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Abstract. In this paper we consider an optimal control problem governed by a
rate-independent variational inequality arising in quasistatic plasticity with linear
kinematic hardening. Since the solution operator of a variational inequality is not
differentiable, the Karush-Kuhn-Tucker system is not a necessary optimality condi-
tion. We show a system of weakly stationary type by passing to the limit with the
optimality system of a regularized and time-discretized problem.
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1. Introduction

In this paper we prove a necessary optimality system for an optimal control
problem governed by the quasistatic forward problem of small-strain elastoplas-
ticity. The optimization of elastoplastic systems is of significant importance for
industrial deformation processes, e.g. for the control of the springback of deep-
drawn metal sheets.

As a particular problem, we mention

Minimize F (u, g) = ‖u(T )− ud‖L2(Ω;Rd) +
ν

2
‖g‖2

H1(0,T ;L2(ΓN ;Rd)),

with respect to Σ,u, g

such that (Σ,u) = G(Eg) and g(0) = g(T ) = 0.
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Here, G is the solution map of the quasistatic forward problem and E is the con-
trol operator. The definition of the forward problem needs some notation and is
done in Section 1.2. The constraint g(T ) = 0 implies that the body at the final
time T is unloaded. Due to the observation of the final displacement u(T ) in
the objective, this combination of objective and control constraints corresponds
to controlling the springback of the solid body.

The forward system in the stress-based (so-called dual) form is represented
by a time-dependent, rate-independent variational inequality (VI) of mixed
type, see Section 1.2. Hence, the control-to-state map is not, in general, dif-
ferentiable. Moreover, it is already know from finite-dimensional problems,
that the associated Karush-Kuhn-Tucker (KKT) system is not a necessary op-
timality system for optimization problems constrained by a VI. Therefore, one
considers regularizations of VIs, see [3]. The main contribution of this paper is
Theorem 3.1, in which we provide an optimality system for the optimal control
problem under consideration. To our knowledge, necessary optimality systems
for the control of rate-independent VIs in function space are not known up to
now.

A regularized, time-discrete approximation of the forward problem is the
subject of [29]. There, the author proved the Fréchet differentiability of the
solution map of the regularized forward problem which implies a first order nec-
essary optimality condition for the regularized optimal control problem. Based
on this result, we are going to prove an optimality system (of weakly stationary
type) for the unregularized optimal control problem by passing to the limit in
the optimality system of the regularized optimal control problem. In particular,
passing to the limit with the time discretization parameter τ requires some new
and subtle arguments, see Section 3.

For the notions of the various optimality systems, we refer to [25, Section 2].
Let us put our work into perspective. We give some references for optimal
control of time-dependent VIs. We mention [1,2,19,21], which deal with optimal
control of a parabolic obstacle problem. Moreover, [8] and [18] consider optimal
control of the Allen-Cahn and Cahn-Hilliard VIs, respectively. All of these
papers use a penalization of the VI to obtain a differentiable problem and pass
to the limit with the regularization parameter in the optimality system. In
contrast, we use a relaxation approach in the current paper. We also mention
[22,23] who studies the optimal control of rate-independent evolution processes
in a general setting. The existence of an optimal control and the approximability
by solutions of discretized problems is shown, but no optimality conditions are
given.

Let us briefly highlight the main contributions of some of these references.
In [21] the authors give an idea how to prove an optimality system of strong
stationary type for the distributed optimal control of a parabolic VI. As for the
elliptic obstacle problem, this is limited to the quite restrictive case of ample
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controls without control constraints, see also the discussion in [17, Section 4].
To our knowledge, there are no results on optimality systems of C-stationary
type for optimal control problems governed by time-dependent VIs. In [19] the
authors consider the control in the coefficient of the main part of a parabolic
VI. Via a penalization approach they derive a system of weak stationarity. All
of the other contributions mentioned above derive even weaker optimality sys-
tems. Some of them contain sign or complementarity conditions for some of the
dual variables, which, however, hold only for approximating sequences, lacking
passage to the limit.

We also mention [16, 17], which considered the optimal control of static
plasticity. For locally optimal controls, systems of B- and C-stationary type
were obtained.

Comparing the optimal control of quasistatic plasticity to the control of the
parabolic obstacle problem, we find the regularities in time of the multipliers
of both problems to be similar. Indeed, the multiplier (in our notation θ)
associated to the constraint in the VI (in our notation φ(Σ) ≤ 0) is not a proper
function, but a measure in time. Moreover, in both problems the adjoint states
(in our notation Υ and w) possess no weak derivative w.r.t. time.

Nevertheless, due to the different spatial regularity of the states, adjoints
and multipliers we have to employ different techniques as those used for instance
in [19] for control of the parabolic obstacle problem. Moreover, the analysis
is rendered more challenging due to the nonlinearity in the set K, see (2),
and due to the constraint equation (equilibrium of forces) in the VI. Another
difficulty arises from the fact that there seem to be no existence results for
regularized versions of the time-dependent variational inequality. Therefore, it
is more convenient to regularize the discretization in time rather than vice versa.
The resulting regularized and time-discrete system is a nonlinear saddle-point
problem. Showing the Fréchet differentiability of its solution map is a nontrivial
task, see [29, Section 3].

In contrast to our analysis, most papers on optimal control of (parabolic)
VIs derive conditions which hold only for accumulation points of sequences of
stationary points for the regularized problems. In order to show that these
conditions are satisfied indeed for all local minima, one has to prove that all
local minima can be approximated by stationary points of regularized problems.
To our knowledge, only [2,21] derive necessary conditions in this sense for time-
dependent VIs. We utilize the approximation results of [28, Section 3.4] and
[29, Section 4.2] in order to show that the derived optimality system (33)–(38)
holds for all local minimizers.

Let us sketch the outline of the paper. In the remainder of the introduction,
we fix the notation (Section 1.1), and state the forward and optimal control
problems together with their regularizations (Sections 1.2 and 1.3). Section 2 is
devoted to showing an optimality system for the time-discrete optimal control
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problem (Pτ ) by passing to the limit with the optimality conditions for the
regularization (Pε). In Section 3 we pass to the limit with the time discretization
parameter τ . To this end, several convergence arguments have to be used. The
most difficult task is to prove the weak convergence of the term θD?DΣ in the
adjoint system, see Lemmas 3.8 and 3.9. We finally arrive at the optimality
system of weakly stationary type, see Theorem 3.1.

1.1. Notation and assumptions. Our notation follows [13] and [16].

Function spaces. Let Ω ⊂ Rd be a bounded Lipschitz domain with boundary
Γ = ∂Ω in dimension d = 3. The boundary consists of two disjoint parts ΓN and
ΓD. We point out that the presented analysis is not restricted to the case d = 3,
but for reasons of physical interpretation we focus on the three dimensional case.
In dimension d = 2, the interpretation of the forward equation has to be slightly
modified, depending on whether one considers the plane strain or plane stress
formulation.

We denote by S := Rd×d
sym the space of symmetric d-by-d matrices, endowed

with the (Frobenius) inner product σ : τ =
∑d

i,j=1 σijτij, and we define

V = H1
D(Ω;Rd) = {u ∈ H1(Ω;Rd) : u = 0 on ΓD}, S = L2(Ω;S)

as the spaces for the displacement u, stress σ, and back stress χ, respectively.
The control g belongs to the space of boundary forces

U = L2(ΓN ;Rd).

The control operator E : U → V ′, g 7→ `, which maps boundary forces (i.e.,
controls) g ∈ U to functionals ` ∈ V ′ (i.e., right-hand sides of the weak formu-
lation (9)) is given by

〈v, Eg〉V,V ′ := −
∫

ΓN

v · g ds for all v ∈ V. (1)

Hence, E is the negative adjoint of the trace operator from V to U = L2(ΓN ;Rd).
Clearly, E : U → V ′ is compact.

For a Banach space X and p ∈ [1,∞], we define the Bochner-Lebesgue
space

Lp(0, T ;X) = {u : [0, T ]→ X, u is Bochner measurable and p-integrable}.

In the case p = ∞ one has to replace p-integrability by essential boundedness.
The norm in Lp(0, T ;X) is given by

‖u‖Lp(0,T ;X) =
∥∥‖u(·)‖X

∥∥
Lp(0,T )

.
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By W 1,p(0, T ;X) we denote the Bochner-Sobolev space consisting of functions
u ∈ Lp(0, T ;X) which possess a weak derivative u̇ ∈ Lp(0, T ;X). Two equiva-
lent norms on W 1,p(0, T ;X) are given by(

‖u‖pLp(0,T ;X) + ‖u̇‖pLp(0,T ;X)

) 1
p and

(
‖u(0)‖pX + ‖u̇‖pLp(0,T ;X)

) 1
p ,

where the extension to the case p = ∞ is clear. We use H1(0, T ;X) =
W 1,2(0, T ;X). Moreover, we define the space of functions in H1(0, T ;X) van-
ishing at t = 0

H1
{0}(0, T ;X) = {u ∈ H1(0, T ;X) : u(0) = 0}.

Details on Bochner-Lebesgue and Bochner-Sobolev spaces can be found in [6,
9, 24,30].

Yield function and admissible stresses. We restrict our discussion to the
von Mises yield function. In the context of linear kinematic hardening, it reads

φ(Σ) =
1

2

(
|σD + χD|2 − σ̃2

0

)
(2)

for Σ = (σ,χ) ∈ S2, where |·| denotes the pointwise Frobenius norm of matrices
and

σD = σ − 1

d
(traceσ) I

is the deviatoric part of σ. Here, I ∈ S is the identity matrix. The yield
function gives rise to the set of admissible generalized stresses

K = {Σ ∈ S2 : φ(Σ) ≤ 0 a.e. in Ω}.

Let us mention that the structure of the yield function φ given in (2) implies
the shift invariance

Σ ∈ K ⇔ Σ + (τ ,−τ ) ∈ K for all τ ∈ S.

This property is exploited quite often in the analysis.
Due to the structure of the yield function φ, σD + χD appears frequently

and we abbreviate it and its adjoint by

DΣ = σD + χD and D?σ = (σD,σD)

for matrices Σ ∈ S2 as well as for functions Σ ∈ S2 and Σ ∈ Lp(0, T ;S2).
When considered as an operator in function space, D maps S2 and Lp(0, T ;S2)
continuously into S and Lp(0, T ;S), respectively. For later reference, we also
remark that

D?DΣ =
(
σD + χD,σD + χD

)
and (D?D)2 = 2D?D
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holds. Due to the definition of the operator D, the constraint φ(Σ) ≤ 0 can be
formulated as ‖DΣ‖L∞(Ω;S) ≤ σ̃0. Hence, we obtain

Σ ∈ K ⇒ DΣ ∈ L∞(Ω;S). (3)

Here and in the sequel we denote linear operators, e.g. D : S2 → S, and
the induced Nemytskii operators, e.g. D : H1(0, T ;S2) → H1(0, T ;S) and D :
L2(0, T ;S2)→ L2(0, T ;S), with the same symbol. This will cause no confusion,
since the meaning will be clear from the context.

Operators. The linear operators A : S2 → S2 and B : S2 → V ′ are defined as
follows. For Σ = (σ,χ) ∈ S2 and T = (τ ,µ) ∈ S2, let AΣ be defined through

〈T , AΣ〉S2 =

∫
Ω

τ : C−1σ dx+

∫
Ω

µ : H−1χ dx.

The term 1
2
〈AΣ, Σ〉S2 corresponds to the energy associated with the stress state

Σ. Here C−1(x) and H−1(x) are linear maps from S to S (i.e., they are fourth
order tensors) which may depend on the spatial variable x. For Σ = (σ,χ) ∈ S2

and v ∈ V , let

〈BΣ, v〉V ′,V = −
∫

Ω

σ : ε(v) dx.

We recall that ε(v) = 1
2

(
∇v + (∇v)>

)
denotes the (linearized) strain tensor.

Standing assumptions. Throughout the paper, we require

Assumption 1.1.

(1) The domain Ω ⊂ Rd, d = 3 is a bounded Lipschitz domain in the sense
of [10, Chapter 1.2]. The boundary of Ω, denoted by Γ, consists of two
disjoint measurable parts ΓN and ΓD such that Γ = ΓN ∪ΓD. While ΓN is
a relatively open subset, ΓD is a relatively closed subset of Γ. Furthermore
ΓD is assumed to have positive measure. In addition, the set Ω ∪ ΓN is
regular in the sense of Gröger, cf. [11]. A characterization of regular
domains for the case d ∈ {2, 3} can be found in [12, Section 5]. This class
of domains covers a wide range of geometries.

(2) The yield stress σ̃0 is assumed to be a positive constant. It equals
√

2
3
σ0,

where σ0 is the uni-axial yield stress.

(3) C−1 is a uniformly coercive element of L∞(Ω;L(S,S)), where L(S,S) de-
notes the space of linear operators S → S. Moreover, we assume that
C−1(x) is symmetric, i.e., τ : C−1(x)σ = σ : C−1(x) τ .

(4) The hardening modulus satisfies H−1(x) = k−1
1 (x) I, where the hardening

parameter k−1
1 ∈ L∞(Ω) is uniformly positive in Ω and I is the identity

map on S = Rd×d
sym.
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Assumption 1.1(1) enables us to apply the regularity results in [15] pertain-
ing to systems of nonlinear elasticity. The latter appear in the time-discrete
forward problem and its regularizations. Additional regularity leads to a norm
gap, which is needed to prove the differentiability of the control-to-state map.

Moreover, Assumption 1.1(1) implies that Korn’s inequality holds on Ω, i.e.,

‖u‖2
H1(Ω;Rd) ≤ cK

(
‖u‖2

L2(ΓD;Rd) + ‖ε(u)‖2
S

)
(4)

for all u ∈ H1(Ω;Rd), see e.g. [15, Lemma C.1]. Note that (4) entails in
particular that ‖ε(u)‖S is a norm on H1

D(Ω;Rd) equivalent to the standard
H1(Ω;Rd) norm. A further consequence is that B? satisfies the inf-sup condition

‖u‖V ≤
√
cK ‖B?u‖S2 for all u ∈ V. (5)

Assumption 1.1(3) is satisfied, e.g. for isotropic and homogeneous materials,
for which

C−1σ =
1

2µ
σ − λ

2µ (2µ+ d λ)
trace(σ) I

with the identity matrix I ∈ S and Lamé constants µ and λ, provided that
µ > 0 and d λ+ 2µ > 0 hold. These constants appear only here and there is no
risk of confusion with the plastic multiplier λ.

Clearly, Assumption 1.1(3),(4) show that 〈AΣ, Σ〉S2 ≥ α ‖Σ‖2
S2 for some

α > 0 and all Σ ∈ S2. Hence, the operator A is S2-elliptic.

Regularization. For the regularized problem, we need a regularization of the
function max{0, ·}.
Assumption 1.2. For all ε > 0, the function maxε : R → R is of class C1,1 and
satisfies

(1) maxε(x) ≥ max{0, x} for all x ∈ R,

(2) maxε is monotone increasing and convex,

(3) maxε(x) = max{0, x} for |x| ≥ ε.

Clearly, for all ε > 0 there are functions maxε satisfying this assumption,
e.g. the convolution of max{0, ·} with some differentiable function. Since the
term appearing inside maxε will be smaller than 1, we will assume ε ∈ (0, 1),
see (12c).

Interpolation of time-discrete functions. Let f τ ∈ XN be given, where X
is some Banach space and N is the number of time steps. We define certain
interpolants of f τ which will be useful for defining the time-discrete problem as
well as for passing to the limit with the time step size.

We define the piecewise linear and continuous interpolant f τc,p which will be
used for the primal variables Σ, u, and g

f τc,p(t) =
t− (i− 1) τ

τ
f τi +

i τ − t
τ

f τi−1 for t ∈ [(i− 1) τ, i τ), (6)
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with f τ0 = 0. Therefore, we can identify XN with a subspace of H1
{0}(0, T ;X).

Note that this interpolation coincides with the one given in [28, (3.1)].
The piecewise linear and continuous interpolant f τc,d will be used for the

dual variables Υ and w and is defined as

f τc,d(t) =
t− (i− 1) τ

τ
f τi +

i τ − t
τ

f τi−1 for t ∈ [(i− 1) τ, i τ), (7)

with f τ0 = f τ1 . Compared with the definition of f τc,p, only the fictitious value
of f τ0 was changed. Due to this choice of the initial value, the adjoint equation
(52a) is not only satisfied in the interval (τ, T ) but also in (0, τ), see Section 3.3.

Moreover, we define the piecewise constant interpolations f τd+ and f τd− by

f τd+(t) = f τi for t ∈ [(i− 1) τ, i τ), (8a)

f τd−(t) = f τi−1 for t ∈ [(i− 1) τ, i τ), (8b)

with the convention f τ0 = 0. The interpolant f τd+ will be used for the adjoint
displacement w in the gradient equation, see (45), whereas f τd− will be used for
several quantities in the adjoint system, see (52). Note that the interpolant f τd+

coincides with the one given in [28, (3.3)].

1.2. The forward problem. Now, we are in the position to state the forward
problem of quasistatic plasticity. Given ` ∈ H1

{0}(0, T ;V ′), one has to find

generalized stresses Σ ∈ H1
{0}(0, T ;S2) and displacements u ∈ H1

{0}(0, T ;V )

which satisfy Σ(t) ∈ K and

〈AΣ̇(t) +B?u̇(t), T −Σ(t)〉S2 ≥ 0 for all T ∈ K, (9a)

BΣ(t) = `(t) in V ′ (9b)

for almost all t ∈ (0, T ). The unique solvability of (9) is shown in [13, Theo-
rem 8.12], see also [28, (1.19)] for the uniqueness of the displacement u in case
of linear kinematic hardening. We denote the solution operator which maps
` 7→ (Σ,u) by G. For continuity properties of the solution map G we refer to
[28, Section 2]. Equivalently, by introducing a Lagrange multiplier λ associated
with the constraint φ(Σ) ≤ 0, the system (9) can be written as

AΣ̇ +B?u̇+ λD?DΣ = 0 in L2(0, T ;S2), (10a)

BΣ = ` in L2(0, T ;V ′), (10b)

0 ≤ λ ⊥ φ(Σ) ≤ 0 a.e. in (0, T )× Ω, (10c)

see [14]. As usual, 0 ≤ λ ⊥ φ(Σ) ≤ 0 is short for λ ≥ 0, φ(Σ) ≤ 0, and
λφ(Σ) = 0 a.e. in Ω. Note that the derivation of (10) based on its strong
formulation is given in [28, Section 1.2], see also [13, Chapter 3].
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By replacing the time derivatives by backward differences with time step size
τ = T

N
, we obtain the discretized problem: given `τ ∈ (V ′)N , find (Στ ,uτ , λτ ) ∈

(S2 × V × L2(Ω))N such that Στ
i ∈ K and

A(Στ
i −Στ

i−1) +B?(uτi − uτi−1) + τ λτi D?DΣτ
i = 0 in S2, (11a)

BΣτ
i = `τi in V ′, (11b)

0 ≤ λτi ⊥ φ(Στ
i ) ≤ 0 a.e. in Ω (11c)

is satisfied for all i ∈ {1, . . . , N}, where (Στ
0,u

τ
0) = 0. The unique solvability

of this incremental problem is shown in [13, Proof of Theorem 8.12, p. 196], for
the formulation involving the plastic multiplier, we refer to [14, Theorem 1.4].
We denote the solution operator which maps `τ 7→ (Στ ,uτ ) by Gτ .

A regularization of (11) is given in [29, Section 2]: given the loads `ε ∈
(V ′)N , find (Σε,uε) ∈ (S2 × V )N satisfying

A(Σε
i −Σε

i−1) +B?(uεi − uεi−1) + τ λεi D?DΣε
i = 0, (12a)

BΣε
i = `εi , (12b)

λεi = τ−1 k−1
1

αεi
1− αεi

, where αεi = maxε
(

1− σ̃0

|(σεi + χεi−1)D|

)
, (12c)

for all i ∈ {1, . . . , N}, and with the initial condition (Σε
0,u

ε
0) = (0,0). The

unique solvability of (12) can be proved using the Browder-Minty theorem, see
the discussion after [29, Section 2]. We denote the solution operator which maps
`ε 7→ (Σε,uε) by Gε. Note that we suppress the dependence of Gε on τ .

1.3. The optimal control problem. At first, we substantiate the assump-
tions on the objective ψ. Throughout this paper we assume

Assumption 1.3.

(1) The function ψ : H1(0, T ;V ) → R is weakly lower semicontinuous, con-
tinuous and bounded from below.

(2) We assume that ψ : H1(0, T ;V ) → R can be decomposed into ψc :
L2(0, T ;V )→ R and ψT : V → R, such that

ψ(u) = ψc(u) + ψT (u(T ))

holds for all u ∈ H1(0, T ;V ). Both, ψc and ψT are assumed to be contin-
uously Fréchet differentiable.

(3) The cost parameter ν is a positive, real number.

The assumptions on the admissible set Uad ⊂ H1
{0}(0, T ;U) and its time-

discretization U τ
ad = Uad ∩UN , where UN is identified with a linear subspace of

H1
{0}(0, T ;U) via the linear interpolation (6), is given by
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Assumption 1.4.

(1) The admissible set Uad is nonempty, convex and closed in H1
{0}(0, T ;U).

(2) We suppose that for all g ∈ Uad, there exists gτ ∈ U τ
ad, such that gτc,p → g

in H1(0, T ;U) as τ ↘ 0.

Some examples of ψ and Uad satisfying Assumption 1.3 are given after
[28, Assumption 2.8], see also the problem given in the introduction.

The optimal control problem under consideration is given by

Minimize F (u, g) = ψ(u) +
ν

2
‖g‖2

H1(0,T ;U)

such that (Σ,u) = G(Eg) and g ∈ Uad.

}
(P)

Here, G is the solution map of (9) and E is defined in (1). The existence of an
optimal control is shown in [28, Theorem 2.9].

Since the control-to-state map G ◦ E is given by the solution of the VI (9)
or, equivalently, by the complementarity system (10), the optimal control prob-
lem (P) is a mathematical program with equilibrium constraints (MPEC) or
with complementarity constraints (MPCC), respectively. Hence, optimality
conditions are not given by the KKT system. In order to prove optimality con-
ditions for (P), we replace the solution map G of (10) by the solution map Gε
of the discretized and regularized problem (12).

By restricting g to U τ
ad and by replacing the control-to-state map G by its

discretization Gτ , we obtain the time-discrete optimal control problem

Minimize F τ (uτ , gτ ) = ψτ (uτ ) +
ν

2
‖gτ‖2

UN

such that (Στ ,uτ ) = Gτ (Egτ ) and gτ ∈ U τ
ad,

}
(Pτ )

where the discrete functionals are defined by using the interpolation (6), i.e.,

ψτ (uτ ) = ψ(uτc,p) and ‖gτ‖UN = ‖gτc,p‖H1(0,T ;U).

We refer to [28, Section 3.4] concerning the existence of an optimal control.

Replacing Gτ by Gε, we obtain the regularized control problem

Minimize F τ (uε, gε) = ψτ (uε) +
ν

2
‖gε‖2

UN

such that (Σε,uε) = Gε(Egε) and gε ∈ U τ
ad.

}
(Pε)

The existence of an optimal control is proven in [29, Lemma 2.2] and an opti-
mality system is given in [29, Section 3.3], see also (20).
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2. C-Stationarity for the time-discrete optimization prob-
lem

The aim of this section is to derive an optimality system of C-stationary type
for the time-discrete optimal control problem (Pτ ) by passing to the limit in the
optimality system of its regularization (Pε). Note that all local solutions gτ

of (Pτ ) can be approximated by solutions to the following, slightly modified
version of (Pε), see [29, Section 4.2],

Minimize ψτ (uε) +
ν

2
‖gε‖2

UN +
1

2
‖gε − gτ‖2

UN

such that (Σε,uε) = Gε(Egε) and gε ∈ U τ
ad.

 (Pε
gτ )

In order to derive the time-discrete optimality system formally, we introduce
the multipliers

Υτ
i for (11a), µτi for λτi ≥ 0, see (11c),

wτ
i for (11b), θτi for φ(Στ

i ) ≤ 0, see (11c).

As usual in the context of MPCCs, we did not introduce a multiplier for the
complementarity condition λτi ⊥ φ(Στ

i ). Proceeding, we expect the following
system of C-stationarity to hold for local optima of (Pτ ), cf. [25],

A(Στ
i−Στ

i−1)+B?(uτi−uτi−1)+τλτiD?DΣτ
i =0, (13a)

B(Στ
i−Στ

i−1)=E(gτi−gτi−1), (13b)

0≤λτi ⊥ φ(Στ
i )≤0, (13c)

A(Υτ
i−Υτ

i+1)+B?(wτ
i−wτ

i+1)+τλτiD?DΥτ
i +τθτiD?DΣτ

i =0, (14a)

B(Υτ
i−Υτ

i+1)=ψτi (uτ ), (14b)
N∑
i=1

〈
E?wτ

i, g̃
τ
i−g̃τi−1−(gτi−gτi−1)

〉
L2(ΓN ;Rd)

+〈νgτ, g̃τ−gτ 〉UN ≥0, (15)

DΣτ
i :DΥτ

i−µτi =0, (16a)

µτi λ
τ
i =0, (16b)

θτi φ(Στ
i )=0, (16c)

θτi µ
τ
i ≥ 0, (16d)

for i = 1, . . . , N and for all g̃τ ∈ U τ
ad. Here, we used (Στ

0,u
τ
0) = (0,0) and

(Υτ
N+1,w

τ
N+1) = (0,0). Moreover, ψτi (uτ ) ∈ V ′ denotes the partial derivatives

of ψτ w.r.t. uτi , see also (41).
Here, (13) is the forward system and (14) is the adjoint system. The vari-

ational inequality (15) is a relationship between the adjoint state wτ and the
control gτ , i.e., it is the gradient equation. The pointwise complementarity
conditions on the multipliers (16) complete the system of C-stationary type.

The main result of this section is the following theorem.
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Theorem 2.1. Let gτ be a local solution of (Pτ ). We denote by (Στ ,uτ , λτ ) ∈
(S × V × L2(Ω))N the stress, displacement and plastic multiplier, which are
associated to gτ by (11). Then, there are adjoint states (Υτ ,wτ ) ∈ (S × V )N

and multipliers µτ , θτ ∈ L2(Ω)N , such that (13)–(16) is fulfilled.

In Section 2.1 we reformulate an optimality system of (Pε
gτ ), see [29, Sec-

tion 3.3], such that it involves the regularized counterparts of the multipliers
appearing in the C-stationarity system. By passing to the limit with ε, we prove
the C-stationarity result in Section 2.2. The main work is to verify certain esti-
mates for the multipliers and adjoint states, which have to be uniform w.r.t. the
regularization parameter ε.

2.1. Alternative formulation of forward and adjoint systems. The aim
of this section is to state an optimality system for (Pε

gτ ) which resembles the
C-stationarity system (13)–(16). To this end, we denote by (Σε,uε, gε) a local
minimizer of (Pε

gτ ).
According to [29, (34)], the adjoint states (Υε,wε)=(υε, ζε,wε)∈(S2×V )N

are defined as the solution of the system

A(Υε
i −Υε

i+1) +B?(wε
i −wε

i+1) +D?Jεi (υεi + ζεi+1) = 0, (17a)

B(Υε
i −Υε

i+1) = ψτi (uε), (17b)

with (Υε
N+1,w

ε
N+1) = 0. Here, ψτi (uε) ∈ V ′ denotes the partial derivative of ψτ

w.r.t. uεi . Moreover, Jεi is defined by

Jεi τ = k−1
1

(
αεi τ

D + βεi
DΣε

i : τD

|DΣε
i |2
DΣε

i

)
, (18)

where αεi is defined in (12c), and βεi is given by

βεi =
(

maxε
)′(

1− σ̃0

|(σεi + χεi−1)D|

)
σ̃0

|(σεi + χεi−1)D|
. (19)

The local optimality of (Σε,uε, gε) implies that

N∑
i=1

〈
E?wε

i , g̃
τ
i−g̃τi−1−(gεi−gεi−1)

〉
L2(ΓN ;Rd)

+〈ν gε+gε−gτ , g̃τ−gε〉UN ≥ 0 (20)

holds for all g̃τ ∈ U τ
ad, see [29, Section 3.3].

Using (17a) and ζεN+1 =0 we infer ζεi =(ζεi )
D for all i=1, . . . , N. We define

D̃Υε
i := (υεi )

D + ζεi+1. (21)

Now we are going to manipulate the term Jεi D̃Υε
i in order that the adjoint equa-

tion (17) resembles its counterpart in the expected C-stationarity system (14).
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We obtain from the second component in (17a), (18) and (21) and Assump-
tion 1.1(4)

DΥε
i − D̃Υε

i = ζεi − ζεi+1 = −
(
αεi D̃Υε

i + βεi
DΣε

i : D̃Υε
i

|DΣε
i |2

DΣε
i

)
. (22)

Dividing by 1−αεi > 0 yields D̃Υε
i = 1

1−αεi

(
DΥε

i +βεi
DΣεi :D̃Υε

i

|DΣεi |2
DΣε

i

)
. Using (18)

we proceed by

Jεi D̃Υε
i = k−1

1

αεi
1− αεi

(
DΥε

i + βεi
DΣε

i : D̃Υε
i

|DΣε
i |2

DΣε
i

)
+ k−1

1 βεi
DΣε

i : D̃Υε
i

|DΣε
i |2

DΣε
i

= τ λεi DΥε
i + k−1

1

βεi
1− αεi

DΣε
i : D̃Υε

i

|DΣε
i |2

DΣε
i .

This gives rise to the definition

θεi := k−1
1 τ−1 βεi

1− αεi
DΣε

i : D̃Υε
i

|DΣε
i |2

. (23)

The L2(Ω)-regularity of θεi is shown in Lemma 2.5. The definitions of θεi implies

Jεi D̃Υε
i = τ λεi DΥε

i + τ θεi DΣε
i .

Using the definition of λεi and θεi the adjoint system (17) becomes

A(Υε
i−Υε

i+1) +B?(wε
i−wε

i+1) + τλεiD?DΥε
i + τθεiD?DΣε

i = 0, (24a)

B(Υε
i−Υε

i+1) = ψτi (uε). (24b)

It remains to define the multiplier µε. According to (16a) we define

µεi := DΣε
i :DΥε

i ∈ L2(Ω). (25)

Testing (22) with DΣε
i implies

µεi = DΥε
i :DΣε

i = (1− αεi − βεi ) D̃Υε
i :DΣε

i . (26)

This equation is the starting point to estimate the multiplier µεi , see Lemma 2.2.

Now, the optimality system of (Pε
gτ ) consists of the state equation (12), the

adjoint equation (24) and the gradient equation (20).
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2.2. Convergence of the regularization. As a preparation for the proof of
Theorem 2.1 we verify estimates for various quantities introduced in Section 2.1.

In Assumption 1.2 we require maxε(x) = max{0, x} if x /∈ (−ε, ε). Hence it
is natural to split Ω into three disjoint sets in dependence whether the argument
of maxε in (12c) and (19) is smaller than −ε, larger than ε or in (−ε, ε).

Aε,−i :=
{
x ∈ Ω : |D̃Σε

i | ≤
σ̃0

1 + ε

}
=
{
x ∈ Ω : 1− σ̃0

|D̃Σε
i |
≤ −ε

}
,

Aε,+i :=
{
x ∈ Ω : |D̃Σε

i | ≥
σ̃0

1− ε

}
=
{
x ∈ Ω : 1− σ̃0

|D̃Σε
i |
≥ ε
}
,

Aε,0i := Ω \ (Aε,−i ∪ A
ε,+
i ).

We start by giving bounds on the term 1 − αεi − βεi which appears in the
definition of µεi , see (26).

Lemma 2.2. We have

1− αεi − βεi ∈


{1}, on Aε,−i ,

[0, 1], on Aε,0i ,

{0}, on Aε,+i ,

(27)

for all i ∈ {1, . . . , N}.

Proof. By the definition of αεi and βεi in (12c) and (19), we infer immediately
αεi = βεi = 0 on Aε,−i . On Aε,+i we have αεi = 1 − σ̃0

|D̃Σεi |
and βεi = σ̃0

|D̃Σεi |
. This

implies 1− αεi − βεi = 0.

It remains to check the assertion on Aε,0i . Let us define κεi = 1 − σ̃0
|D̃Σεi |

.

On Aε,0i we have κεi ∈ (−ε, ε). By definition of αεi and βεi in (12c) and (19), we

have

αεi = maxε(κεi ) and βεi = (maxε)′(κεi ) (1− κεi ).

Let us give a precise upper bound of βεi . The fundamental theorem of calculus
yields ∫ ε

κεi

(maxε)′(x) dx = maxε(ε)−maxε(κεi ) = ε−maxε(κεi ).

Since Assumption 1.2 implies that (maxε)′ is monotone increasing, we infer

(ε− κεi ) (maxε)′(κεi ) ≤ ε−maxε(κεi ).

Hence,

βεi = (maxε)′(κεi ) (1− κεi ) ≤
ε−maxε(κεi )

ε− κεi
(1− κεi ).
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Now, we obtain

1− αεi − βεi ≥ 1−maxε(κεi )−
ε−maxε(κεi )

ε− κεi
(1− κεi )

=
ε− κεi −maxε(κεi ) (ε− κεi )− (ε−maxε(κεi )) (1− κεi )

ε− κεi
=

1− ε
ε− κεi

(maxε(κεi )− κεi )

≥ 0.

By αεi ≥ 0 and βεi ≥ 0 we infer 1− αεi − βεi ∈ [0, 1] on Aε,0i .

As a simple consequence we obtain the regularized counterpart of the sign
condition (16d).

Lemma 2.3. For all i ∈ {1, . . . , N}, the condition θεi µ
ε
i ≥ 0 is satisfied almost

everywhere in Ω.

Proof. By (26) we obtain

θεi µ
ε
i = θεi (1− αεi − βεi )DΣε

i : D̃Υε
i .

Now, Lemma 2.2 and the definition of θεi in (23) imply θεi µ
ε
i ≥ 0.

Now we show the boundedness of the adjoint states (Υε,wε).

Lemma 2.4. The adjoint states (Υε,wε) satisfy

max
i=1,...,N

‖Υε
i‖S2 + max

i=1,...,N
‖wε

i‖V ≤ C
N∑
i=1

‖ψτi (uε)‖V ′ ,

where the constant C depends only on the operators A and B.

Proof. There exists ΣBΥε
i
∈ S2, such that BΣBΥε

i
= BΥε

i and DΣBΥε
i

= 0, see
[28, (2.4)]. Let us define T = Υε

i −ΣBΥε
i
. This implies

BT = 0, by BΣBΥε
i

= BΥε
i ,

λεi DΥε
i :DT = λεi DΥε

i :DΥε
i ≥ 0, by λεi ≥ 0,

θεi DΣε
i :DT = θεi DΣε

i :DΥε
i = θεi µ

ε
i ≥ 0, by Lemma 2.3.

Testing (24a) with T yields

〈Υε
i −Υε

i+1, T 〉A ≤ 0.

Here, 〈·, ·〉A is the scalar product on S2 induced by the operator A. Hence

〈Υε
i −Υε

i+1, Υε
i 〉A ≤ 〈Υε

i −Υε
i+1, ΣBΥε

i
〉A.
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Using 〈Υε
i −Υε

i+1, Υε
i 〉A = 1

2

(
‖Υε

i‖2
A − ‖Υε

i+1‖2
A + ‖Υε

i −Υε
i+1‖2

A

)
, yields

‖Υε
i‖2
A − ‖Υε

i+1‖2
A + ‖Υε

i −Υε
i+1‖2

A ≤ 2 〈Υε
i −Υε

i+1, ΣBΥε
i
〉A.

Summing over i ∈ {k, k + 1, . . . , N} and using Υε
N+1 = 0 yields

‖Υε
k‖2

A +
N∑
i=k

‖Υε
i −Υε

i+1‖2
A ≤ 2

N∑
i=k

〈Υε
i −Υε

i+1, ΣBΥε
i
〉A

≤ 2 〈Υε
k, ΣBΥε

k
〉A − 2

N∑
i=k

〈Υε
i+1, ΣBΥε

i−BΥε
i+1
〉A

≤ C max
i=k,...,N

‖Υε
i‖A

(
‖BΥε

k‖V ′ +
N∑
i=k

‖ψτi (uε)‖V ′

)
,

where C depends only on A and B. Here, we used

‖ΣBΥε
i
‖A ≤ C ‖BΥε

i‖V ′

and

‖ΣBΥε
i−BΥε

i+1
‖A ≤ C ‖BΥε

i −BΥε
i+1‖V ′ = C ‖ψτi (uε)‖V ′ ,

which follow from the inf-sup condition of B?, see [28, (2.4)]. By BΥε
k =∑N

i=k ψ
τ
i (uε) we obtain

‖Υε
k‖2

A ≤ C max
i=k,...,N

‖Υε
i‖A

N∑
i=k

‖ψτi (uε)‖V ′ ≤ C max
i=1,...,N

‖Υε
i‖A

N∑
i=1

‖ψτi (uε)‖V ′ .

Taking the maximum over k = 1, . . . , N on the left hand side yields

max
i=1,...,N

‖Υε
i‖A ≤ C

N∑
i=1

‖ψτi (uε)‖V ′ ,

where C depends only on A and B. The estimate for wε
i follows by (17a) and

using the inf-sup condition of B?, see (5).

For convenience we define the abbreviation

Qε
i = −AΥε

i −B?wε
i , (28)

which will be used frequently (also with other sub- and superscripts) in the
sequel. The adjoint system (24a) becomes

1

τ
(Qε

i −Qε
i+1) = λεi D?DΥε

i + θεi D?DΣε
i . (29)
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Using Lemma 2.4 we obtain the boundedness of Qε

max
i=1,...,N

‖Qε
i‖S2 ≤ C

N∑
i=1

‖ψτi (uε)‖V ′ . (30)

As a consequence, we obtain an estimate of the bilinear terms in (29) and of
the multiplier θεi in L2(Ω).

Lemma 2.5. The estimates

‖θεi D?DΣε
i‖2
S2 + ‖λεi D?DΥε

i‖2
S2 ≤

1

τ 2
‖Qε

i −Qε
i+1‖2

S2 (31a)

‖θεi ‖L2(Ω) ≤
1 + ε

(1− ε)
√

2 σ̃0

· 1

τ
‖Qε

i −Qε
i+1‖S2 (31b)

hold for i ∈ {1, . . . , N}.

Proof. Taking norms on both sides of (29) yields

‖θεi D?DΣε
i‖2
S2 +〈θεi D?DΣε

i , λ
ε
i D?DΥε

i 〉S2 +‖λεi D?DΥε
i‖2
S2 =

1

τ 2
‖Qε

i−Qε
i+1‖2

S2 .

Due to Lemma 2.3, the definition of µεi , see (25), and λεi ≥ 0 the scalar product
is non-negative. Indeed, we have

〈θεi D?DΣε
i , λ

ε
i D?DΥε

i 〉S2 = 2

∫
Ω

λεi θ
ε
i DΣε

i :DΥε
i dx = 2

∫
Ω

λεi θ
ε
i µ

ε
i dx ≥ 0.

This yields (31a).
Due to βεi = 0 on Aε,−i , we have θεi = 0 on Aε,−i , see (23). By using

DΣε
i = (1− αεi ) (σεi + χεi−1)D (32)

see [29, (16)], we obtain |DΣε
i | = (1−αεi ) |D̃Σε

i | ≥ 1−ε
1+ε

σ̃0 on Aε,0i ∪A
ε,+
i . Hence,

the estimate (31b) follows by (31a).

Unfortunately, these estimates are not uniform w.r.t. the time step size τ .
This will cause severe issues when passing to the limit τ ↘ 0, see in particular
Lemmas 3.8 and 3.9.

Finally, we prove the regularized counterparts of the complementarity con-
ditions (16b) and (16c).

Lemma 2.6. The plastic multiplier λε and the multiplier µε satisfy

‖λεi µεi‖L1(Ω) ≤ k−1
1 τ−1 ε

1− ε
‖DΣε

i‖S ‖DΥε
i‖S for all i ∈ {1, . . . , N}.
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Proof. By (12c) we obtain λεi = 0 on Aε,−i . Using (26) and (27) we infer µεi = 0
on Aε,+i .

On Aε,0i we have λεi = k−1
1 τ−1 αεi

1−αεi
≤ k−1

1 τ−1 ε
1−ε . Hence,

‖λεi µεi‖L1(Ω) ≤ k−1
1 τ−1 ε

1− ε
‖µεi‖L1(Aε,0i ) ≤ k−1

1 τ−1 ε

1− ε
‖DΣε

i‖S ‖DΥε
i‖S.

Lemma 2.7. The generalized stresses Σε and the multiplier θε satisfy

‖θεi φ(Σε
i )‖L1(Ω) ≤

2 ε

(1 + ε)2
σ̃2

0 ‖θεi ‖L1(Aε,0i ) for all i ∈ {1, . . . , N}.

Proof. We have βεi = 0 and hence by (23) θεi = 0 on Aε,−i . From (27) and (32)
we infer φ(Σε

i ) = 0 on Aε,+i .

On Aε,0i we have |DΣε
i | ∈

[
1−ε
1+ε

, 1
]
σ̃0 by (12c) and (32). Hence, we obtain

|φ(Σε
i )| =

σ̃2
0 − |DΣε

i |2

2
≤ 2 ε

(1 + ε)2
σ̃2

0 a.e. on Aε,0i .

Using Hölder’s inequality concludes the proof.

Using the results above we prove that the system (13)–(16) is a necessary
optimality condition for the time-discrete control problem (Pτ ).

Proof of Theorem 2.1. [29, Corollary 4.7] implies the existence of a sequence of
local solutions {gε} of (Pε

gτ ), such that gε → gτ as ε↘ 0.
Let us denote by (Σε,uε, λε) the regularized stresses, displacements and

plastic multipliers, which are associated to gε by (12). From [29, Theorem 4.3
and Corollary 4.4] we infer

(Σε,uε, λε)→ (Στ ,uτ , λτ ) in (S2 × V × L2(Ω))N as ε↘ 0,

where (Στ ,uτ , λτ ) ∈ (S×V ×L2(Ω))N are the unregularized stresses, displace-
ments and plastic multipliers associated to gτ , see (11). This shows the forward
system (13).

Let us define the adjoint states (Υε,wε) and the multipliers (θε, µε) asso-
ciated to gε by (23), (24) and (26). By Lemma 2.4 and Lemma 2.5 the ad-
joint states (Υε,wε) and the multipliers (θε, µε) are bounded in (S2×V )N and
(L2(Ω)× L2(Ω))N , respectively. Hence, there is a subsequence of ε denoted by
the same symbol and an element (Υτ ,wτ , θτ , µτ ) ∈ (S2×V ×L2(Ω)×L2(Ω))N ,
such that

(Υε,wε, θε, µε) ⇀ (Υτ ,wτ , θτ , µτ ) in (S2 × V × L2(Ω)× L2(Ω))N as ε↘ 0.

Therefore, we can pass to the limit in the necessary optimality condition (20)
of the modified regularized problem (Pε

gτ ) and obtain (15).
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By λε → λτ in L2(Ω)N and by Υε ⇀ Υτ in (S2)N , we infer λεDΥε ⇀
λτ DΥτ in L1(Ω;S)N . Using (31a) we obtain λεDΥε ⇀ λτ DΥτ in SN for fixed
τ > 0, since Qε is bounded, see (30). Similarly, we infer θεDΣε ⇀ θτ DΣτ

in SN . Therefore, we can pass to the limit in the regularized adjoint equa-
tion (24) and obtain (14).

It remains to check the relations (16). Using the definition (26) of µε we
infer (16a). Now we address the complementarity conditions (16b) and (16c).
In view of Lemma 2.6 and Lemma 2.7 it would suffice to prove the weak con-
vergence of λεi µ

ε
i and θεi φ(Σε

i ) in L1(Ω), since the L1(Ω)-norm is weakly lower
semicontinuous. By Σε

i → Στ
i in S2 and λεi DΥε

i ⇀ λτi DΥτ
i in S we infer

λεi µ
ε
i = λεi DΥε

i : DΣε
i ⇀ λτi µ

τ
i in L1(Ω). Similar, using θεi DΣε

i ⇀ θτi DΣτ
i

in S and Σε
i → Στ

i in S2 shows θεi φ(Σε
i ) = θεi

1
2

(DΣε
i :DΣε

i − σ̃0)2 ⇀ θτi φ(Στ
i )

in L1(Ω). Here, we used the definition (2) of φ. This shows the complementarity
conditions (16b) and (16c).

Last we address (16d). We will use [16, Proposition 3.15]. To this end, we
test (24a) with ϕΥε

i , where ϕ ∈ C∞0 (Ω), ϕ ≥ 0. Using θεi DΣε
i :DΥε

i = θεi µ
ε
i ≥ 0

by Lemma 2.3, we obtain

〈A(Υε
i −Υε

i+1) +B?(wε
i −wε

i+1) + λεi D?DΥε
i , ϕΥε

i 〉S2 ≤ 0.

Applying [16, Proposition 3.15] yields

〈A(Υτ
i −Υτ

i+1) +B?(wτ
i −wτ

i+1) + λτi D?DΥτ
i , ϕΥτ

i 〉S2 ≤ 0.

Testing (14a) with ϕΥτ
i yields∫

Ω

ϕ θτi µ
τ
i dx ≥ 0 for all ϕ ∈ C∞0 (Ω) satisfying ϕ ≥ 0.

Hence, θτi µ
τ
i ≥ 0 almost everywhere. This shows (16d).

Remark 2.8. (1) Similarly to Theorem 2.1 a necessary optimality condition
for the modified time-discrete problem (Pτ

g) can be proven, see the in-
troduction of Section 3 for the definition of the modified problem. In
the optimality system (13)–(16) we have to replace the gradient equa-
tion (15) by

N∑
i=1

〈
E?wτ

i , g̃
τ
i − g̃τi−1 − (gτi − gτi−1)

〉
L2(ΓN ;Rd)

+ 〈(gτc,p − g) + ν gτc,p, g̃
τ
c,p − gτc,p〉H1(0,T ;U)

≥ 0,

(15’)

for all g̃τ ∈ U τ
ad. Here, we used the linear interpolation (6). As an

optimality system for the modified time-discrete problem (Pτ
g) we obtain

(13), (14), (15’) and (16).
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(2) In case N = 1 (only one time step) we obtain an optimality system for
the optimal control of static plasticity. The system (13)–(16) equals the
system [16, (3.3)–(3.6)] up to minor differences: in the current paper we
neglected volume forces f , but considered additionally control constraints.

(3) Using the technique of [17, Section 3] one may derive a system of B-
stationary type for the time-discrete problem (Pτ ).

3. Weak stationarity for the quasistatic problem

In this section we derive an optimality system for the continuous problem (P).
We use arguments similar to those in the proof of Theorem 2.1. Throughout
this section, g denotes a fixed local optimum of (P). [28, Theorem 3.10] yields
the existence of a sequence {gτ}τ>0 of local optima of the time-discrete and
modified problems

Minimize ψτ (uτ ) +
ν

2
‖gτ‖2

UN +
1

2
‖gτc,p − g‖2

H1(0,T ;U)

such that (Στ ,uτ ) = Gτ (Egτ ) and gτ ∈ U τ
ad,

 (Pτ
g)

such that their interpolations gτc,p, see (6), converge to g in the strong topol-
ogy of H1(0, T ;U). This sequence {gτ}τ>0 is fixed throughout this section.
The convergence of (the interpolations of) the states (Στ

c,p,u
τ
c,p, λ

τ
c,p) towards

(Σ,u, λ) in H1(0, T ;S2× V )×L2(0, T ;L2(Ω)) was shown in [28, Theorems 3.3
and 3.4]. In this section, we study the convergence properties of the dual quan-
tities (Υτ ,wτ , µτ , θτ ) and pass to the limit in the optimality system (13)–(16)
as τ ↘ 0.

Unfortunately, one cannot show the boundedness of the adjoints Υτ
c,d and

wτ
c,d in H1(0, T ;S2) and H1(0, T ;V ), but only in L∞(0, T ;S2) and L∞(0, T ;V ),

respectively, which was already proven in Lemma 2.4. Due to this lack of
regularity, the derivatives in time of Υτ

c,d and wτ
c,d in the adjoint equation (14)

have to be formulated in a weak sense in order to pass to the limit τ ↘ 0. Hence,
the adjoint equation (34) of the continuous problem can be stated only in a weak
sense. As mentioned in the introduction, this lack of regularity also occurs in
the optimal control of the parabolic obstacle problem, see [19, Theorem 6.2]
and for the optimal control of ODEs involving hysteresis, see [5, Satz 8.12].

The main result of this paper is the following theorem.

Theorem 3.1. Let g ∈ H1(0, T ;U) be a local minimum of the optimal control
problem (P). Then there exist

(Σ,u) ∈ H1(0, T ;S2 × V ), λ ∈ L2(0, T ;L2(Ω)),

(Υ,w) ∈ L∞(0, T ;S2 × V ), (θ, µ) ∈ X (0, T )′ × L∞(0, T ;L2(Ω)),

(ΥT ,wT ) ∈ S2 × V, (θT , µT ) ∈ L2(Ω)× L2(Ω)
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satisfying

AΣ̇ +B?u̇+ λD?DΣ = 0, (33a)

BΣ̇ = Eġ, (33b)

0 ≤ λ ⊥ φ(Σ) ≤ 0, (33c)

〈AΥ +B?w, Ṫ 〉L∞(0,T ;S2),L1(0,T ;S2) − 〈AΥT +B?wT , T (T )〉S2

+〈λD?DΥ, T 〉L2(0,T ;S2
1),L2(0,T ;S2

1)′ + θ(DΣ :DT ) = 0, (34a)

B(Υ−ΥT )−
∫ T

·
∇ψc(u) ds = 0, (34b)〈

E?w, ˙̃g − ġ
〉
L2(0,T ;U)

+ 〈ν g, g̃ − g〉H1(0,T ;U) ≥ 0, (35)

DΣ :DΥ− µ = 0, (36a)

µλ = 0, (36b)

θ(v φ(Σ)) = 0, (36c)

AΥT + θT D?DΣ(T ) +B?wT = 0, (37a)

BΥT − ψ′T (u(T )) = 0, (37b)

DΣ(T ) :DΥT − µT = 0, (38a)

θT φ(Σ(T )) = 0, (38b)

θT µT ≥ 0, (38c)

for all T ∈ XS2,0(0, T ), g̃ ∈ Uad and v ∈ X (0, T ).

For definition of the spaces X (0, T ) and XS2,0(0, T ), we refer to (53).
The remainder of this section is devoted to the proof of Theorem 3.1 and

is organized as follows. In Section 3.1, we use some basic convergence results
in order to establish the state equation (33) and the gradient inequality (35).
After deriving some auxiliary results in Section 3.2, we obtain the adjoint equa-
tion (34) and the terminal conditions (37), (38). Finally, the complementarity
conditions (36) are verified in Section 3.4.

Throughout this section, we denote by Στ ,uτ , λτ ,Υτ ,wτ , µτ , θτ the states,
adjoint states and multipliers, such that the optimality system (13), (14), (15’)
and (16) of the modified problem (Pτ

g) is satisfied, see Remark 2.8(1). Moreover,
we denote by Σ,u, λ the states associated with g by (10) with ` = Eg.

3.1. Basic convergence results. As already mentioned in the introduction
of this section, [28, Theorems 3.3 and 3.4] imply

Στ
c,p → Σ in H1(0, T ;S2), uτc,p → u in H1(0, T ;V ),

λτd+ → λ in L2(0, T ;L2(Ω)),

}
(39)
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where (Σ,u, λ) is the solution of the continuous problem associated to g,
see (10) with ` = Eg. We refer to (6)–(8) for the definitions of f τc,p, f

τ
c,d, f

τ
d+

and f τd−. For later use, we mention that this implies

Στ
d− → Σ in L∞(0, T ;S2), uτd− → u in L∞(0, T ;S2),

λτd− → λ in L2(0, T ;L2(Ω)).

}
(40)

This shows the satisfaction of the state equation (33).
Now, we will give a formula for the partial derivatives ψτi of ψτ in order

to show that the right hand side in the estimate of Lemma 2.4 is uniform
w.r.t. the time step size τ . If we denote by vi : [0, T ] → R the usual hat
function associated with the node t = i τ (piecewise linear, continuous, 0 at j τ
for j 6= i and 1 at i τ), we obtain

ψτi (uτc,p) =

∫ T

0

vi∇ψc(u
τ
c,p) dt for i = 1, . . . , N − 1, (41a)

ψτi (uτc,p) =

∫ T

0

vi∇ψc(u
τ
c,p) dt+ ψ′T (uτc,p(T )) for i = N, (41b)

where ∇ψc(u) ∈ L2(0, T ;V ′) denotes the gradient of ψc at u and ψ′T ∈ V ′ is
the Fréchet derivative of ψT . This shows

N∑
i=1

‖ψτi (uτc,p)‖V ′ ≤
N∑
i=1

∥∥∥∫ T

0

vi∇ψc(u
τ
c,p) dt

∥∥∥
V ′

+ ‖ψ′T (uτc,p(T ))‖V ′

≤
∫ T

0

‖∇ψc(u
τ
c,p)‖V ′ dt+ ‖ψ′T (uτc,p(T ))‖V ′ , (42)

where we used that the vi form a partition of unity. Using Lemma 2.4, the
continuities of ∇ψc : L2(0, T ;V )→ L2(0, T ;V ′) and ψ′T : V → V ′, and (39), we
obtain

‖(Υτ
c,d,w

τ
c,d)‖L∞(0,T ;S2×V ) + ‖(Υτ

d−,w
τ
d+)‖L∞(0,T ;S2×V ) ≤ C, (43)

where C > 0 does not depend on τ . Since L∞(0, T ;S2 × V ) is the dual of the
separable space L1(0, T ;S2 × V ′), see [6, Theorem 4.1] or [7, Theorem 8.18.3],
there are subsequences of {(Υτ

c,d,w
τ
c,d)}τ>0 and of {(Υτ

d−,w
τ
d+)}τ>0 (denoted by

the same symbol) which converge in the weak-? topology of L∞(0, T ;S2 × V ).
Testing (Υτ

c,d,w
τ
c,d) and (Υτ

d−,w
τ
d+) with χ[0,t] (T , `) ∈ L1(0, T ;S2×V ′), where

T ∈ S2, ` ∈ V ′ and t ∈ [0, T ] are arbitrary, shows that the weak-? limits
coincide. Denoting the weak-? limit by (Υ,w) ∈ L∞(0, T ;S2 × V ), we obtain

Υτ
c,d

?
⇀ Υ in L∞(0, T ;S2), Υτ

d−
?
⇀ Υ in L∞(0, T ;S2),

wτ
c,d

?
⇀ w in L∞(0, T ;V ), wτ

d+
?
⇀ w in L∞(0, T ;V ).

}
(44)
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We will use the weak convergence of wτ
d+ in order to pass to the limit in

the gradient equation. Using the interpolations (6) and (8b), the time-discrete
gradient equation (15’) reads

〈E?wτ
d+, ˙̃gτc,p− ġτc,p〉L2(0,T ;U) + 〈(gτc,p−g) + ν gτc,p, g̃

τ
c,p−gτc,p〉H1(0,T ;U) ≥ 0 (45)

for all g̃τ ∈ U τ
ad. Due to Assumption 1.4 every g̃ ∈ Uad can be approximated by

a sequence g̃τ ∈ U τ
ad. Passing to the limit τ ↘ 0 implies

〈E?w, ˙̃g − ġ〉L2(0,T ;U) + ν 〈g, g̃ − g〉H1(0,T ;U) ≥ 0 for all g̃ ∈ Uad.

This proves (35).

3.2. Auxiliary results. In this section we provide some results needed several
times in the sequel.

We derive a relationship between the piecewise linear interpolant Στ
c,p,

see (6), and the piecewise constant interpolant Στ
d−, see (8b). A simple cal-

culation shows

Στ
d−(t) = Στ

c,p(t)− (t− nτ (t) τ) Σ̇
τ

c,p(t) for a.a. t ∈ [0, T ], (46)

where nτ is given by

nτ (t) = max{n ∈ N : t ≥ (n− 1) τ}.

This definition implies t ∈ [(nτ (t) − 1) τ, nτ (t) τ) for all t ∈ [0, T ]. The rela-
tion (46) gives rise to the definition

κτ (t) = (t− nτ (t) τ) for a.a. t ∈ [0, T ]. (47)

Obviously, we have κτ ∈ L∞(0, T ) and

κτ (t) ∈ [−τ, 0] for a.a. t ∈ [0, T ]. (48)

Due to (46) the term κτ (AΥ̇
τ

c,d +B?ẇτ
c,d) appears frequently in Lemmas 3.8

and 3.9. Using the estimates (30) and (42) we can prove that it converges to
zero w.r.t. the weak-? topology of L∞(0, T ;S2). Similar to (28), we define

Qτ
c,d = −AΥτ

c,d −B?wτ
c,d.

Lemma 3.2. The function κτ Q̇
τ

c,d converges towards 0 w.r.t. the weak-? topol-
ogy of L∞(0, T ;S2).
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Proof. Testing κτ Q̇
τ

c,d with χ(t,T ) T , where t ∈ [0, T ] and T ∈ S2, yields

〈χ(t,T ) T , κ
τ Q̇

τ

c,d〉L2(0,T ;S2) =

∫ nτ (t) τ

t

〈T , κτ Q̇τ

c,d〉S2 ds+

∫ T

nτ (t) τ

〈T , κτ Q̇τ

c,d〉S2 ds.

Let us estimate these two terms. For the first one we have∣∣∣∣∣
∫ nτ (t) τ

t

〈T , κτ Q̇τ

c,d〉S2 ds

∣∣∣∣∣ ≤ τ ‖T ‖S2 ‖τ Q̇τ

c,d‖L∞(0,T ;S2),

since |nτ (t) τ − t| ≤ τ and |κτ | ≤ τ a.e. in [0, T ], see (48).

Using
∫ i τ

(i−1) τ
κτ ds = − τ

2
for all i ∈ {1, . . . , N} and the constantness of Q̇

τ

c,d

on ((i− 1) τ, i τ) for all i ∈ {1, . . . , N}, we obtain for the second term∣∣∣∣∫ T

nτ (t) τ

〈T , κτ Q̇τ

c,d〉S2 ds

∣∣∣∣ =

∣∣∣∣τ2
∫ T

nτ (t) τ

〈T , Q̇τ

c,d〉S2 ds

∣∣∣∣
≤
∣∣∣τ
2
〈T , Qτ

c,d(T )−Qτ
c,d(nτ (t) τ)〉S2

∣∣∣
≤ τ ‖T ‖S2 ‖Qτ

c,d‖L∞(0,T ;S2).

Hence, by (30) and (42) we obtain
∣∣∣〈χ(t,T ) T , κ

τ Q̇
τ

c,d〉L2(0,T ;S2)

∣∣∣ ≤ τ C.

Using the boundedness of κτ Q̇
τ

c,d in L∞(0, T ;S2), see (43) and (47), the
density of the linear hull of {χ[t,T ] T } in L1(0, T ;S2) finishes the proof. This
density can be found in [9, Lemma IV.1.3].

Another term which will appear frequently is DT τ : DΣτ
c,p, where

T τ ∈ L∞(0, T ;S2) is a sequence which converges in the weak-? topology. Using
the boundedness of DΣτ

c,p in L∞((0, T ) × Ω;S), see (3), and the convergence
DΣτ

c,p → DΣ in L∞(0, T ;S), an interpolation argument, see [26, Lemma 8.2],
yields DΣτ

c,p → DΣ in L∞(0, T ;Lp(Ω;S)) for all p < ∞. This gives in turn

DT τ :DΣτ
c,p

?
⇀ DT :DΣ in L∞(0, T ;Lq(Ω)) for all q < 2. Using the bounded-

ness of DT τ :DΣτ
c,p in L∞(0, T ;L2(Ω)) we infer even the weak-? convergence of

the product in L∞(0, T ;L2(Ω)).

Lemma 3.3. Let T τ ?
⇀ T in L∞(0, T ;S2). Then

DΣτ
c,p :DT τ ?

⇀ DΣ :DT in L∞(0, T ;L2(Ω)).

Let f τ ⇀ f in L2(0, T ;L1(Ω)). Then

f τ DΣτ
c,p ⇀ f DΣ in L2(0, T ;L1(Ω;S)).

Let gτ
?
⇀ g in L∞(0, T ;L2(Ω)). Then

gτ DΣτ
c,p

?
⇀ gDΣ in L∞(0, T ;S).

The statements remain valid if Στ
c,p is replaced by Στ

d−.
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Proof. Let us prove the first statement. Since DΣτ
c,p → DΣ in L∞(0, T ;S) and

T τ ?
⇀ T in L∞(0, T ;S2), we obtain

DT τ :DΣτ
c,p ⇀ DT :DΣ in L1((0, T )× Ω). (49)

Since DΣτ
c,p is bounded in the space L∞((0, T )×Ω;S), DT τ :DΣτ

c,p is bounded
in L∞(0, T ;L2(Ω)). Due to this boundedness, there exists a subsequence which
converges with respect to the weak-? topology of L∞(0, T ;L2(Ω)). Due to (49),
the limit is unique and hence we obtain the convergence of the whole sequence.
The statement involving g ∈ L∞(0, T ;L2(Ω)) proves completely analogously.

It remains to prove the statement involving f . Since f τ DΣτ
c,p is bounded

in L2(0, T ;L1(Ω;S)), it is sufficient to show the convergence

〈f τ DΣτ
c,p, T 〉 → 〈f DΣ, T 〉

for all T from a dense subset of the dual space L2(0, T ;L1(Ω;S))′. This dual
space L2(0, T ;L1(Ω;S))′ consists of (equivalence classes) of measurable functions
T : (0, T )× Ω→ S for which the norm

‖T ‖L2(0,T ;L1(Ω;S))′ =

∫ T

0

‖T (t)‖L∞(Ω;S) dt

is finite, see [7, Theorem 8.20.3]. Hence, the space L∞((0, T )×Ω;S) is dense in
L2(0, T ;L1(Ω;S))′. Therefore it remains to show that

f τ DΣτ
c,p ⇀ f DΣ in L1(0, T ;L1(Ω;S)) = L1((0, T )× Ω;S).

This follows by applying Theorem A.2 to the components of f τ DΣτ
c,p, since

we have f τ ⇀ f in L1((0, T ) × Ω) and the components of DΣτ
c,p converges in

L2((0, T )× Ω) and are bounded in L∞((0, T )× Ω).

3.3. Passing to the limit in the adjoint equation. We start by showing the
weak convergence of the terminal values of the adjoint states Υτ

c,d andwτ
c,d. Note

that this does not simply follow from the weak-? convergence in L∞(0, T ;S2×V ).
Using Υτ

c,d(T ) = Υτ
N and wτ

c,d(T ) = wτ
N the adjoint equation (14) with

i = N implies

AΥτ
N + τ λτN D?DΥτ

N + τ θτN D?DΣτ
N +B?wτ

N = 0, (50a)

BΥτ
N = ψτN(uτ ). (50b)

By standard saddle-point arguments, we obtain the boundedness of Υτ
N , wτ

N

and τ θτN . Hence, there exists a subsequence, denoted by the same symbol, such
that

(Υτ
N ,w

τ
N , τ θ

τ
N) ⇀ (ΥT ,wT , θT ) in S2 × V × L2(Ω). (51)
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Moreover, the boundedness of λτd−DΥτ
d− in L2(0, T ;L1(Ω;S)) implies the con-

vergence τ λτN DΥτ
N → 0 in L1(Ω;S). Hence, we obtain from (50)

AΥT + θT D?DΣ(T ) +B?wT = 0,

BΥT = ψ′T (u(T )).

Similarly to the derivation of (16c) and (16d) we obtain

θT φ(Σ(T )) = 0 and θT DΣ(T ) :DΥT ≥ 0.

Note that under an additional regularity assumption we would also obtain that
(Υ,w) ∈ H1(0, T ;S2 × V ) and (ΥT ,wT ) coincides with (Υ(T ),w(T )), see
Remark 3.12(5). This shows the terminal conditions (37), (38).

Due to the choice of the interpolations (7) and (8b), the discrete adjoint
equation (14) reads

−AΥ̇
τ

c,d −B?ẇτ
c,d + λτd−D?DΥτ

d− + θτd−D?DΣτ
d− = 0, (52a)

−BΥ̇
τ

c,d = ψτd−(uτ ). (52b)

Here we used the notation

ψτd−(uτ )(t) = ψτi−1(uτ ) for t ∈ [(i− 1) τ, i τ), i ∈ {2, . . . , N},
ψτd−(uτ )(t) = 0 for t ∈ [0, τ),

similarly to (8b). Let us pass to the limit in (52b). Integration over [t, T ] implies

B(Υτ
c,d(t)−Υτ

c,d(T )) =

∫ T

t

ψτd−(uτ ) dt for all t ∈ [0, T ].

Hence, τ ↘ 0, (51) and (41a) yield

B(Υ(t)−ΥT ) =

∫ T

t

∇ψc(u) dt for a.a. t ∈ [0, T ].

Now, we turn to (52a). We show that the first three addends in (52a)
converge weakly in adequate spaces. The convergence of the fourth addend
θτd−D?DΣτ

d− is more delicate and is addressed afterwards.

Since (Υτ
c,d,w

τ
c,d) is bounded only in L∞(0, T ;S2 × V ), we have to test the

first two addends in (52a) with a differentiable test function. Let

T ∈ W 1,1
{0}(0, T ;S2) := {T ∈ W 1,1(0, T ;S2) : T (0) = 0}
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be given. Integration by parts implies∫ T

0

〈AΥ̇
τ

c,d +B?ẇτ
c,d, T 〉S2 dt

= −
∫ T

0

〈AΥτ
c,d +B?wτ

c,d, Ṫ 〉S2 dt+ 〈AΥτ
c,d(T ) +B?wτ

c,d(T ), T (T )〉S2

→ −
∫ T

0

〈AΥ +B?w, Ṫ 〉S2 dt+ 〈AΥT +B?wT , T (T )〉S2 .

In order to study the third addend in (52a), let us define the space

S2
1 = S2 + {(η,η) ∈ L1(Ω;S2) : trace(η) = 0}

equipped with the norm

‖T ‖S2
1

= inf
T=(τ+η,µ+η)

‖(τ ,µ)‖S2 + ‖η‖L1(Ω;S),

where the infimum is taken over (τ ,µ) ∈ S2 and η ∈ L1(Ω;S) such that
trace(η) = 0. A simple calculation shows that the dual of S2

1 is

S2
∞ = {T ∈ S2 : DT ∈ L∞(Ω;S)}

with the norm given by

‖T ‖S2
∞ = max{‖T ‖S2 , ‖DT ‖L∞(Ω;S)},

see also [26, Lemma 41.2].
Using the convergence properties of λτd− and Υτ

d−, see (40) and (44), we
are led to expect λτd−D?DΥτ

d− ⇀ λD?DΥ in L2(0, T ;S2
1). In order to prove

this, we have to determine the dual of this space. Since S2
∞ does not have

the Radon-Nikodým property, we do not have L2(0, T ;S2
1)′ = L2(0, T ;S2

∞), see
[6, Theorem IV.1.1].

Theorem 3.4 ([7, Theorem 8.20.3]). Let T ∈ L2(0, T ;S2
1)′ be given. It can be

identified with a function T : [0, T ]→ S2
∞, which is weakly measurable and

‖T ‖L2(0,T ;S2
1)′ =

(∫ T

0

‖T (t)‖2
S2
∞

dt
) 1

2
.

Note, that the measurability of ‖T (·)‖S2
∞ is ensured by [7, Proposition 8.15.3].

The duality pairing is given by

〈Υ, T 〉L2(0,T ;S2
1),L2(0,T ;S2

1)′ =

∫ T

0

〈Υ(t), T (t)〉S2
1 ,S

2
∞

dt

for all Υ ∈ L2(0, T ;S2
1).
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Remark 3.5. In [7, p. 558] a function T : [0, T ]→ S2
∞ is defined to be weakly

measurable if for every ε > 0, there is a compact set K ⊂ [0, T ] such that
µ([0, T ]\K)<ε and T |K : K→S2

∞ is continuous w.r.t. the weak topology of S2
∞.

This is different from the more commonly used definition of weak measura-
bility, which requires only 〈f, T (·)〉 to be measurable for all f in the dual of S2

∞.
Nevertheless, both concepts coincide in our situation, see [7, Proposition 8.15.3].

The key issue for proving that 〈λτd−DΥτ
d−, DT 〉 → 〈λDΥ, DT 〉 for all

T ∈ L2(0, T ;S2
1)′ is resolved by the following lemma.

Lemma 3.6. For all T ∈ L2(0, T ;S2
1)′ we have λτd−DT , λDT ∈ L1(0, T ;S).

Moreover, λτd−DT → λDT in L1(0, T ;S).

Proof. Step (1): We show the weak measurability of λDT : [0, T ] → S. Let
ε > 0. By the definition of weak measurability, see Remark 3.5, we infer the
existence of a compact set K1 ⊂ [0, T ] such that µ([0, T ] \K1) ≤ ε and T |K1 :
K1 → S2

∞ is continuous w.r.t. the weak topology of S2
∞. By Lusin’s theorem,

see [7, Corollary 4.8.5], we infer the existence of a compact set K2 ⊂ [0, T ] such
that µ([0, T ] \K2) ≤ ε and λ|K2 : K2 → L2(Ω) is a continuous function. We set
K = K1 ∩K2. We have µ([0, T ] \K) ≤ 2 ε. Let a sequence {ti} in K be given
such that ti → t ∈ K. Then T (tn) ⇀ T (t) in S2

∞ and λ(tn) → λ(t) in L2(Ω).
Hence, (λDT )(tn) ⇀ (λDT )(t) in S. This shows that (λDT )|K : K → S is
weakly continuous. Hence, λDT : [0, T ]→ S is weakly measurable.

Step (2): Since S is separable, [7, Theorem 8.15.2] implies the measura-
bility of λDT : [0, T ]→ S.

Step (3): The integrability of λDT : The simple estimate∫ T

0

‖λDT ‖S dt ≤
∫ T

0

‖λ‖L2(Ω) ‖T ‖S2
∞ dt ≤ ‖λ‖L2(0,T ;L2(Ω)) ‖T ‖L2(0,T ;S2

1)′ <∞

implies the integrability of λDT . Hence λDT ∈ L1(0, T ;S). Analogously to
Steps (1)–(3), we show λτdDT ∈ L1(0, T ;S).

Step (4): The convergence λτdDT → λDT in L1(0, T ;S): Similarly to the
estimate in Step (3), we have∫ T

0

‖λτdDT − λDT ‖S dt ≤
∫ T

0

‖λτd − λ‖L2(Ω) ‖T ‖S2
∞ dt

≤ ‖λτd − λ‖L2(0,T ;L2(Ω)) ‖T ‖L2(0,T ;S2
1)′ → 0.

This shows λτdDT → λDT in L1(0, T ;S).

Using that the dual of L1(0, T ;S) is L∞(0, T ;S), see [6, Theorem IV.1.1]

or [7, Theorem 8.18.3], and DΥτ
d−

?
⇀ DΥ in L∞(0, T ;S), we infer the expected

weak convergence result.

Corollary 3.7. For all T ∈ L2(0, T ;S2
1)′ we obtain

〈λτd−DΥτ
d−, DT 〉L2(0,T ;S) → 〈λDΥ, DT 〉L2(0,T ;L1(Ω;S)),L2(0,T ;L1(Ω;S))′ .
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If we choose a test function T ∈ W 1,1
{0}(0, T ;S2) ∩ L2(0, T ;S2

1)′ we can pass

to the limit with the first three terms in the adjoint system (52a). For brevity,
we define the spaces

X (0, T ) = W 1,1(0, T ;L2(Ω)) ∩ L2(0, T ;L1(Ω))′, (53a)

XS2,0(0, T ) = W 1,1
{0}(0, T ;S2) ∩ L2(0, T ;S2

1)′. (53b)

The dual space of X (0, T ) can be determined similarly to Theorem 3.4. We
obtain

〈−AΥ̇
τ

c,d −B?ẇτ
c,d + λτd−D?DΥτ

d−, T 〉L2(0,T ;S2) →
〈AΥ +B?w, Ṫ 〉L∞(0,T ;S2),L1(0,T ;S2) − 〈AΥT +B?wT , T (T )〉S2

+ 〈λD?DΥ, T 〉L2(0,T ;S2
1),L2(0,T ;S2

1)′

(54)

for all T ∈ XS2,0(0, T ). As an immediate consequence of (52a), there exists a
functional Θ ∈ XS2,0(0, T )′ such that

〈θτd−D?DΣτ
d−, T 〉L2(0,T ;S2) → Θ(T ) (55)

for all T ∈ XS2,0(0, T ). The next two lemmas show that Θ = θD?DΣ, where θ
is the weak-? limit of θτd− in X (0, T )′.

For brevity, we denote Q = −AΥ−B?w and QT = −AΥT −B?wT .

Lemma 3.8. Define θ ∈ X (0, T )′ by

2σ̃2
0θ(v) :=

〈 d

dt
(vD?DΣ), Q

〉
L1(0,T ;S2),L∞(0,T ;S2)

−
〈
v(T )D?DΣ(T ), QT

〉
S2 (56)

for all v ∈ X (0, T ). Then θτd−
?
⇀ θ in X (0, T )′.

Proof. Multiplying (52a) with D?DΣτ
d− and using

λτd−DΥτ
d− :DΣτ

d− = 0, by (16b),

θτd−DΣτ
d− :DΣτ

d− = σ̃2
0 θ

τ
d−, by (16c),

(D?D)2 = 2D?D, by definition of D and D?,

yields

D?DΣτ
d− : Q̇

τ

c,d + 2 σ̃2
0 θ

τ
d− = 0 a.e. in Ω, (57)

where Qτ
c,d = −AΥτ

c,d − B?wτ
c,d. Let v ∈ X (0, T ) be given. Multiplying (57)

with v, integrating over (0, T )× Ω and using (46) we obtain

2 σ̃2
0 〈θτd−, v〉L2((0,T )×Ω) = −

〈
v (D?DΣτ

c,p − κτ D?DΣ̇
τ

c,p), Q̇
τ

c,d

〉
L2(0,T ;S2)

, (58)
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where κτ is given by (47). Due to the regularity of v and using the convergence
of Στ

c,p, see (39), we obtain similarly to Lemma 3.6

vDΣ̇
τ

c,p → vDΣ̇ in L1(0, T ;S). (59)

Together with Lemma 3.2 we infer

〈v κτ D?DΣ̇
τ

c,p, Q̇
τ

c,d〉L2(0,T ;S2) → 0 as τ ↘ 0.

It remains to study the first addend on the right hand side of (58). Inte-
gration by parts yields

〈vD?DΣτ
c,p, Q̇

τ

c,d〉L2(0,T ;S2)

= −〈v̇D?DΣτ
c,p + vD?DΣ̇

τ

c,p, Q
τ
c,d〉L2(0,T ;S2) + 〈v(T )D?DΣτ

c,p(T ), Qτ
c,d(T )〉S2 .

Using v̇ ∈ L1(0, T ;L2(Ω)) and Lemma 3.3 with T τ =Qτ
c,d, we obtain the con-

vergence of the first addend of the right hand side. By (59) and Qτ
c,d

?
⇀ Q =

−AΥ − B?w in L∞(0, T ;S2), we infer the convergence of the second addend.
It remains to study the convergence of the third addend. We have DΣτ

c,p(T )→
DΣ(T ) in S2, see (39), and that sequence is bounded in L∞(Ω;S). More-
over, we have Qτ

c,d(T ) ⇀ QT , see (51). This yields D?DΣτ
c,p(T ) : Qτ

c,d(T ) ⇀
D?DΣ(T ) :QT in L2(Ω). Since v(T ) ∈ L2(Ω), this implies the convergence of
the third addend. Hence,

〈vD?DΣτ
c,p, Q̇

τ

c,d〉L2(0,T ;S2)

→ −〈v̇D?DΣ + vD?DΣ̇, Q〉L1(0,T ;S2),L∞(0,T ;S2) + 〈v(T )D?DΣ(T ), QT 〉S2 ,

with QT = −AΥT −B?wT . Altogether, we obtain

2 σ̃2
0 〈θτd−, v〉L2((0,T )×Ω)

→
〈 d

dt
(vD?DΣ), Q

〉
L1(0,T ;S2),L∞(0,T ;S2)

− 〈v(T )D?DΣ(T ), QT 〉S2 ,
(60)

for all v ∈ X (0, T ). This shows the claim.

Lemma 3.9. For all T ∈ XS2,0(0, T ) we have

θ(DΣ :DT ) = Θ(T ).

Consequently,

〈AΥ +B?w, Ṫ 〉L∞(0,T ;S2),L1(0,T ;S2) − 〈AΥT +B?wT , T (T )〉S2

+ 〈λD?DΥ, T 〉L2(0,T ;S2
1),L2(0,T ;S2

1)′ + θ(DΣ :DT )

= 0 for all T ∈ XS2,0(0, T ).
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Proof. Let a test function T ∈ XS2,0(0, T ) be given. Note that DΣτ
d− : DT

does not belong to X (0, T ) due to the discontinuities of Στ
d−. Hence, we cannot

simply apply Lemma 3.8.
By (46) we have

〈θτd−DΣτ
d−, DT 〉L2(0,T ;S) =

〈
θτd−

(
DΣτ

c,p − κτ DΣ̇
τ

c,p

)
, DT

〉
L2(0,T ;S)

.

Using (57), Lemma 3.2, and Lemma 3.3 with T τ = Q̇
τ

c,d, we obtain

κτ θτd−
?
⇀ 0 in L∞(0, T ;L2(Ω)). (61)

Due to Σ̇
τ

c,p → Σ̇ in L2(0, T ;S2) and T ∈ L2(0, T ;S2
1)′, we infer the convergence

〈θτd− κτ DΣ̇
τ

c,p, DT 〉L2(0,T ;S) → 0 as τ ↘ 0. Hence, it remains to study the
convergence of 〈θτd−DΣτ

c,p, DT 〉L2(0,T ;S). However, DΣτ
c,p :DT does not converge

in X (0, T ). Again, we cannot simply apply Lemma 3.8.
Using (57) and (46) we obtain

2σ̃2
0〈θτd−DΣτ

c,p,DT 〉L2(0,T ;S) =−〈(DΣτ
c,p:DT )(DΣτ

c,p− κτDΣ̇
τ

c,p),DQ̇τ

c,d〉L2(0,T ;S).

By Lemma 3.2 and Lemma 3.3 with f τ = κτ DΣ̇
τ

c,p :DQ̇τ

c,d we obtain

κτ (DΣ̇
τ

c,d :DQ̇τ

c,d)DΣτ
c,d ⇀ 0 in L2(0, T ;L1(Ω;S)).

This directly yields κτ (DΣ̇
τ

c,d : DQ̇τ

c,d)D?DΣτ
c,d ⇀ 0 in L2(0, T ;S2

1). By
T ∈ L2(0, T ;S2

1)′, this yields

〈(DΣτ
c,p :DT )κτDΣ̇

τ

c,p,DQ̇
τ

c,d〉L2(0,T ;S) =〈κτ (DΣ̇
τ

c,d :DQ̇τ

c,d)D?DΣτ
c,d,T 〉L2(0,T ;S2

1)

→ 0 as τ ↘ 0.

Integration by parts implies

−〈(DΣτ
c,p :DT )DΣτ

c,p, DQ̇
τ

c,d〉L2(0,T ;S)

=
〈 d

dt

(
(DΣτ

c,p :DT )DΣτ
c,p

)
, DQτ

c,d

〉
L2(0,T ;S)

−
〈
(DΣτ

c,p(T ) :DT (T ))DΣτ
c,p(T ), DQτ

c,d(T )
〉
S
.

Using the chain rule and applying Lemma 3.3 thrice (with T τ = Qτ
c,d,

gτ = DΣτ
c,p :DQτ

c,d and f τ = DΣ̇
τ

c,p :DQτ
c,d) we obtain〈 d

dt

(
(DΣτ

c,p :DT )DΣτ
c,p

)
, DQτ

c,d

〉
L2(0,T ;S)

→
〈 d

dt

(
(DΣ :DT )DΣ

)
, DQ

〉
L1(0,T ;S),L∞(0,T ;S)

.
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Putting everything together, we obtain

2 σ̃2
0 〈θτd−DΣτ

d−, DT 〉L2(0,T ;S2) →
〈 d

dt

(
(DΣ :DT )DΣ

)
, DQ

〉
L1(0,T ;S),L∞(0,T ;S)

−
〈(

(DΣ(T ) :DT (T ))DΣ(T )
)
, DQT

〉
S2

= 2 σ̃2
0 θ(DΣ :DT )

for all T ∈ XS2,0(0, T ), see (56). Together with (54)–(56), (60) this shows the
claim.

This shows the satisfaction of the adjoint equation (34).

3.4. Complementarity conditions. To complete the proof of Theorem 3.1,
it remains to show the complementarity conditions (36). This is obtained by
passing to the limit in the complementarity conditions (16a)–(16c).

In order to satisfy (36a), we define

µ = DΣ : Υ.

Lemma 3.10. We have

µλ = 0 a.e. in (0, T )× Ω.

Proof. From (16a) and (16b), we infer

λτd−DΣτ
d− :DΥτ

d− = 0 a.e. in (0, T )× Ω.

Hence, we have to establish the (weak) convergence of λτd−DΣτ
d− :DΥτ

d− towards
λDΣ :DΥ.

We already know, see (40) and (44),

DΣτ
d− → DΣ in L2(0, T ;S), λτd− → λ in L2(0, T ;L2(Ω)),

DΥτ
d−

?
⇀ DΥ in L∞(0, T ;S).

Moreover, DΣτ
d− is bounded in L∞((0, T )× Ω;S). Hence, we obtain

DΣτ
d− :DΥτ

d− ⇀ DΣ :DΥ in L2(0, T ;L1(Ω)),

but that sequence is even bounded in L∞(0, T ;L2(Ω)). Thus

DΣτ
d− :DΥτ

d−
?
⇀ DΣ :DΥ in L∞(0, T ;L2(Ω)),

see also the proof of Lemma 3.3 for similar arguments. This yields

λτd−DΣτ
d− :DΥτ

d− ⇀ λDΣ :DΥ in L2((0, T );L1(Ω)).

The claim follows since set {0} is weakly closed in L2((0, T );L1(Ω)).
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It remains to show (36c).

Lemma 3.11. We have

θ(v φ(Σ)) = 0 for all v ∈ X (0, T ).

Proof. Let v ∈ X (0, T ) be given. Testing (16c) with v, we obtain

〈θτd− φ(Στ
d−), v〉L2((0,T )×Ω) = 0.

We show the convergence of the left-hand side. By (46) we have

DΣτ
d− :DΣτ

d− = DΣτ
c,p :DΣτ

c,p − κτ DΣ̇
τ

c,p : (DΣτ
c,p +DΣτ

d−).

Using (39), (40), (61) we find κτ θτd− (DΣτ
c,p + DΣτ

d−)
?
⇀ 0 in L∞(0, T ;S). To-

gether with (39), we have

〈κτ θτd− (DΣτ
c,p +DΣτ

d−) :DΣ̇
τ

c,p, v〉L2(0,T ;L1(Ω)),L2(0,T ;L1(Ω))′ → 0.

Hence, it remains to show

〈θτd− φ(Στ
c,p), v〉L2((0,T )×Ω) → θ(v φ(Σ)).

Unfortunately, φ(Στ
c,p) v does not converges in X (0, T ), and we cannot simply

apply Lemma 3.8. By definition of φ, see (2), we have 2 〈θτd− φ(Στ
c,p), v〉 =

〈θτd− |DΣτ
c,p|2, v〉− σ̃2

0〈θτd−, v〉. Due to Lemma 3.8, the second addend converges
to σ̃2

0 θ(v). By (57), we obtain

−2 σ̃2
0 〈θτd− |DΣτ

c,p|2, v〉 = 〈D?DΣτ
d− : Q̇

τ

c,d |DΣτ
c,p|2, v〉.

By (46), 〈D?DΣτ
d− : Q̇

τ

c,d |DΣτ
c,p|2, v〉 =

〈
D?D(Στ

c,p− κτ Σ̇
τ

c,p) : Q̇
τ

c,d |DΣτ
c,p|2, v

〉
follows. By using Lemma 3.2 and (39), we obtain

D?Dκτ Σ̇
τ

c,p : Q̇
τ

c,d ⇀ 0 in L2(0, T ;L1(Ω)).

Similar arguments as in Lemma 3.3 show

D?Dκτ Σ̇
τ

c,p : Q̇
τ

c,d |DΣτ
c,p|2 ⇀ 0 in L2(0, T ;L1(Ω)).

Hence, we have 〈
D?Dκτ Σ̇

τ

c,p : Q̇
τ

c,d |DΣτ
c,p|2, v

〉
→ 0.

Hence, it remains to study〈
D?DΣτ

c,p : Q̇
τ

c,d |DΣτ
c,p|2, v

〉
.
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Integration by parts yields〈
D?DΣτ

c,p : Q̇
τ

c,d|DΣτ
c,p|2, v

〉
=−

〈
D?DΣ̇

τ

c,p :Qτ
c,d|DΣτ

c,p|2, v
〉
−2
〈
D?DΣτ

c,p :Qτ
c,dDΣ̇

τ

c,p :DΣ, v
〉

−
〈
D?DΣτ

c,p :Qτ
c,dDΣτ

c,p :DΣ, v̇
〉
+
〈
D?DΣτ

c,p(T ):Qτ
c,d(T )|DΣτ

c,p(T )|2, v(T )
〉

Using Lemma 3.3, this converges towards

−
〈 d

dt

(
vD?DΣ |DΣ|2

)
, Q
〉

+
〈
v(T )D?DΣ(T ) |DΣ(T )|2, QT

〉
.

Due to (56), this term is equal to −2 σ̃2
0 θ(v |DΣ|2), since v |DΣ|2 ∈ X (0, T ).

Putting everything together, we find

0 = 〈θτd− φ(Στ
d−), v〉 → θ(v φ(Σ)).

This finishes the proof of Theorem 3.1. We conclude by giving some remarks
on the optimality system obtained in Theorem 3.1.

Remark 3.12. (1) Following the notation for finite-dimensional MPECs, see
[20,25], the optimality system (33)–(38) is of weak-stationary type.

(2) In a system of C-stationary type, the product of the multipliers µ and θ
is required to be non-negative. Due to the low regularity of θ, however,
the product θ µ cannot be defined.

(3) Similarly to optimal control problems involving state constraints, the low
regularity of the multiplier θ is induced by the constraint φ(Σ) ≤ 0. For
problems with a state equation much simpler than (9), e.g. with a scalar
evolution variational inequality, one can construct examples where the
multiplier θ is not a function.
The low regularity of the multiplier θ is also confirmed by numerical ex-
periments, see [27, Chapter 6] or, for an ODE setting, [4].

(4) The remarks (2) and (3) above also apply to optimal control of parabolic
VIs, see e.g. the optimality system in [19, Theorem 6.2].

(5) Using (56) and (34), it is easy to prove that θ ∈ L2(0, T ;L2(Ω)) if and
only if (Υ,w) ∈ H1(0, T ;S2×V ), (Υ(T ),w(T )) = (ΥT ,wT ), and λDΥ ∈
L2(0, T ;S). Hence, the low regularity of θ is directly related to the non-
differentiability of (Υ,w) as functions of time.

(6) The equations (34) and (37) can be stated equivalently as

〈AΥ +B?w, Ṫ 〉L∞(0,T ;S2),L1(0,T ;S2)

+〈λDΥ, DT 〉L2(0,T ;S2
1),L2(0,T ;S2

1)′ + θ̃(DΣ :DT ) = 0, (62a)

BΥ− ψ′T (u(T ))−
∫ T

·
∇ψc(u) ds = 0, (62b)
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with θ̃(v) = θ(v) + 〈θT , v(T )〉L2(Ω) for all functions v ∈ X (0, T ).
We prefer (34) with terminal conditions (37) over (62) since the former
more clearly show the conditions at time T .

(7) There are two contributions to the terminal condition (37). The term
ψ′T (u(T )) is induced by the observation ψT (u(T )) at final time in the
objective. This is typical for optimal control problems with differential
equations.
The term θT D?DΣ(T ) can be understood as a Lagrange multiplier to the
constraint φ(Σ(T )) ≤ 0 in the state equation (33). In fact, similar terms
appear also in the adjoint equation (34a) at times t ∈ (0, T ) where θ has
Dirac contributions.

A. Weak convergence of products in Lebesgue spaces

In this appendix, we provide a result about the weak convergence of the product
a weakly and a strongly convergent sequence in certain Lebesgue spaces. The
result is applied to ΩT = (0, T )× Ω in the main text.

First, we recall a basic result about weak convergence in L1.

Lemma A.1. Let (ΩT ,m) be a finite measure space. Suppose that the sequence
{gk} ⊂ L1(ΩT ) converges weakly in L1(ΩT ). Then, {gk} is uniformly integrable.
That is, for all ε > 0, there is δ > 0, such that∫

M

|gk| dx ≤ ε

for all measurable M ⊂ ΩT with m(M) ≤ δ.

We refer to [6, Theorem IV.2.1] for a proof.
Now, we can prove the main result of the appendix.

Theorem A.2. Let (ΩT ,m) be a finite measure space. Suppose that the se-
quences {fk} ⊂ L2(ΩT ), {gk} ⊂ L1(ΩT ) satisfy

fk → f in L2(ΩT ), gk ⇀ g in L1(ΩT )

for some f ∈ L2(ΩT ) and g ∈ L1(ΩT ). Moreover, assume that the sequence
{fk} is bounded in L∞(ΩT ), that is ‖fk‖L∞(ΩT ) ≤ K.

Then,
fk gk ⇀ f g in L1(ΩT ).

Proof. Let v ∈ L∞(ΩT ) and ε > 0 be given. By Lemma A.1, there is δ > 0,
such that ∫

M

|gk| dx ≤ ε
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for all measurable M ⊂ ΩT with m(M) ≤ δ. By the weak convergence gk ⇀ g,
we also obtain

∫
M
|g| dx ≤ ε for all such sets M .

Since fk → f in L2(ΩT ), there exists a subsequence (denoted by the same
symbol), such that fk → f a.e. in ΩT . By Egorov’s Theorem, there is a mea-
surable set O ⊂ ΩT with m(O) ≤ δ and

‖fk − f‖L∞(ΩT \O) → 0.

Together with gk ⇀ g in L1(ΩT \O), this yields

fk gk ⇀ f g in L1(ΩT \O). (63)

This yields∣∣∣∣∫
ΩT

(fkgk − fg)v dx

∣∣∣∣≤ ∣∣∣∣∫
ΩT \O

(fkgk − fg)v dx

∣∣∣∣+

∫
O

|(fkgk − fg)v| dx

≤
∣∣∣∣∫

ΩT \O
(fkgk − fg)v dx

∣∣∣∣+K‖v‖L∞(ΩT )

∫
O

(|gk|+ |g|) dx

≤
∣∣∣∣∫

ΩT \O
(fkgk − fg)v dx

∣∣∣∣+ 2K‖v‖L∞(ΩT )ε.

Together with (63), this yields∫
ΩT

(fk gk − f g) v dx→ 0.

Since v ∈ L∞(ΩT ) was arbitrary, this shows the weak convergence of fk gk in
L1(ΩT ). A subsequence-subsequence argument shows the convergence of the
whole sequence.
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