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A Characterization of Circles
by Single Layer Potentials
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Abstract. We give a characterization of circles by polynomial eigenfunctions of single
layer potentials.
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1. Introduction

Let Ω be a smoothly bounded domain in the plane and ds be the arc-length
measure supported on ∂Ω. The single layer potential on L2(∂Ω, ds) is defined by

S∂Ωf(z) = − 1

2π

∫
∂Ω

f(ζ) ln |z − ζ|dsζ

The operator S∂Ω represents the potential associated with the electric field gen-
erated by a charge distribution on a surface ∂Ω. The operator S∂Ω is a self-
adjoint Hilbert–Schmidt operator [6].

Throughout this paper T denotes the boundary of the unit disk D={z∈C :
|z| < 1}. We denote the zero set of polynomial p by Z(p). It is easy to show
that for the boundary curve being the unit circle, the eigenfunctions of the cor-
responding single layer potential are monomials. For the sake of completeness,
we provide the simple calculations in here. For n ∈ Z+ and z ∈ D,

ST(zn) = − 1

2π

∫
T
ζn ln |z − ζ| dsζ = − 1

4π

∫
T
ζn
[
ln

(
1− z

ζ

)
+ ln(1− zζ)

]
dsζ ,

i.e.,

ST(zn) = − 1

4π

∫
T
ζn

[
−
∞∑
k=1

1

k

(
z

ζ

)k
−
∞∑
k=1

1

k
(zζ)k

]
dsζ =

1

4nπ

∫
T
zn dsζ =

1

2n
zn.
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Similarly, for n ∈ Z− and z ∈ D, we have ST(zn) = − 1
2n
zn and ST(1) = 0 for

n = 0. Therefore, it follows from the continuity of the single layer potentials
that

ST(zn) =

{
1

2|n|z
n, n ∈ Z∗

0, n = 0,

for z ∈ T.
Ebenfelt et al. in [3] show that if the the exterior of the boundary curve Γ

is Smirnov (see [2]) and SΓ has a constant eigenfunction, then Γ must be a
circle. A stronger version is given by Khavinson–Solynin–Vasillev in [5]. For
the analog of these results in higher dimensions we refer to [4, 7].

In the present note we show that under a smoothness assumption on the
boundary curve, only the circle allows the single layer potential to have poly-
nomial eigenfunctions with zeros inside the disk. This can be considered as a
generalization of the result given by Ebenfelt–Khavinson–Shapiro in [3].

2. Main results

Our approach is based on following characterizations (see [3,5] for more detail):

Theorem 2.1 (Ebenfelt–Khavinson–Shapiro [3]). Let Γ be a rectifiable Jordan
curve and T (z) the tangent vector to Γ defined a.e. on Γ. Suppose that

T (z) = H(z), a.e. on Γ,

where H(z) stands for non-tangential boundary values of a bounded analytic
function H in the exterior Ω+ of Γ with H(∞) = 0. Then, Γ must be a circle.

Theorem 2.2 (Khavinson–Solynin–Vassilev [5]). Suppose that Γ, Ω+ and H
satisfy the conditions of the previous theorem, but H has a simple pole at a
given finite point z0 ∈ Ω+. Then

Γ =

{
z = aζ + z0 :

∣∣∣∣ζ − p

1− p2

∣∣∣∣ =
p2

1− p2

}
,

with some a ∈ C∗ and 0 < p < 1.

Theorem 2.3. Assume Ω is a smoothly bounded domain in the plane. If S∂Ω

has a polynomial eigenfunction p with Z(p) ⊂ Ω, then ∂Ω must be circle.

Proof. Assume S∂Ω(p) = λp for some non-zero λ ∈ R and some polynomial p(z)
with Z(p) ⊂ Ω. Since λp(z) =

∫
∂Ω
p(ζ) ln |z − ζ| dsζ for all z ∈ Ω, then

−2λp′(z) =

∫
∂Ω

p(ζ)

ζ − z
dsζ =

∫
∂Ω

p(ζ)T (ζ)

ζ − z
dζ for z ∈ Ω.
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Without loss of generality we may assume that Ω contains the origin (via

an appropriate translation). Set F (z) =
∫
∂Ω

p(ζ)T (ζ)
ζ−z dζ on the exterior domain

Ω+ = Ĉ\Ω. The function F is analytic in Ω+ and F (∞)=0. By the Sokhotski–

Plemelj jump theorem (see [6]), we find the following holds almost everywhere

on ∂Ω

2πip(z)T (z) = lim
t→z,
t∈Ω+

∫
∂Ω

p(ζ)T (ζ)

ζ − t
dζ − lim

w→z,
w∈Ω

∫
∂Ω

p(ζ)T (ζ)

ζ − w
dζ

= lim
t→z,
t∈Ω+

F (t) + 2λ lim
w→z,
w∈Ω

p′(w)

= lim
w→z,
w∈Ω+

[
F (w) + 2λp′(w)

]
,

which can be rewritten as

T (z) =
1

2πi
lim
w→z,
w∈Ω+

[
F (w)

p(w)
+ 2λ

p′(w)

p(w)

]
.

The function Φ(w) = 1
2πi

(
F (w)
p(w)

+ 2λp
′(w)
p(w)

)
is analytic on Ω+, Φ(∞) = 0 and

Φ ≡ T a.e. on ∂Ω. Thus, by Theorem 2.2, ∂Ω must be a circle.

Corollary 2.4. Suppose Ω contains the origin. If S∂Ω has monomial eigen-
functions of the form zn, then ∂Ω must be a circle.

We conclude this paper with the following remark on logarithmic potentials.
Recall that the logarithmic potential on a bounded domain Ω is defined by

(LΩf)(w) =
1

2π

∫
Ω

f(w) ln |z − w| dA(w),

for f ∈ L2(Ω, dA). The operator LΩ is a self-adjoint Hilbert–Schmidt operator
on L2(Ω, dA) (see [1]). We show that LΩ unlike S∂Ω, never has a polynomial
eigenfunction.

Proposition 2.5. The operator LΩ has no eigenfunction polynomial of z and z.

Proof. Assume to the contrary that there exists λ ∈ C and a polynomial
P = P (z, z), not identically zero, such that λP = LΩP . We can find a polyno-
mial Q(z, z) so that ∆Q = P. For z ∈ Ω,

λP (z, z) =
1

2π

∫
Ω

P (w,w) ln |w − z| dA(w)

=
1

2π

∫
Ω

∆Q(w,w) ln |w − z| dA(w)

= Q(z, z) +

∫
∂Ω

(
∂Q

∂nζ
ln |ζ − z| −Q(ζ, ζ)

∂

∂nζ
ln |ζ − z|

)
dsζ .
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Taking ∂z-derivatives we obtain

λ
∂P

∂z
=
∂Q

∂z
+

1

2

∫
∂Ω

[
∂Q

∂nζ

1

z − ζ
−Q ∂

∂nζ

(
1

z − ζ

)]
dsζ .

Finally taking ∂z-derivatives it follows that 4λ∆P = 4∆Q. Since by assumption
P = ∆Q we must have λ∆P = P . But this is a clear contradiction.
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