖u‖2p+1

L4p+2 ≤ C(ε)‖u‖2
L2 + ε‖u‖4p+2

L4p+2 , (13)

and

‖u‖2α+2
L2α+2 ≤ ‖u‖

2p−α
p

L2 ‖u‖
α(2p+1)

p

L4p+2 ≤ C(ε)‖u‖2
L2 + ε‖u‖4p+2

L4p+2 , (14)

for any ε > 0. Since k and g are two positive continuous functions defined in
[0,∞), for any T ∈ [0, T ∗), there are M1 and M2 such that

k(t) ≥M1 and g(t) ≥M2 for all t ∈ [0, T ].

Therefore, we deduce from (11)–(14) that

d

dt
E(t) ≤ C(ε)‖u(t)‖2

L2 + C(ε)‖u(t)‖2p+2
L2p+2 . (15)

In addition, it follows from (5) that

M2

∫ T

0

∫
RN
|u(t, x)|2p+2dxdt ≤

∫ T ∗

0

g(t)

∫
RN
|u(t, x)|2p+2dxdt ≤ C(‖u0‖L2).

Therefore, integrating (15) with respect to t, we have

E(t) ≤ E(0) + C(T, ‖u0‖L2), for every t ∈ [0, T ].

This completes the proof.

Lemma 2.4. Let u(t) ∈ Σ be a solution of (2) defined on the maximal interval
[0, T ∗), α = p, p|f(t)| ≤ g(t) and V satisfy (3). Then, for every 0 < T < T ∗,

E0(t) ≤ E0(0), ∀ t ∈ [0, T ],

where

E0(t) =
1

2

∫
RN
|∇u(t, x)|2dx+

∫
RN
V (x)|u(t, x)|2dx.

Proof. We first assume that u(t) is sufficiently regular and decaying so that all
of the following formal manipulations can be carried out. Once the final result
is established, a standard density argument allows to conclude that it also holds
for u ∈ C([0, T ],Σ).
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Differentiating E0(t) and using equation (2) yields

d

dt
E0(t)=f(t)

∫
RN
|u|2pIm(̄u∆u)dx+g(t)

∫
RN
|u|2pRe(̄u∆u)dx−2g(t)

∫
RN
V(x)|u|2p+2dx.

Using the same arguments as in the proof of Lemma 2.3, we infer

d

dt
E0(t) =− 2pf(t)

∫
RN
|u|2p∇|u| · Im(φ̄∇u)dx− g(t)

∫
RN
|u|2p|∇u|2dx

− 2pg(t)

∫
RN
|u|2p|∇|u||2dx− 2g(t)

∫
RN
V (x)|u|2p+2dx.

By using the Cauchy–Schwarz inequality and then the Young inequality, we
infer

2p|f(t)|
∫
RN
|u|2p∇|u| · Im(φ̄∇u)dx

≤ pf 2(t)

2g(t)

∫
RN
|u|2p|∇u|2dx+ 2pg(t)

∫
RN
|u|2p|∇|u||2dx.

Hence, if p|f(t)| ≤ g(t), then we have E0(t) ≤ E0(0) <∞, for all t ∈ [0, T ].

3. The proof of main theorem

Proof of Theorem 1.2. Case (1). In the case of L2-subcritical, i.e., 0 < α, p < 2
N

,
the existence of global solutions for (2) depends only on the L2-norm of the
initial data. Therefore, the global well-posedness for (2) follows from (4) via
the standard iterative argument, see [5] for details.

Case (2). By using interpolation and then the Young inequality with ε, we
infer

|f(t)|
α + 1

‖u‖2α+2
L2α+2≤

|f(t)|
α + 1

‖u‖
2(1−α

p
)

L2 ‖u‖
α
p

(2p+2)

L2p+2 ≤C(ε)
|f(t)|
α + 1

‖u‖2
L2 +ε

|f(t)|
α + 1

‖u‖2p+2
L2p+2 ,

for any ε > 0. Taking ε such that ε |f(t)|
α+1
≤ k(t), we deduce from Lemma 2.3

that

‖∇u(t)‖2
L2 ≤ E(t)− f(t)

α + 1

∫
RN
|u(t, x)|2α+2dx− k(t)

∫
RN
|u(t, x)|2p+2dx

≤ E(0) + C(T, ‖u0‖L2) + C(ε)
|f(t)|
α + 1

‖u(t)‖2
L2

≤ E(0) + C(T, ‖u0‖L2).

Therefore, we deduce from the blow-up alternative in Proposition 2.1 that the
solution of (2) is global.
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Case (3). If T ∗ <∞, it follows from Proposition 2.1 that∫ T ∗

0

∫
RN
|u(t, x)|2+ 4

N dxdt =∞.

This is a contradiction with (2). Hence, the conclusion follows.

Case (4). When f(t) ≥ 0, this can be treated as in the proof of Case (2).

When −g(t)
p
≤ f(t) ≤ 0, the conclusion follows from Lemma 2.4.

4. Concluding remarks

In this paper, we only investigate the physically interesting case for model (1),
that is a > 0 and b > 0. However, for the mathematical interest, one can
consider the following general equation:

i∂tψ = −1

2
∆ψ + V (x)ψ + λ|ψ|2αψ + ia|ψ|2p1ψ + ib|ψ|2p2ψ,

where 0 ≤ p1, p2 <
2

N−2
, a, b ∈ R. Regarding this equation, many problems are

unknown. For example, when p1 > 0 or p2 > 0, the Glassey’s method cannot
be applied to prove the existence of blow-up solutions. In the particular case,
the existence of blow-up solutions has been proved in [7] by using the Merle’s
method. A more complete understanding of the possibility of finite time blow-
up remains an interesting open problem. When a > 0, b < 0, p1, p2 > 0,
under what conditions will the solutions blow up in finite time? And under
what conditions will the solutions exist globally? The study of these problems
requires to develop some new mathematical methods and will be the object of
our future investigation.
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