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Regularity of Minimizers in the
Two-Phase Free Boundary Problems

in Orlicz-Sobolev Spaces

Jun Zheng, Binhua Feng and Peihao Zhao

Abstract. In this paper, we consider the optimization problem of minimizing

J (u) =
∫

Ω(G(|∇u|) + λ+(u+)γ + λ−(u−)γ + fu)dx in the class of functions W 1,G(Ω)

with u − ϕ ∈ W 1,G
0 (Ω) for a given function ϕ, where W 1,G(Ω) is the class of weakly

differentiable functions with
∫

ΩG(|∇u|)dx < ∞. The conditions on the function G
allow for a different behavior at 0 and at ∞. For 0 < γ ≤ 1, we prove that every
minimizer u of J (u) is C1,α

loc -continuous.
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1. Introduction

Let G(t) be a C2-continuous function in t ∈ [0,+∞) with its derivative
g(t) = G′(t) nonnegative in [0,+∞). Let Ω be a smooth bounded domain in Rn

(n ≥ 2). Given a function ϕ ∈ L∞(Ω) with ϕ+ 6≡ 0 and
∫

Ω
G(|∇ϕ|)dx < ∞,

and some integrable function f in Ω, we consider the optimization problem

J (u) =

∫
Ω

(G(|∇u|) + Fγ(u) + fu)dx→ min, (1)

in the class of functions K = {u ∈ L1(Ω) :
∫

Ω
G(|∇u|)dx < ∞, u = ϕ on ∂Ω},

where Fγ(u) = λ+(u+)γ + λ−(u−)γ, γ ∈ (0, 1], 0 ≤ λ− < λ+ < ∞, and
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u± = max{±u, 0}. The Euler-Lagrange equation for such minimizers is

∆Gu := div
g(|∇u|)
|∇u|

∇u = γ(λ+(u+)γ−1χ{u>0} + λ−(u−)γ−1χ{u<0}) + f. (2)

The non-differentiability of Fγ(u) impels the Euler-Lagrange equation (2) to be
singular along the a priori unknown interface (so-called free boundary)

Γ = ∂{u > 0} ∪ ∂{u < 0},

between the positive and negative phases of a minimizer. It is not obvious that
minimizers have some C1-regularities.

In this work we extend several regularity theories of minimizers in the opti-
mal problems to a large class of degenerate and singular elliptic operators under
the natural condition which generalizes the Ladyzhenskaya-Uraltseva operators
(see [5]), for some positive constants δ, g0

0 < δ ≤ tg′(t)

g(t)
≤ g0, ∀ t > 0. (3)

The operator ∆G not only includes the case of p-Laplacian ∆p (δ=g0 =p−1>0),
but also the interesting case of a variable exponent p = p(t) > 0:

∆Gu = div (|∇u|p(|∇u|)−2∇u),

corresponding to set g(t)= tp(t)−1, for which (3) holds if δ≤ t(ln t)p′(t)+p(t)−1
≤ g0 for all t > 0. Other examples of functions satisfying (3) are given by
g(t) = tα ln(βt + θ), with α, β, θ > 0, or by discontinuous power transitions as
g(t) = C1t

α, if 0 ≤ t < t0, and g(t) = C2t
β + C3, if t ≥ t0, where α, β, t0 are

positive numbers, C1, C2, C3 are real numbers such that g(t) is a C1 function;
see [2].

We recall some types of the free boundary problems. The upper case, γ = 1,
relates to obstacle type problems. The intermediary problems, 0 < γ < 1, can
be used to model the density of certain chemical specie, in reaction with a
porous catalyst pellet, and have intrigued lots of mathematicians in the past
decades.

In Sobolev spaces, regularity theories for one phase (λ− = 0) free boundary
problems, particularly for p-Laplacian equations, have been well studied by a
large number of mathematicians, Frehse, Stampacchia, Kinderlehrer, Caffarelli,
Alt, Phillips, Weiss, Shahgholion, and others. The two phase free boundary
problems governed by Laplacian equations have been also studied by lots of
scholars. For more details we refer readers to the current work by Leitão, de
Queiroz and Teixeira [4], where the authors provided a complete description
of regularity theory for the free boundary problems governed by p-Laplacian
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equations (p ≥ 2). Under the assumptions that f ∈ Lq(Ω) (q > n), the authors
established C1,α

loc -regularity for minimizers associated with p-Laplacian equations
(p ≥ 2) when γ ∈ (0, 1].

In Orlicz-Sobolev spaces, Challal, Lyaghfouri and Rodrigues considered the
homogeneous one-phase obstacle problems, i.e., f = 0, λ− = 0 in (2); see [1, 2].
Under the assumption that g(t)

t
is monotone in t > 0, the authors obtained

C1,α
loc -regularity for solutions of (2) and established porosity of the free bound-

ary [1], then proved that the free boundary has locally finite (n− 1)-Hausdorff
measure [2]. Since it is not obvious that the optimization problem (1) is equiv-
alent to the equation (2), Liu, Zheng and Zhao established the equivalence of
problem (1) and (2) for γ = 1 and obtained C1,α

loc -regularity for minimizers under
the assumption that g(t)

t
is monotone in t > 0; see [6]. For γ ∈ (0, 1], under

the assumption of non-decreasing monotonicity on g(t)
t

, Zheng, Zhang and Zhao
obtained C1,α

loc -regularity for minimizers in the inhomogeneous two-phase free
boundary problems; see [8]. In the above work, the monotonicity of g(t)

t
plays

an important role in the regularity theory.
In this paper, we continue the work of [4, 8] considering C1,α

loc -regularity of
minimizers in the two-phase free boundary problems in Orlicz-Sobolev spaces.
Removing any monotonicity assumption on g(t)

t
, we prove that any minimizer

of (1) is C1,α
loc -continuous. Our result not only holds for p ≥ 2 in [4], but also

for the singular case 1 < p < 2, and is also a supplementary of [8]. The main
idea in this paper is inherited from [4,8].

Throughout this paper, we always assume that (3) is satisfied and

f ∈ L∞(Ω), ϕ ∈ W 1,G(Ω) ∩ L∞(Ω).

We close up this part by stating the existence and boundedness of a mini-
mizer of (1) and the main result in this paper.

Proposition 1.1 ([8]). For each 0 < γ ≤ 1, there exists a minimizer u of (1).
Moreover, there exists a positive constantM , depending only on n, δ, g0, g

−1(1),
λ+, λ−, ‖ϕ‖L∞(Ω), ‖∇ϕ‖LG(Ω) and ‖f‖L∞(Ω), such that

‖u‖L∞(Ω) + ‖u‖W 1,G(Ω) ≤M,

where g−1(t) is the inverse function of g(t).

The main result in this paper is:

Theorem 1.2. Let u be a minimizer of the problem (1). Then u ∈ C1,α
loc (Ω)

for some α ∈ (0, 1). More precisely, for any Ω′ ⊂⊂ Ω, there exists a constant
C > 0, depending only on n, δ, g0, g(1), λ+, λ−, ‖f‖L∞(Ω), ‖ϕ‖L∞(Ω) and Ω′, such
that

‖u‖C1,α(Ω′) ≤ C.
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2. Some auxiliary results

In this section, we present some results that will be used throughout the paper.
We systematically use definitions and basic properties of the function G as
developed in [7, Section 2].

Observe that condition (3) implies the following properties (see [7]):

(g1) tg(t)
1+g0
≤ G(t) ≤ tg(t), ∀t ≥ 0.

(G1) G is convex and C2.

(G2) min{sδ+1, sg0+1} G(t)
1+g0
≤G(st)≤(1+g0) max{sδ+1, sg0+1}G(t), ∀s, t >0.

(G3) G(a+ b) ≤ 2g0(1 + g0)(G(a) +G(b)), ∀a, b > 0.

We recall some definitions associated with Orlicz-Sobolev spaces. Define

the Orlicz class KG(Ω) = {u is measurable;
∫

Ω
G(|u|)dx <∞}. The functional

‖u‖LG(Ω) = inf{k > 0;
∫

Ω
G( |u(x)|

k
)dx ≤ 1} is a norm in the Orlicz space LG(Ω)

which is the linear hull of KG(Ω). Notice that this set is convex, since G is

also convex. The Orlicz-Sobolev space W 1,G(Ω) is defined by W 1,G(Ω) = {u ∈
LG(Ω);∇u ∈ LG(Ω)}, which is the usual subspace of W 1,1(Ω) associated with
the norm ‖u‖W 1,G(Ω) = ‖u‖LG(Ω) +‖∇u‖LG(Ω). As g is strictly increasing we can

define its inverse function g−1 and define G̃(t) =
∫ t

0
g−1(s)ds for any t ≥ 0. It

is well known that LG̃(Ω) is the dual space of LG(Ω), and LG(Ω),W 1,G(Ω) are

reflexive.

The following result is a Poincaré-type inequality.

Lemma 2.1 ([3, Lemma 5.7]). For any u ∈ W 1,G
0 (Ω), which is the closure

of C∞0 (Ω) in W 1,G(Ω), there holds
∫

Ω
G(|u|)dx ≤

∫
Ω
G(c|∇u|)dx, where the

constant c is twice the diameter of Ω.

The following two lemmas and the iterating formula (Lemma 2.4) will pave
the way to establish C1,α estimate for minimizers in Section 3.

Lemma 2.2 ([7, Lemma 2.7]). Let h be a G-harmonic function in BR, i.e.,
∆Gh = 0 in BR. For every ball Br ⊂ BR and every λ ∈ (0, n), there exists
C = C(λ, n, δ, g0, ‖h‖L∞(BR)) > 0 such that∫

Br

G(|∇h|)dx ≤ Crλ, ∀ 0 < r ≤ R.

Let (u)r = 1
|Br|

∫
Br
udx be the average value of u on the ball Br, we have

Lemma 2.3 (Comparison with G-harmonic functions [8, Lemma 4.1]). Let
u ∈ W 1,G(BR) and h ∈ W 1,G(BR) satisfying ∆Gh = 0 in BR. Then for some
positive constant 0 < σ < 1, there exists a positive constant C = C(n, δ, g0)
such that for each 0 < r ≤ R, there holds∫
Br

G(|∇u−(∇u)r|)dx ≤ C

(
r

R

)n+σ∫
BR

G(|∇u−(∇u)R|)dx+C

∫
BR

G(|∇u−∇h|)dx.
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Lemma 2.4 ([4, Lemma 2.7]). Let φ(s) be a non-negative and non-decreasing
function. Suppose that

φ(r) ≤ C1

((
r

R

)α
+ ϑ

)
φ(R) + C2R

β,

for all r ≤ R ≤ R0, with C1, α, β positive constants and C2, ϑ non-negative con-
stants. Then, for any τ < min{α, β}, there exists a constant ϑ0 = ϑ0(C1, α, β, τ)
such that if ϑ < C1, ϑ0, then for all r ≤ R ≤ R0 we have

φ(r) ≤ C3

(
r

R

)τ(
φ(R) + C2R

τ
)
,

where C3 = C3(C1, τ −min{α, β}) is a positive constant. In turn,

φ(r) ≤ C4r
τ ,

where C4 = C4(C2, C3, R0, φ, τ) is a positive constant.

3. C1,α
loc -estimate of minimizers

In this section, we prove Theorem 1.2, showing that every minimizer of (1) is
locally C1,α-continuous for some α ∈ (0, 1).

Lemma 3.1. Let u ∈ W 1,G(Ω), BR ⊂ Ω and h be a solution of

∆Gh = 0 in BR, h− u ∈ W 1,G
0 (BR).

Then for any λ ∈ (0, n), there exists C = C(λ, n, δ, g0, ‖h‖L∞(B2R/3)) > 0 such
that ∫

BR

G(|∇u−∇h|)dx ≤ C

∫
BR

(G(|∇u|)−G(|∇h|))dx

+ CR
λ
2

(∫
BR

(G(|∇u|)−G(|∇h|))dx
) 1

2

.

(4)

Proof. By [7, Theorem 2.3], there exists a constant C = C(δ, g0) > 0 such that∫
BR

(G(|∇u|)−G(|∇h|))dx ≥ C

(∫
A2

G(|∇u−∇h|)dx

+

∫
A1

F (|∇u|)|∇u−∇h|2dx

)
,

(5)
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where A1 ={x∈BR; |∇u−∇h|≤2|∇u|}, A2 ={x∈BR; |∇u−∇h|>2|∇u|} and

F (t)= g(t)
t
. Note that G(t)

t
is non-decreasing in t > 0, it follows from (g1) that∫

A1

G(|∇u−∇h|)dx ≤ C

∫
A1

G(|∇u|)
|∇u|

|∇u−∇h|dx

≤ C

(∫
A1

G(|∇u|)
|∇u|2

|∇u−∇h|2dx

)1
2
(∫

A1

G(|∇u|)dx
)1

2

≤ C

(∫
A1

F (|∇u|)|∇u−∇h|2dx

)1
2
(∫

BR

G(|∇u|)dx
)1

2

. (6)

By (5), (6) and (G3), we get∫
BR

G(|∇u−∇h|)dx ≤ C

∫
BR

(G(|∇u|)−G(|∇h|))dx

+ C

(∫
BR

(G(|∇u|)−G(|∇h|))dx
)1

2
(∫

BR

G(|∇u|)dx
)1

2

≤ C

∫
BR

(G(|∇u|)−G(|∇h|))dx

+ C

(∫
BR

(G(|∇u|)−G(|∇h|))dx
)1

2
(∫

BR

G(|∇u−∇h|)dx
)1

2

+ C

(∫
BR

(G(|∇u|)−G(|∇h|))dx
)1

2
(∫

BR

G(|∇h|)dx
)1

2

. (7)

One may obtain (4) by (7) and Lemma 2.2.

Proof of Theorem 1.2. Let BR = BR(x0) for some R ≤ R0, where R0 will be
chosen later. Without loss of generality, assume that Br ⊂ BR ⊂ Ω, and Br

and BR have the same centre. Let h be a G-harmonic function in BR that
agrees with u on the boundary, i.e.,

div
g(|∇h|)
|∇h|

∇h = 0 in BR and h− u ∈ W 1,G
0 (BR).

By Lemma 2.3 and Lemma 3.1 we have∫
Br

G(|∇u−(∇u)r|)dx

≤ C

(
r

R

)n+σ∫
BR

G(|∇u−(∇u)R|)dx+ C

∫
BR

G(|∇u−∇h|)dx

≤ C

(
r

R

)n+σ∫
BR

G(|∇u−(∇u)R|)dx+ C

∫
BR

(G(|∇u|)−G(|∇h|))dx

+ CR
λ
2

(∫
BR

(G(|∇u|)−G(|∇h|))dx
)1

2

, (8)
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where λ is an arbitrary constant in (0, n).
We need to estimate

∫
BR

(G(|∇u|)−G(|∇h|))dx in (8). Note that minimality
of u implies∫

BR

(G(|∇u|)−G(|∇h|))dx ≤
∫
BR

(Fγ(h)− Fγ(u))dx+

∫
BR

f(h− u)dx. (9)

Firstly we restrict ourselves to γ ∈ (0, 1). Using (4.18) on [4, page 17-18], we
get∫

BR

(Fγ(h)− Fγ(u))dx= λ+

∫
BR

((h+)γ − (u+)γ)dx+ λ−

∫
BR

((h−)γ − (u−)γ)dx

≤ C

∫
BR

|h− u|γdx

≤ C

(∫
BR

|h− u|dx
)γ
|BR|1−γ, (10)

where C = C(λ+, λ−) is a positive constant and in the last inequality we used
Hölder inequality.
We estimate the last inequality of (10). Let κ be a positive constant lying in
(0, 1+δ

g0
). If R−n−κ

∫
BR
|h−u|dx ≤ 1, then

∫
BR
|h−u|dx ≤ Rn+κ. Therefore, the

last inequality of (10) becomes

C

(∫
BR

|h− u|dx
)γ
|BR|1−γ ≤ CRn+κγ. (11)

If R−n−κ
∫
BR
|h − u|dx > 1, define G (t) = G(t) − G(1)t, t ≥ 1. Since G is

increasing in t when t ≥ 1 due to (g1), it follows that

G

(
R−n−κ

∫
BR

|h− u|dx
)
≥ G(1)

(
R−n−κ

∫
BR

|h− u|dx
)
. (12)

Note that convexity of G implies that G
(

1
|BR|

∫
BR
|h−u|dx

)
≤ 1
|BR|

∫
BR
G(|h−u|)dx.

Therefore, by (12) and (G2) we get

R−n
∫
BR

|h− u|dx ≤ CRκG

(
R−n−κ

∫
BR

|h− u|dx
)

≤ CRκ(R−κ)1+g0G

(
R−n

∫
BR

|h− u|dx
)

≤ CR−κg0R−n
∫
BR

G(|h− u|)dx

≤ CR−κg0+(1+δ)R−n
∫
BR

G(|∇h−∇u|)dx,
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where we used Poincaré-type inequality (Lemma 2.1) in the last inequality.
Then we obtain∫

BR

|h− u|dx ≤ CR−κg0+(1+δ)

∫
BR

G(|∇h−∇u|)dx. (13)

By (13) and Young inequality, the last inequality of (10) becomes(∫
BR

|h− u|dx
)γ
|BR|1−γ ≤ C

(
R−κg0+(1+δ)

∫
BR

G(|∇h−∇u|)dx
)γ
|BR|1−γ

= C

(
R(1+δ−κg0−θ

∫
BR

G(|∇h−∇u|)dx
)γ
Rn(1−γ)+θγ

≤ C(ε)Rn+ θγ
1−γ + εR1+δ−κg0−θ

∫
BR

G(|∇h−∇u|)dx, (14)

where we choose θ ∈ (0, 1 + δ− κg0). Combining (10), (11) and (14), we obtain∫
BR

(Fγ(h)− Fγ(u))dx ≤ CRn+κγ + C(ε)Rn+ θγ
1−γ

+ εR1+δ−κg0−θ
∫
BR

G(|∇h−∇u|)dx. (15)

Now we estimate the last integration of (9). Arguing as above, we have∫
BR

f(h− u)dx ≤ CRn+κ + CR−κg0+(1+δ)

∫
BR

G(|∇u−∇h|)dx, (16)

where the positive constant C depends on ‖f‖L∞(Ω). Then by (9), (15) and (16),
it follows that∫

BR

(G(|∇u|)−G(|∇h|))dx ≤ CRn+κγ + CRn+ θγ
1−γ

+ CR1+δ−κg0−θ
∫
BR

G(|∇u−∇h|)dx. (17)

By Lemma 3.1 and (17) we obtain∫
BR

G(|∇u−∇h|)dx ≤ CRn+κγ + CRn+ θγ
1−γ + CR

λ
2 (R

n+κγ
2 +R

n
2

+ θγ
2(1−γ)

)
+ CR1+δ−κg0−θ

∫
BR

G(|∇u−∇h|)dx

+ CR
λ
2

+
1+δ−κg0−θ

2

(∫
BR

G(|∇u−∇h|)dx
) 1

2
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≤ CRn+κγ + CRn+ θγ
1−γ + CR

λ
2

+n+κγ
2 +R

λ
2

+n
2

+ θγ
2(1−γ)

+ CR1+δ−κg0−θ
∫
BR

G(|∇u−∇h|)dx

+ C(ε)Rλ+(1+δ−κg0−θ) + ε

∫
BR

G(|∇u−∇h|)dx. (18)

Without loss of generality, we may let 0 < R ≤ R0 satisfy CR1+δ−κg0−θ
0 � 1

in (18). Thus we get∫
BR

G(|∇u−∇h|)dx

≤ C
(
Rn+κγ +Rn+ θγ

1−γ +R
λ
2

+n+κγ
2 +R

λ
2

+n
2

+ θγ
2(1−γ) +Rλ+(1+δ−κg0−θ)

)
.

Note that γ > 0, κ > 0, θ > 0, 1 + δ− κg0− θ > 0 and λ is an arbitrary number
in (0, n). Let λ be sufficiently close to n, then there exists a positive number α0

satisfying α0 > n− λ such that∫
BR

G(|∇u−∇h|)dx ≤ CRn+α0 . (19)

Finally, we get by (17) and (19)∫
BR

(G(|∇u|)−G(|∇h|))dx ≤ CRn+α0 . (20)

Putting (20) into (8), we obtain∫
Br

G(|∇u−(∇u)r|)dx ≤ C

(
r

R

)n+σ∫
BR

G(|∇u−(∇u)R|)dx+CRn+α0 +CR
λ
2

+
n+α0

2 .

By the choice of λ, λ
2
+ n+α0

2
>n. We conclude that there exists β0>0 such that∫

Br

G(|∇u−(∇u)r|)dx ≤ C

(
r

R

)n+σ∫
BR

G(|∇u− (∇u)R|)dx+ CRn+β0 .

In view of Lemma 2.4, we conclude that there is a constant β ∈ (0, 1) such that∫
Br

G(|∇u− (∇u)r|)dx ≤ Crn+β. (21)

Now we claim that there is a constant α ∈ (0, 1) such that∫
Br

|∇u− (∇u)r|dx ≤ Crn+α, (22)
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which and Campanato’s embedding Theorem give the desired Hölder continuity
of the gradient of u.

Indeed, convexity of G and (21) implies that

G

(
1

|Br|

∫
Br

|∇u− (∇u)r|dx
)
≤ 1

|Br|

∫
Br

G(|∇u− (∇u)r|)dx ≤ Crβ. (23)

Arguing as estimation of the last integration of (10), let τ be a positive constant

lying in (0, β
g0

). If r−n−τ
∫
Br
|∇u−(∇u)r|dx≤1, then

∫
Br
|∇u−(∇u)r|dx≤rn+τ .

Therefore, (22) holds. If r−n−τ
∫
Br
|∇u− (∇u)r|dx > 1, then we find

G

(
r−n−τ

∫
Br

|∇u− (∇h)r|dx
)
≥ G(1) · r−n−τ

∫
Br

|∇u− (∇h)r|dx

≥ g(1)

1 + g0

· r−n−τ
∫
Br

|∇u− (∇h)r|dx,

which and (23) imply that

r−n
∫
Br

|∇u− (∇u)r|dx ≤ CrτG(r−n−τ
∫
Br

|∇u− (∇u)r|dx)

≤ Crτ (r−τ )1+g0G

(
r−n

∫
Br

|∇u− (∇u)r|dx
)

≤ Crβ−τg0 .

Then (22) holds with α = β − τg0.
As for γ = 1, it suffices to note (13) and (16) still hold. One may deal with

R−κg0+(1+δ)
∫
BR
G(|∇u − ∇h|)dx as in (14) and (18), then one may get (22).

Thus the proof of Theorem 1.2 is completed for 0 < γ ≤ 1.
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