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Abstract. In this article we study an optimal control problem for a nonlinear mono-
tone Dirichlet problem where the controls are taken as matrix-valued coefficients in
L∞(Ω;RN×N ). For the exemplary case of a tracking cost functional, we derive first
order optimality conditions. This first part is concerned with the general case of
matrix-valued coefficients under some hypothesis, while the second part focuses on
the special class of diagonal matrices.
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1. Introduction

The aim of this article is to derive a first order optimality system for a Dirich-
let optimal control problem where the controls are taken as the matrix-valued
coefficients in a nonlinear state equation. The controls are supposed to satisfy
rather weak hypotheses. The optimal control problem amounts to minimizing
the discrepancy between a given distribution yd ∈ Lp(Ω), where Ω is an open
bounded Lipschitz domain in RN , and the solution of a nonlinear Dirichlet
problem by choosing an appropriate matrix of coefficients U ∈ L∞(D;RN×N).
Namely, we consider the following minimization problem:

Minimize

{
IΩ(U , y) =

∫
Ω

|y(x)− yd(x)|p dx
}

(1)
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subject to the constraints

U ∈ Uad ⊂ L∞(Ω;RN×N), y ∈ W 1,p
0 (Ω), (2)

−div
(
U [(∇y)p−2]∇y

)
+ |y|p−2y = f in Ω, (3)

y = 0 on ∂Ω, (4)

where Uad is a class of admissible controls and

[(∇y)p−2] = diag

{∣∣∣∣ ∂y∂x1

∣∣∣∣p−2

,

∣∣∣∣ ∂y∂x2

∣∣∣∣p−2

, . . . ,

∣∣∣∣ ∂y∂xN
∣∣∣∣p−2

}
.

Clearly, the choice of the cost function in (1) is exemplary. A typical regulariza-
tion of (1) would be of Tikhonov type. Optimal control for partial differential
equations by the way of controlling the coefficients is a classical subject initiated
by Lurie [19], Fleming [6] and Lions [16]. Zolezzi [33] picked up the theme and
Tartar [28] showed examples of non-existence (see also [22,23]), which, in turn,
initiated the theory of homogenization (see e.g. [29] also for the historical devel-
opment). In particular, the notion of H-convergence was developed by Murat
and Tartar ([24]) aiming at matrix-valued coefficients. Now, taking the coeffi-
cients of the leading differential operator as optimization variables amounts to a
problem of material design, as those coefficients describe, via constitutive equa-
tions, the material behavior; e.g. conductivity in scalar equations or elasticity
in vectorial problems. The possibility to optimize the material properties has
triggered an enormous interest in material sciences in recent years. The subtle
point is the choice of the topology in which minimizing sequences converge.
Moreover, the limiting optimal coefficients have to be interpreted in the context
of the application. Therefore, structural assumptions have to be considered
during the optimization process in terms of constraints. One way of doing so is
via proper parametrization of the material, respectively the coefficients, using
mixtures, represented by characteristic functions. This has been pursued by
Allaire [1] and many other authors in recent years. Other restriction can be re-
alized via regularity of the coefficients and hard constraints. This procedure has
been pursued first by Casas [2] for a scalar problem, as one of the first papers
in that direction, and later by Haslinger et al. [10] in the context of what has
come to be known as Free Material Optimization (FMO); see also [15], where
slope-constraints are used for regularization. This direction of research is quite
active in recent years. See e.g. the work of Dekelnick and Hinze [5] where track-
ing type optimization for scalar problems with a Tikhonov-type regularization
of the controls are considered in the context of inverse problems. However, most
of the results and methods rely on linear PDEs, while only very few articles deal
with nonlinear problems, see O. Kogut [11] and P. Kogut and Leugering [12].
Another point of interest is degeneration in the coefficients which is typically
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avoided by assuming lower bounds on the coefficients. However, degeneration
occurs genuinely in topology optimization, damage and crack problems. In
Kogut and Leugering [13, 14] this problem has been considered in the context
of linear problems. In this article, we extend our results to scalar nonlinear
problems, where degeneration occurs already with respect to the states. We
will continue the discussion for non-scalar ones in a forthcoming paper.

We restrict the set of admissible controls to the problem (1)–(4) by in-
troducing so-called solenoidal matrices Uad that are a uniformly bounded in
L∞(Ω;RN×N). However, in contrast to the typical assumptions (see, for instance,
[3,9,17,18,26,30]), Uad belongs neither to the Sobolev space W 1,∞(Ω;RN×N) nor
to the space of matrices with bounded variation BV (Ω;RN×N). Thus, in some
sense we try to avoid a situation of over-regularization for optimal solutions to
the problem (1)–(4). We give the precise definition of such controls in Section 3
and show that in this case the original optimal control problem admits at least
one solution.

In Section 4 we discuss the differentiability properties of the Lagrange func-
tional associated to problem (1)–(4)

Λ(U , y, λ) = I(U , y) + aU(y, λ)− 〈f, λ〉W 1,p
0 (Ω),

where

aU(y, λ) =

∫
Ω

(U(x)[(∇y)p−2]∇y,∇λ)RN dx+

∫
Ω

|y|p−2yλ dx

and show that it admits a one-sided directional derivative with respect to the
variable y∈D+

y Λ(U , y, λ, h) for so-called non-degenerate directions h∈W 1,p
0 (Ω)

at the point y. Moreover, this derivative can be recovered in the form of the
Gâteaux differential 〈Dy Λ(U , y, λ), h〉W 1,p

0 (Ω) if the given point y possesses some

extra regularity properties.

In Section 5 we derive first-order optimality conditions for optimal control
problem (1)–(4) and carry out their realization under additional assumptions.
With that in mind, we introduce the notion of a quasi-adjoint state ψε to an
optimal solution y0 ∈ W 1,p

0 (Ω) that was proposed for linear problems by Serova-
jskiy [27]) and show that an optimality system for the original problem can be
recovered in an explicit form if the mapping Uad 3 U 7→ ψε(U) possesses the so-
called H-property with respect to the pair of spaces

(
L∞(Ω;RN×N),W 1,p

0 (Ω)
)
.

However, it should be stressed that the fulfilment of this property is not proved
for the case p > 2 and, thus, should be considered as some extra hypoth-
esis. Moreover, the verification of the H-property for quasi-adjoint states is
not straightforward, in general. In order to relax the hypothesis, we focus on
diagonal matrices in the second part of this article, published separately.
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2. Notation and preliminaries

Throughout the paper Ω is a bounded open subset of RN , N ≥ 1. The space
D′(Ω) of distributions in Ω is the dual of the space C∞0 (Ω). For real numbers
2 ≤ p < +∞, and 1 < q < +∞ such that 1

p
+ 1

q
= 1, the space W 1,p

0 (Ω)

is the closure of C∞0 (Ω) in the Sobolev space W 1,p(Ω), while W−1,q(Ω) is the
space of distributions of the form f = f0 +

∑
j Djfj, with f0, f1, . . . , fn ∈ Lq(Ω)

(i.e. W−1,q(Ω) is the dual space of W 1,p
0 (Ω)). Let χE be the characteristic

function of a set E ⊂ RN and let LN(E) be its the N -dimensional Lebesgue
measure.

For any vector field v ∈ Lq(Ω;RN), the divergence is an element of the space
W−1, q(Ω) defined by the formula

〈div v, ϕ〉W 1,p
0 (Ω) = −

∫
Ω

(v,∇ϕ)RN dx, ∀ϕ ∈ W 1,p
0 (Ω), (5)

where 〈·, ·〉W 1,p
0 (Ω) denotes the duality pairing between W−1,q(Ω) and W 1,p

0 (Ω),

and (·, ·)RN denotes the scalar product of two vectors in RN . A vector field v is
said to be solenoidal, if div v = 0.

Weak Compactness Criterion in L1(Ω;RN). Let {fk}k∈N be a bounded
sequence of vector-valued functions in L1(Ω;RN). We recall that {fk}k∈N is
called equi-integrable on Ω if for any δ > 0, there is a τ = τ(δ) such that∫
S
‖fk‖RN dx < δ for every measurable subset S ⊂ Ω of Lebesgue measure

LN(S)<τ. Then, the following assertions are equivalent for L1(Ω;RN)-bounded
sequences:

(i) the sequence {fk}k∈N is weakly compact in L1(Ω;RN),

(ii) the sequence {fk}k∈N is equi-integrable.

Lemma 2.1 (Lebesgue’s Theorem). If a sequence {fk}k∈N ⊂ L1(Ω;RN) is equi-
integrable and fk → f almost everywhere in Ω then fk → f in L1(Ω;RN).

Monotone operators. Let α and β be constants such that 0<α≤β <+∞.
We define Mα,β

p (Ω) as a set of all square symmetric matrices U(x) =
[ai j(x)]1≤i,j≤N in L∞(Ω;RN×N) such that the following conditions of growth,
monotonicity, and strong coercivity are fulfilled:

|aij(x)| ≤ β a.e. in Ω, ∀ i, j ∈ {1, . . . , N}, (6)(
U(x)([ζp−2]ζ − [ηp−2]η), ζ − η

)
RN ≥ 0 a.e. in Ω, ∀ ζ, η ∈ RN , (7)(

U(x)[ζp−2]ζ, ζ
)
RN =

N∑
i,j=1

ai j(x)|ζj|p−2 ζj ζi ≥ α |ζ|pp a.e in Ω, (8)

where |η|p =
(∑N

k=1 |ηk|p
) 1
p

is the Hölder norm of η ∈ RN and

[ηp−2] = diag{|η1|p−2, |η2|p−2, . . . , |ηN |p−2} ∀η ∈ RN . (9)
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Remark 2.2. It is easy to see that Mα,β
p (Ω) is a nonempty subset of

L∞(Ω;RN×N). Particular representatives are diagonal matrices of the form

U(x) = diag{δ1(x), δ2(x), . . . , δN(x)},

where α ≤ δi(x) ≤ β a.e. in Ω, ∀ i ∈ {1, . . . , N} (see [4]).

Let us consider the nonlinear operator A : Mα,β
p (Ω)×W 1,p

0 (Ω)→ W−1,q(Ω)
defined as

A(U , y) = −div
(
U(x)[(∇y)p−2]∇y

)
+ |y|p−2y,

or via the paring

〈A(U , y), v〉W 1,p
0 (Ω) =

N∑
i,j=1

∫
Ω

(
aij(x)

∣∣∣∣ ∂y∂xj
∣∣∣∣p−2

∂y

∂xj

)
∂v

∂xi
dx+

∫
Ω

|y|p−2y v dx,

for all v ∈ W 1,p
0 (Ω). In view of properties (6)–(8), for every fixed matrix U ∈

Mα,β
p (Ω), the operator A(U , ·) turns out to be coercive, strongly monotone and

demi-continuous in the following sense: yk → y0 strongly in W 1,p
0 (Ω) implies

that A(U , yk) ⇀ A(U , y0) weakly in W−1,q(Ω) (see [8, p. 79, Definition 3.1.1;
p. 84, Lemma 3.1.3], [16, p. 173, Theorem 2.1.2]). Then by well-known existence
results for nonlinear elliptic equations with strictly monotone semi-continuous
coercive operators (see [8, p. 95, Theorem 3.2.1], [31]), one can easily see that
for every f ∈ W−1,q(Ω) the nonlinear Dirichlet boundary value problem

A(U , y) = f in Ω, y ∈ W 1,p
0 (Ω), (10)

admits a unique weak solution in W 1,p
0 (Ω) for every fixed matrix U ∈Mα,β

p (Ω).
Let us recall that a function y is the weak solution of (10) if

y ∈ W 1,p
0 (Ω),∫

Ω

(
U(x)[(∇y)p−2]∇y,∇v

)
RN dx+

∫
Ω

|y|p−2yv dx =

∫
Ω

fv dx ∀ v∈W 1,p
0 (Ω).

3. Setting of the optimal control problem

Let ξ 1, ξ2 be given functions of L∞(Ω) such that 0 ≤ ξ1(x) ≤ ξ2(x) a.e. in Ω. Let
{Q1, . . . , QN} be a collection of nonempty compact convex subsets of W−1, q(Ω).
To define the class of admissible controls, we introduce two sets

Ub =
{
U = [ai j] ∈Mα,β

p (Ω)
∣∣

ξ1(x) ≤ ai j(x) ≤ ξ2(x) a.e. in Ω, ∀ i, j = 1, . . . , N} , (11)

Usol =
{
U = [u1, . . . , uN ] ∈Mα,β

p (Ω)
∣∣ div ui ∈ Qi, ∀ i = 1, . . . , N

}
, (12)

assuming that the intersection Ub ∩ Usol ⊂ L∞(Ω;RN×N) is nonempty.
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Definition 3.1. We say that a matrix U = [ai j] is an admissible control of
solenoidal type to the nonlinear Dirichlet problem (10) if U ∈ Uad := Ub ∩ Usol.

Let us consider the optimal control problem

Minimize
{
I(U , y) =

∫
Ω

|y(x)− yd(x)|p dx
}
, (13)

subject to the constraints∫
Ω

(
U(x)[(∇y)p−2]∇y,∇v

)
RN dx+

∫
Ω

|y|p−2yv dx = 〈f, v〉W 1,p
0 (Ω)

∀ v ∈ W 1,p
0 (Ω), (14)

U ∈ Uad, y ∈ W 1,p
0 (Ω), (15)

where f ∈ W−1,q(Ω) and yd ∈ W 1,p
0 (Ω) are given distributions.

Hereinafter, Ξsol ⊂ L∞(Ω;RN×N)×W 1,p
0 (Ω) denotes the set of all admissible

pairs to optimal control problem (13)–(15). Let τ be the topology on the set
L∞(Ω;RN×N) ×W 1,p

0 (Ω) which we define as a product of the weak-∗ topology
of L∞(Ω;RN×N) and the weak topology of W 1,p

0 (Ω). Further we make use of
the following results, which play a key role for the solvability of the problem
(see e.g. [4, p. 698, Proposition 2.8], [12, p. 597, Theorem 16.14]).

Proposition 3.2. For each U ∈ Mα,β
p (Ω) and every f ∈ W−1, q(Ω), a weak

solution y to variational problem (14), (15) satisfies the estimate

‖y‖p
W 1,p

0 (Ω)
:=

∫
Ω

|∇y|pRN dx ≤ C‖f‖qW−1, q(Ω), (16)

where C is a constant depending only on p and α.

Theorem 3.3. For every f ∈ W−1, q(Ω) the set Ξsol is sequentially τ -closed,
i.e. if {(Uk, yk) ∈ Ξsol}k∈N is such that Uk → U0 weakly-∗ in L∞(Ω;RN×N) and
yk = y(Uk)→ y0 weakly in W 1,p

0 (Ω) then (U0, y0) ∈ Ξsol, and, hence, y0 = y(U0).

As was shown in [4, p. 705, Theorem 3.6] (see also [12, p. 600, Theo-
rem 16.15]), we have the following existence result.

Theorem 3.4. If Uad = Ub ∩ Usol 6= ∅, then the optimal control problem
(13)–(15) admits at least one solution

(Uopt, yopt) ∈ Ξsol ⊂ L∞(Ω;RN×N)×W 1,p
0 (Ω),

I(Uopt, yopt) = inf
(U ,y)∈Ξsol

I(U , y).
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4. Some auxiliary results

The main goal of this paper is to derive the optimality conditions for optimal
control problem (13)–(15). However, we deal with the case when we cannot
apply the well-known classical approach (see, for instance, [7], [31]), since for
a given distribution f ∈ W−1, q(Ω) the mapping U 7→ y(U) is not Fréchet
differentiable on the class of solenoidal controls, in general. With that in mind,
we consider the Lagrange functional associated to problem (13)–(15) and discuss
its differentiable properties. We define this functional as follows

Λ(U , y, λ) = I(U , y) + aU(y, λ)− 〈f, λ〉W 1,p
0 (Ω), λ ∈ W 1,p

0 (Ω), (17)

where

aU(y, λ) =

∫
Ω

(U(x)[(∇y)p−2]∇y,∇λ)RN dx+

∫
Ω

|y|p−2yλ dx.

It is easy to see that the Lagrangian Λ(U , y, λ) is not Gâteaux differen-
tiable, in general. Let us show, however, that for any U ∈ Uad and λ ∈ W 1,p

0 (Ω)
this functional has a one-sided directional derivative with respect to the vari-
able y [25]. Indeed, for given h ∈ W 1,p

0 (Ω) and θ ∈ [0, 1], we introduce the
following sets

Ω0 ={x∈Ω: |y−yd|>0}, Ω0,θ={x∈Ω: |y−yd +θh|>0},

Ωi=

{
x∈Ω:

∣∣∣∣ ∂y∂xi
∣∣∣∣>0

}
, Ωi,θ=

{
x∈Ω:

∣∣∣∣ ∂y∂xi +θ ∂h∂xi
∣∣∣∣>0

}
, ∀ i = 1, . . . , N,

ΩN+1 ={x∈Ω: |y|>0}, ΩN+1,θ={x∈Ω: |y+θh|>0}.

Clearly, we cannot claim that χΩ0,θ
→ χΩ0 in Lr(Ω) for some 1 ≤ r < ∞,

because convergence of the sequence {y − yd + θh}θ→+0 to y−yd does not imply,
in general, the χ−convergence of subsets {Ω0,θ}θ→+0 to Ω0 as θ → +0 [12,

p. 218]. Indeed, let yd, h ∈ W 1,p
0 (Ω) be such that |h(x)| > 0 almost everywhere

in Ω and y = yd. Then Ω0 = ∅ whereas Ω0,θ = Ω for all positive θ small enough.
Hence, in this case the convergence χΩ0,θ

→ χΩ0 fails. The same remark is valid
for the sequences {Ωi,θ}θ→+0. In view of this, it is reasonable to introduce use
of the following notion.

Definition 4.1. We say that an element h ∈ W 1,p
0 (Ω) is a non-degenerate

direction at the point y ∈ W 1,p
0 (Ω) if

χΩi,θ→χΩi in L1(Ω) as θ → +0, ∀ i = 0, 1, . . . , N + 1. (18)
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Remark 4.2. It is easy to see that an element h ∈ W 1,p
0 (Ω) is a non-degenerate

direction at the point y ∈ W 1,p
0 (Ω) provided that Ωi = Ωi,θ for all i = 0, 1, . . . ,

N + 1. In particular, this is so if

{x ∈ Ω : |h(x)| > 0} ⊆ Ω0 ∩ ΩN+1 and{
x ∈ Ω :

∣∣∣∣∂h(x)

∂xi

∣∣∣∣ > 0

}
⊆ Ωi, ∀ i = 1, . . . , N.

In order to make the condition (18) more transparent, we concentrate on
the case i = 0.

Proposition 4.3. Let y, yd, and h be given elements of W 1,p
0 (Ω). If the closed

set
S = cl {x ∈ Ω : |y(x)− yd(x)| = 0} (19)

has zero Lebesgue measure, then χΩ0,θ
→χΩ0 a.e. in Ω, and, hence, χΩ0,θ

→χΩ0

strongly in Lr(Ω) for all 1 ≤ r < +∞.

Proof. If x ∈ Ω0, then, by definition, |y(x) − yd(x)| > 0. Thus, there is a
value θ0 ∈ (0, 1] such that |y(x) − yd(x) + θh| > 0 for all θ ∈ [0, θ0] (here
we use the fact that each element of W 1,p

0 (Ω) can be interpreted as a quasi-
continuous function [32]). Hence, χΩ0,θ

(x) = χΩ0(x) = 1 for all θ ∈ [0, θ0]. Since
the set S has zero Lebesgue measure, we get χΩ0,θ

→χΩ0 almost everywhere
in Ω. To conclude the proof, it remains to note that ‖χΩ0,θ

− χΩ0‖rLr(Ω) =∫
Ω
|χΩ0,θ

(x)− χΩ0(x)|r dx =
∫

Ω
|χΩ0,θ

(x)− χΩ0(x)| dx = ‖χΩ0,θ
− χΩ0‖L1(Ω).

Corollary 4.4. If the elements y, yd ∈ W 1,p
0 (Ω) are such that the set S, given

by (19), has zero Lebesgue measure, then property (18) with i = 0 are fulfilled
for any h ∈ W 1,p

0 (Ω).

Remark 4.5. It is easy to see that the conclusions similar to Proposition 4.3
and Corollary 4.4, can be stated for the sets Ωi and Ωi,θ with i = 1, 2, . . . , N+1.

Indeed, in spite of the fact that the functions ∂y(x)
∂xi

, ∂h(x)
∂xi

(i = 1, . . . , N) are not
quasi-continuous, in general, but rather are elements of Lp(Ω), the pointwise

inequality
∣∣∂y(x)
∂xi

+ θ ∂h(x)
∂xi

∣∣ > 0 still makes sense if x ∈ Ω is a Lebesgue point of
both y and h. In other words, the Lebesgue points of y and h are thus points
where these functions do not oscillate too much, in an average sense. Moreover,
the Lebesgue Differentiation Theorem states that, given any f ∈ L1(Ω), almost

every x ∈ Ω is a Lebesgue point. Hence, almost all Lebesgue points of ∂y(x)
∂xi

are

the Lebesgue points of ∂y(x)
∂xi

+ θ ∂h(x)
∂xi

for θ small enough.

Definition 4.6. We say that an element y ∈ W 1,p
0 (Ω) is a regular point for the

Lagrangian (17) if for each v ∈ W 1,p
0 (Ω) the direction h = v−y is non-degenerate

in the sense of Definition 4.1.
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As we will see later, in regular points for the Lagrangian (17) differentiation
properties are guaranteed (see Lemma 4.9 and its Corollary). In view of this,
it is important to have conditions which ensure that a given point y ∈ W 1,p

0 (Ω)
is regular for Λ(U , y, λ).

Proposition 4.7. Let yd ∈ W 1,p
0 (Ω) be a given function. Then an element

y ∈ W 1,p
0 (Ω) is a regular point of the Lagrangian Λ(U , y, λ) if the set

Φ =

{
x ∈ Ω :

∣∣∣∣∣ y(x)
(
y(x)− yd(x)

) N∏
i=1

∂y(x)

∂xi

∣∣∣∣∣ = 0

}

has zero Lebesgue measure.

Proof. The assertion immediately follows from Proposition 4.3, Corollary 4.4,
and the fact that the sets S and

{x ∈ Ω : |y(x)| = 0} and

{
x ∈ Ω :

∣∣∣∣∂y(x)

∂xi

∣∣∣∣ = 0

}
, ∀ i = 1, . . . , N

are proper subsets of Φ.

Remark 4.8. It is easy to observe that if y and v in W 1,p
0 (Ω) are two regular

points of the functional Λ(U , y, λ), then there exists a positive number α ∈ R
(α 6= 0) such that each point of the segment [y, αv] = {y+t(αv−y) : ∀ t∈ [0, 1]}
⊂ W 1,p

0 (Ω) is also regular for Λ(U , y, λ).

We now study the differentiability properties of the Lagrangian Λ(U , y, λ).

Lemma 4.9. If U ∈ Uad, λ ∈ W 1,p
0 (Ω), then, for each non-degenerate direction

h ∈ W 1,p
0 (Ω) at the point y, the one-sided directional derivative with respect to

the variable y

D+
y Λ(U , y, λ, h) = lim

θ→+0

Λ(U , y + θh, λ)− Λ(U , y, λ)

θ

exists and takes the form

D+
y Λ(U , y, λ, h) = (p− 1)

∫
Ω

(
[(∇y)p−2]U∇λ,∇h

)
RN dx

+ (p− 1)

∫
Ω

|y|p−2 λh dx+ p

∫
Ω

|y − yd|p−1h dx.

Proof. Let h be a non-degenerate direction at the point y ∈ W 1,p
0 (Ω). Following

the definition of directional derivative, we have

D+
y Λ(U , y, λ, h) = I1 + I2 + I3, (20)
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where

I1 = lim
θ→+0

1

θ

[ ∫
Ω

|y − yd + θh|p dx−
∫

Ω

|y − yd|p dx
]
,

I2 = lim
θ→+0

1

θ

[ ∫
Ω

(
U(x)

[
(∇(y + θh))p−2

]
∇(y + θh),∇λ

)
RN dx

−
∫

Ω

(
U(x)

[
(∇y)p−2

]
∇y,∇λ

)
RN dx

]
,

I3 = lim
θ→+0

1

θ

[ ∫
Ω

|y + θh|p−2(y + θh)λ dx−
∫

Ω

|y|p−2yλ dx
]
.

To identify the term I1, we make use of the following transformations

I1 = lim
θ→+0

1

θ

[ ∫
Ω

|y−yd+θh|p dx−
∫

Ω

|y−yd|p dx
]

= lim
θ→+0

1

θ

[ ∫
Ω0,θ

y−yd+θh

|y−yd+θh|
(y−yd+θh)p dx−

∫
Ω0

|y−yd|p dx
]

= lim
θ→+0

1

θ

[ ∫
Ω0,θ

y−yd+θh

|y−yd+θh|

A∑
i=0

θi
p(p−1) · · · (p−i+1)

i!
hi(y−yd)p−i dx

−
∫

Ω0

|y−yd|p dx
]

= J1 + J2 + J3, (21)

where A = p, if p is a natural number and A = +∞, otherwise. Here,

J1 = lim
θ→+0

1

θ

[ ∫
Ω0,θ

y−yd+θh

|y−yd+θh|
(y−yd)p dx−

∫
Ω0

|y−yd|p dx
]
,

J2 = lim
θ→+0

[
p

∫
Ω0,θ

y−yd+θh

|y−yd+θh|
(y−yd)p−1h dx

]
,

J3 = lim
θ→+0

1

θ

[ ∫
Ω0,θ

y−yd+θh

|y−yd+θh|

A∑
i=2

θi
p(p−1) · · · (p−i+1)

i!
hi(y−yd)p−i dx

]
.

Since sign (y−yd+θh) = sign (y−yd) almost everywhere in Ω for θ small enough,

it follows that
∫

Ω0,θ

y−yd+θh
|y−yd+θh| (y−yd)

p dx=
∫

Ω0,θ
|y − yd|p dx =

∫
Ω0∩Ω0,θ

|y−yd|p dx
=
∫

Ω0
|y−yd|p dx−

∫
Ω0\Ω0,θ

|y−yd|p dx and hence∫
Ω0,θ

y−yd+θh

|y−yd+θh|
(y−yd)p dx=

∫
Ω0

|y−yd|p dx−
∫

Ω

χΩ0

(
χΩ0−χΩ0,θ

)
|y−yd|p dx. (22)

Consequently, in view of the property (18), we obtain

J1 ≡ 0 and J2 = p

∫
Ω0

|y − yd|p−1 h dx = p

∫
Ω

|y − yd|p−1 h dx.
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It remains to evaluate the last term J3. To this end, we use Hölder’s inequal-
ity and uniform convergence of the power series. It leads us to the following
estimate

∣∣∣ ∫
Ω0,θ

y − yd + θh

|y − yd + θh|

A∑
i=2

θi
p (p− 1) · · · (p− i+ 1)

i!
hi (y − yd)p−i dx

∣∣∣
≤

A∑
i=2

θi
p (p− 1) · · · (p− i+ 1)

i!

∫
Ω

|h|i |y − yd|p−i dx

≤
A∑
i=2

[
θi
p (p− 1) · · · (p− i+ 1)

i!
‖h‖iLp(Ω)‖y − yd‖

p−i
Lp(Ω)

]
= o(θ).

Therefore, J3 = 0 and, hence,

I1 = J1 + J2 + J3 = p

∫
Ω

|y − yd|p−1h dx.

As for the second term in (20), we can apply the similar arguments. Namely,

I2 =

(∫
Ω

(U(x)
[
(∇y + θ∇h)p−2

]
∇y,∇λ)RN dx

+ θ

∫
Ω

(
U(x)

[
(∇y + θ∇h)p−2

]
∇h,∇λ

)
RN dx

−
∫

Ω

(
U(x)

[
(∇y)p−2

]
∇y,∇λ

)
RN dx

)
. (23)

It is easy to see that[
(∇y + θ∇h)p−2

]
∇y

= diag

{∣∣∣∣ ∂y∂x1

+ θ
∂h

∂x1

∣∣∣∣p−2

,

∣∣∣∣ ∂y∂x2

+ θ
∂h

∂x2

∣∣∣∣p−2

, . . . ,

∣∣∣∣ ∂y∂xN + θ
∂h

∂xN

∣∣∣∣p−2
}
∇y

=



∣∣∣ ∂y∂x1 + θ ∂h
∂x1

∣∣∣p−2
∂y
∂x1∣∣∣ ∂y∂x2 + θ ∂h

∂x2

∣∣∣p−2
∂y
∂x2

. . .∣∣∣ ∂y∂xN
+ θ ∂h

∂xN

∣∣∣p−2
∂y
∂xN

 .

Further, for an arbitrary λi ∈ Lp(Ω), we make use of the following transforma-
tions
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Ω

∣∣∣∣ ∂y∂xi +θ ∂h∂xi
∣∣∣∣p−2

∂y

∂xi
λi dx

=

∫
Ωi,θ

∂y
∂xi

+θ ∂h
∂xi∣∣∣ ∂y∂xi +θ ∂h∂xi ∣∣∣

(
∂y

∂xi
+θ

∂h

∂xi

)p−2
∂y

∂xi
λi dx

=

∫
Ωi,θ

∂y
∂xi

+θ ∂h
∂xi∣∣∣ ∂y∂xi +θ ∂h∂xi ∣∣∣

(
∂y

∂xi

)p−1

λi dx+(p− 2)θ

∫
Ωi,θ

∂y
∂xi

+θ ∂h
∂xi∣∣∣ ∂y∂xi +θ ∂h∂xi ∣∣∣

(
∂y

∂xi

)p−2
∂h

∂xi
λi dx

+θ2

B∑
k=2

θk−2 (p−2) · · · (p−1−k)

k!

∫
Ωi,θ

∂y
∂xi

+θ ∂h
∂xi∣∣∣ ∂y∂xi +θ ∂h∂xi ∣∣∣

(
∂y

∂xi

)p−1−k(
∂h

∂xi

)k
︸ ︷︷ ︸

ζki(x,θ)

λi dx,

where B = p − 2, if p is a natural number and B = +∞, otherwise. Let us
show that ζki ∈ Lq(Ω), where q = p

p−1
. Indeed, for each k ∈ {2, 3, . . . , p − 2}

and 1 ≤ i ≤ N , using Hölder’s inequality, we get

‖ζki(·, θ)‖
p
p−1

L
p
p−1 (Ω)

=

∫
Ω

|ζki|
p
p−1 dx

≤
∫

Ω

∣∣∣∣ ∂y∂xi
∣∣∣∣
p(p−1−k)
p−1

∣∣∣∣ ∂h∂xi
∣∣∣∣ pkp−1

dx

≤

(∫
Ω

∣∣∣∣ ∂y∂xi
∣∣∣∣
p(p−1−k)
p−1

r

dx

)1
r
(∫

Ω

∣∣∣∣ ∂h∂xi
∣∣∣∣ pkp−1

r̂

dx

)1
r̂

{
for r =

p− 1

p− k − 1
, r̂ =

p− 1

k
, r−1 + (r̂)−1 = 1

}
=

∥∥∥∥ ∂y∂xi
∥∥∥∥
p(p−k−1)
p−1

Lp(Ω)

∥∥∥∥ ∂h∂xi
∥∥∥∥ kp
p−1

Lp(Ω)

= O(1).

It remains to apply the arguments similar to given above (see (21)–(22))
and pass to the limit in (23) as θ → +0. As a result, we arrive at the following
representations

I2 =(p−2)

∫
Ω

(
U(x)

[
(∇y)p−2

]
∇h,∇λ

)
RN dx+

∫
Ω

(
U(x)

[
(∇y)p−2

]
∇h,∇λ

)
RN dx

=(p−1)

∫
Ω

(
U(x)

[
(∇y)p−2

]
∇h,∇λ

)
RN dx{

in view of symmetric property of matrices U and [(∇y)p−2]
}

=(p−1)

∫
Ω

([
(∇y)p−2

]
U(x)∇λ,∇h

)
RN dx.
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By analogy with the previous line, it can be shown show that

I3 = lim
θ→0

1

θ

[∫
Ω

|y+θh|p−1(y+θh)λ dx−
∫

Ω

|y|p−1yλ dx

]
=(p−1)

∫
Ω

|y|p−2λh dx.

Therefore, the “right-hand” side directional derivative of the Lagrangian func-
tional Λ(U , y, λ) with respect to the variable y takes the form:

D+
y Λ(U , y, λ, h)=I1 + I2 + I3

=(p−1)

∫
Ω

(
[(∇y)p−2]U∇λ,∇h

)
RN dx

+ (p−1)

∫
Ω

|y|p−2λh dx+ p

∫
Ω

|y−yd|p−1h dx. (24)

Lemma 4.10. Let U ∈ Uad and λ, yd ∈ W 1,p
0 (Ω) be given distributions. If an

element y ∈ W 1,p
0 (Ω) is a regular point of the Lagrangian Λ(U , y, λ), then the

mapping W 1,p
0 (Ω) 3 v 7→ Λ(U , v, λ) ∈ R is Gâteaux differentiable at y and its

Gâteaux differential 〈Dy Λ(U , y, λ), h〉W 1,p
0 (Ω) takes the form

〈Dy Λ(U , y, λ), h〉W 1,p
0 (Ω) = D+

y Λ(U , y, λ, h), ∀h ∈ W 1,p
0 (Ω).

Proof. Let (U , y, λ) ∈ Uad ×
[
W 1,p

0 (Ω)
]2

be a given triplet. Since y is a regular

point of Λ, it follows that Lemma 4.9 remains valid for all h ∈ W 1,p
0 (Ω). Hence,

taking into account the representation (24), it is easy to see that

D+
y Λ(U , y, λ, h) = lim

θ→+0

Λ(U , y+θh, λ)−Λ(U , y, λ)

θ

= lim
θ→0

Λ(U , y+θh, λ)−Λ(U , y, λ)

θ

=

〈
Dy
(∫

Ω

|y−yd|pλ
)
, h

〉
W 1,p

0 (Ω)

+

〈
Dy
(∫

Ω

|y|p−2yλ

)
, h

〉
W 1,p

0 (Ω)

+

〈
Dy
(∫

Ω

(U [(∇y)p−2]∇y,∇λ)RNdx

)
, h

〉
W 1,p

0 (Ω)

= p

∫
Ω

|y−yd|p−1h dx+ (p−1)

∫
Ω

|y|p−2λh dx

+ (p−1)

∫
Ω

(
[(∇y)p−2]U ∇λ,∇h

)
RN dx, (25)

that is,

D+
y Λ(U , y, λ, h) = −D+

y Λ(U , y, λ,−h), ∀h ∈ W 1,p
0 (Ω),

and, therefore, the mapping h 7→ D+
y Λ(U , y, λ, h) is linear on W 1,p

0 (Ω). Thus,
following the definition of the Gâteaux derivative, we arrive at the required
conclusion.
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Before deriving the optimality conditions, we need the following auxiliary
result.

Lemma 4.11. Let U ∈ Uad, y ∈W 1,p
0 (Ω), and v ∈W 1,p

0 (Ω) be given distribu-
tions. Assume that each point of the segment [y, v]={y+α(v−y) : ∀α∈ [0, 1]} ⊂
W 1,p

0 (Ω) is regular for the mapping v → Λ(U , v, λ). Then there exists a positive
value ε ∈ [0, 1] such that

Λ(U , v, λ)− Λ(U , y, λ)

= 〈DyΛ(U , y+ε(v−y), λ), v−y〉W 1,p
0 (Ω)

= p

∫
Ω

|y+ε(v−y)−yd|p−1(v−y) dx+(p−1)

∫
Ω

|y+ε(v−y)|p−2λ(v−y) dx

+(p−1)

∫
Ω

(
[(∇y+ε(∇v−∇y))p−2]U ∇λ,∇(v−y)

)
RN dx. (26)

Proof. For given U , λ, yd, y, and v, let us consider the scalar function ϕ(t) =
Λ(U , y+ t(v− y), λ). Since by Lemma 4.10, the functional Λ(U , ·, λ) is Gâteaux
differentiable at each point of the segment [y, v], it follows that the function
ϕ = ϕ(t) is differentiable on [0, 1] and

ϕ′(t) = 〈Dy Λ(U , y + t(v − y), λ), v − y〉W 1,p
0 (Ω) , ∀ t ∈ [0, 1].

To conclude the proof, it remains to take into account (25) and apply the Mean
Value Theorem (or, in other words, the generalization of Rolle’s Theorem):
ϕ(1)− ϕ(0) = ϕ′(ε) for some ε ∈ [0, 1].

5. Optimality conditions

In this section, we assume the fulfilment of the following hypothesis:

(H1) The distributions f ∈ W−1,q(Ω) and yd ∈ W 1,p
0 (Ω) are such that, for each

admissible control U ∈ Uad := Ub ∩ Usol, the corresponding weak solution
y = y (U) of the nonlinear Dirichlet boundary value problem (10) is a
regular point of the Lagrangian Λ(U , y, λ).

It is worth noting that due to the results of Manfredi (see [21]) this hypoth-
esis appears natural and it is not restrictive supposition in practice. Indeed,
following [21], we can ensure that the set {x ∈ Ω : ∇y = 0} for non-constant
solutions of the p-Laplace equation (a p-harmonic function, i.e. with f = 0),
has zero Lebesgue measure.

Let (U0, y0) ∈ Ξsol be an optimal pair for problem (13)–(15). Then

∆Λ = Λ(U , y, λ)− Λ(U0, y0, λ) ≥ 0,∀ (U , y) ∈ Ξsol, ∀λ ∈ W 1,p
0 (Ω). (27)
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Hence,

Λ(U , y, λ)−Λ(U0, y0, λ) = Λ(U , y, λ)−Λ(U , y0, λ)+Λ(U , y0, λ)−Λ(U0, y0, λ)

= ∆yΛ(U , y0, λ)+Λ(U−U0, y0, λ) ≥ 0, (28)

for all λ ∈ W 1,p
0 (Ω) and U ∈ Uad such that (U − U0) ∈ Uad. Due to Hy-

pothesis (H1) and Remark 4.8, we can suppose that each point of the seg-
ment [y0, y] ⊂ W 1,p

0 (Ω) is regular for the mapping v → Λ(U , v, λ). Then, by
Lemma 4.11, there exists a positive value ε ∈ [0, 1] such that

∆yΛ(U , y0, λ) = Λ (U , y, λ)− Λ (U , y0, λ)

= 〈DyΛ(U , y0 + ε(y − y0), λ), y − y0〉W 1,p
0 (Ω) . (29)

Now we introduce the concept of quasi-adjoint states that was first consid-
ered for linear problems by Serovajskiy [27]).

Definition 5.1. We say that, for a given U ∈ Usol, a distribution ψε is the
quasi-adjoint state to y0 ∈ W 1,p

0 (Ω) if ψε satisfies the following integral identity:

(p− 1)

∫
Ω

(
[(∇yε)p−2]U∇ψε,∇ϕ

)
RN dx

+ (p− 1)

∫
Ω

|yε|p−2 ψε ϕdx+ p

∫
Ω

|yε − yd|p−1ϕdx = 0, ∀ϕ ∈ W 1,p
0 (Ω). (30)

Here, yε = y0 − ε(y − y0), y = y(U) is the solution of problem (14), (15), and
ε = ε(U) ∈ [0, 1] is a constant coming from equality (29).

Remark 5.2. As follows from Lemma 4.11, the constant ε essentially depends
on the choice of matrix U ∈ Uad, i.e. ε = ε(U). Hence, the quasi-adjoint state
ψε should also be considered as a composite function ψε = ψε(U) (to be more
specific, we have to write ψε = ψε(U , y(U))).

Since our main intention in this section is to derive optimality conditions for
optimal control problem (13)–(15) and carry out their thorough substantiation,
we begin with the following concept.

Definition 5.3. We say that the mapping Uad 3 U 7→ ψε(U) possesses the H-

property at the point Ũ with respect to the pair of spaces
(
L∞(Ω;RN×N),W 1,p

0 (Ω)
)

if for each U ∈ Uad we have: ψε,θ := ψε(Ũ + θ(U − Ũ)) ∈ W 1,p
0 (Ω) for all

θ ∈ [0, 1] and the sequence {ψε,θ}θ is uniformly bounded in W 1,p
0 (Ω) with respect

to θ ∈ [0, 1].

Remark 5.4. In a much stronger form this concept was introduced by Serova-
jskiy with respect to optimal L∞-control problems in coefficients for linear ellip-
tic equations [27]. In fact, in [27] it has been proved that the so-called weakened
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continuity of the mapping U 7→ ψε(U) (i.e. it is a property when the strong con-
vergence of controls Uk → U in L∞(Ω;RN×N) implies the weak convergence
ψε(Uk) ⇀ ψε(U) in W 1,p

0 (Ω) for all U and ε ∈ [0, 1]) is a characteristic property
for quasi-adjoint states in the linear case. However, as we will see later, this
property is not attributable to the quasi-adjoint state functions provided p > 2.

Here we focus on the case when for a given distribution f ∈ W−1,q(Ω), the
H-property holds true for the mapping Uad 3 U 7→ ψε(U) at some point. It
allows us to derive optimality conditions in a correct way. Indeed, the charac-
teristic feature of solenoidal controls Usol is the fact that the weak-∗ convergence
of controls Uk → U in L∞(Ω;RN×N) leads to the weak convergence in W 1,p

0 (Ω)
of the corresponding solutions y(Uk)→ y(U) as k →∞ (see Theorem 3.3). At
the same time, the following result shows that the mapping U 7→ y(U), actually,
possesses a little bit stronger property.

Lemma 5.5. Assume that Uk → U strongly in L∞(Ω;RN×N). Then, for the
corresponding solutions of boundary value problem (14), (15), we have strong
convergence yk = y(Uk)→ y = y(U) in W 1,p

0 (Ω).

Proof. Due to the properties of the class of admissible controls Uad, we can take
as an equivalent norm in W 1,p

0 (Ω) the following:

|||y|||W 1,p
0 (Ω) =

(∫
Ω

|y|p dx+

∫
Ω

(
U(x)[(∇y)p−2]∇y,∇y

)
RN dx

) 1
p

.

Then, by definition of weak solutions to Dirichlet problem (14), (15), we have∫
Ω

(
Uk(x)[(∇ yk)p−2]∇yk,∇φ

)
RN dx+

∫
Ω

|yk|p−2yk φ dx = 〈f, φ〉W 1,p
0 (Ω) , (31)∫

Ω

(
U(x)[(∇ y)p−2]∇y,∇φ

)
RN dx+

∫
Ω

|y|p−2y φ dx = 〈f, φ〉W 1,p
0 (Ω) , (32)

where φ is an arbitrary element of W 1,p
0 (Ω).

Having substituted in (31), (32) φ = yk, we observe that the right-hand
sides of these relations coincide. Hence, the left-hand sides must coincide as
well. Thus, ∫

Ω

(
Uk(x)[(∇ yk)p−2]∇yk,∇yk

)
RN dx+

∫
Ω

|yk|p dx

=

∫
Ω

(
U(x)[(∇ y)p−2]∇y,∇yk

)
RN dx+

∫
Ω

|y|p−2y yk dx. (33)

Taking into account estimate (16) and Theorem 3.3, we have the implication[
Uk→U strongly in L∞(Ω;RN×N)

]
⇒
[
yk=y(Uk)⇀y=y(U) in W 1,p

0 (Ω)
]
. (34)
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Consequently,

lim
k→∞

(∫
Ω

(
U(x)[(∇ y)p−2]∇y,∇yk

)
RN dx+

∫
Ω

|y|p−2y yk dx

)
=

∫
Ω

(
U(x)[(∇ y)p−2]∇y,∇y

)
RN dx+

∫
Ω

|y|p dx︸ ︷︷ ︸
M

.

On the other hand, using the lower semi-continuity of the norm in Lp(Ω) with
respect to weak convergence, we have

lim inf
k→∞

(∫
Ω

|yk|p dx+

∫
Ω

(
Uk(x)[(∇ yk)p−2]∇yk,∇yk

)
RN dx

)
= lim inf

k→∞

(∫
Ω

|yk|p dx+

∫
Ω

(
U(x)[(∇ yk)p−2]∇yk,∇yk

)
RN dx

)
+ lim inf

k→∞

∫
Ω

(
(Uk(x)− U(x)) [(∇ yk)p−2]∇yk,∇yk

)
RN dx

{by (34)}

= lim inf
k→∞

(∫
Ω

|yk|p dx+

∫
Ω

(
U(x)[(∇ yk)p−2]∇yk,∇yk

)
RN dx

)
≥
∫

Ω

|y|p dx+

∫
Ω

(
U(x)[(∇ y)p−2]∇y,∇y

)
RN dx = M.

As a result, passing to the limit in (33) as k →∞, we obtain

M ≤ lim inf
k→∞

∫
Ω

((
Uk(x)[(∇ yk)p−2]∇yk,∇yk

)
RN + |yk|p

)
dx

= lim inf
k→∞

∫
Ω

((
U(x)[(∇ y)p−2]∇y,∇yk

)
RN + |y|p−2y yk

)
dx = M.

Thus, we have |||yk|||W 1,p
0 (Ω) → |||y|||W 1,p

0 (Ω) and yk ⇀ y in W 1,p
0 (Ω). Taking into

account the equivalence of the norms ‖ · ‖ and ||| · ||| in W 1,p
0 (Ω), this ensures

strong convergence yk → y in W 1,p
0 (Ω) and the proof is complete.

We are now in the position to derive the first order optimality conditions
for optimal control problem (13)–(15).

Theorem 5.6. Let us suppose that f ∈ W−1,q(Ω), yd ∈ W 1,p
0 (Ω), and Uad 6= ∅

are given with p ≥ 2. Let (U0, y0) ∈ L∞(Ω;RN×N)×W 1,p
0 (Ω) be an optimal

pair to the problem (13)–(15). Assume that the quasi-adjoint state ψε(U) to
y0 ∈ W 1,p

0 (Ω), defined by (30), possesses the H-property at U0 in the sense of
Definition 5.3. Then (H1) implies the existence of an element ψ ∈ W 1,p

0 (Ω)
such that ∫

Ω

(
(U − U0)[(∇y0)p−2]∇y0,∇ψ

)
RN dx ≥ 0, ∀U ∈ Uad, (35)
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Ω

(
U0[(∇y0)p−2]∇y0,∇ϕ

)
RN dx+

∫
Ω

|y0|p−2y0ϕdx

= 〈f, ϕ〉W 1,p
0 (Ω), ∀ϕ ∈ W 1,p

0 (Ω), (36)

(p− 1)

∫
Ω

(
[(∇y0)p−2]U0∇ψ,∇ϕ

)
RN dx+ (p− 1)

∫
Ω

|y0|p−2 ψ ϕdx

= p

∫
Ω

|y0 − yd|ϕdx, ∀ϕ ∈ W 1,p
0 (Ω). (37)

Proof. Let (Û , ŷ)∈Ξsol be an admissible pair. We substitute Uθ :=U0+θ(Û−U0),
where θ ∈ [0, 1], in relations (27) and (28). Then, by Lemma 4.11, there exists
a value εθ ∈ [0, 1] such that the condition (27) can be represented as follows
(see (29))

∆Λ = Λ(Uθ, yθ, λ)− Λ(U0, y0, λ)

= 〈DyΛ(Uθ, y0 + εθ(yθ − y0), λ), yθ − y0〉W 1,p
0 (Ω) + Λ(Uθ − U0, y0, λ)

= 〈DyΛ(Uθ, y0 + εθ(yθ − y0), λ), yθ − y0〉W 1,p
0 (Ω) + Λ(θ(Û − U0), y0, λ)

≥ 0,

where yθ := y (Uθ) = y
(
U0 + θ(Û − U0)

)
is the corresponding solution of the

boundary value problem problem (14), (15). Using (26) and (17), we obtain

∆Λ = p

∫
Ω

|y0 + εθ(yθ − y0)− yd|p−1(yθ − y0) dx

+ (p− 1)

∫
Ω

|y0 + εθ(yθ − y0)|p−2 λ (yθ − y0) dx

+ (p− 1)

∫
Ω

(
[(∇y0 + εθ(∇yθ −∇y0))p−2]Uθ∇λ,∇(yθ − y0)

)
RN dx

+ θ

∫
Ω

(
(Û − U0)[(∇y0)p−2]∇y0,∇λ

)
RN
dx

≥ 0, ∀ Û ∈ Uad. (38)

In view of the H-property, let us define the element λ in (38) as the quasi-
adjoint state to y0 ∈ W 1,p

0 (Ω), that is, we set λ = ψεθ,θ, where ψεθ,θ := ψεθ(Uθ)
satisfies the following integral identity:

(p−1)

∫
Ω

(
[(∇y0+εθ(∇yθ−∇y0))p−2]Uθ∇ψεθ,θ,∇ϕ

)
RN dx

+ (p−1)

∫
Ω

|y0+εθ(yθ−y0)|p−2ψεθ,θ ϕdx+ p

∫
Ω

|y0+εθ(yθ−y0)− yd|p−1ϕdx

= 0, ∀ϕ ∈ W 1,p
0 (Ω). (39)
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As a result, dividing relation (38) by θ, we can simplify it to the form∫
Ω

(
(Û − U0)[(∇y0)p−2]∇y0,∇ψεθ,θ

)
RN

dx ≥ 0, ∀ Û ∈ Uad. (40)

It remains to pass to the limit in (39), (40) as θ → +0. To this end, we
note that

(A1) by the initial suppositions, Uθ → U0 in L∞(Ω;RN×N) as θ → 0;

(A2) by Lemma 5.5, yθ → y0 in W 1,p
0 (Ω) as θ → 0;

(A3) by the H-property, there exists an element ψ ∈ W 1,p
0 (Ω) such that (within

a subsequence) ψεθ,θ ⇀ ψ in W 1,p
0 (Ω) as θ → 0.

(A4) if p > 3, then∣∣|a|p−2 − |b|p−2
∣∣ ≤ (p− 2) (|a|+ |b|)p−3 |a− b| , ∀ a, b ∈ R; (41)

(A5) if 2 ≤ p ≤ 3, then∣∣|a|p−2 − |b|p−2
∣∣ ≤ |a− b|p−2, ∀ a, b ∈ R; (42)

Then, passing to the limit in (40) immediately leads us to (35). Therefore, in or-
der to end the proof, it remains to establish the validity of integral identity (37).
With that in mind, we rewrite (39) as follows (p− 1)Iθ1 + (p− 1)Iθ2 + pIθ3 = 0.
Since,

Iθ1 =

∫
Ω

(
[(∇ỹθ)p−2 − (∇y0)p−2]Uθ∇ψεθ,θ,∇ϕ

)
RN dx

+

∫
Ω

(
[(∇y0)p−2] (Uθ − U0)∇ψεθ,θ,∇ϕ

)
RN dx

+

∫
Ω

(
[(∇y0)p−2]U0

(
∇ψεθ,θ −∇ψ

)
,∇ϕ

)
RN dx

+

∫
Ω

(
[(∇y0)p−2]U0∇ψ,∇ϕ

)
RN dx

= Jθ1,1 + Jθ1,2 + Jθ1,3 + J1,4,

where ỹθ := y0 + εθ(yθ − y0), let us show that limθ→0 J
θ
1,j = 0 (j=1,2,3), and,

hence, Iθ1 → J1,4 as θ → +0. Using the Cauchy-Schwarz inequality, condi-
tion (6), and equivalence of the Euclidean norm ‖ · ‖RN and Hölder’s norm | · |p,
we have

|Jθ1,1| ≤
∫

Ω

∥∥[(∇ỹθ)p−2 − (∇y0)p−2]
∥∥
RN×N ‖Uθ‖RN×N ‖∇ψεθ,θ‖RN ‖∇ϕ‖RN dx

≤ βc1

N∑
i=1

∫
Ω

∣∣∣∣∣
∣∣∣∣∂ỹθ∂xi

∣∣∣∣p−2

−
∣∣∣∣∂y0

∂xi

∣∣∣∣p−2
∣∣∣∣∣ |∇ψεθ,θ|p |∇ϕ|p dx. (43)
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Therefore, if p > 3, then, by (A4) and Hölder’s inequality with Hölder conjugates
r = p

p−2
> 1 and s = p

2
, we can estimate (43) as follows

|Jθ1,1|≤βc1(p− 2)
N∑
i=1

∫
Ω

(∣∣∣∣∂ỹθ∂xi

∣∣∣∣+

∣∣∣∣∂y0

∂xi

∣∣∣∣)p−3 ∣∣∣∣∂ỹθ∂xi
− ∂y0

∂xi

∣∣∣∣ |∇ψεθ,θ|p |∇ϕ|p dx
≤c2

N∑
i=1

(∫
Ω

(∣∣∣∣∂ỹθ∂xi

∣∣∣∣+

∣∣∣∣∂y0

∂xi

∣∣∣∣)
p(p−3)
p−2

∣∣∣∣∂ỹθ∂xi
− ∂y0

∂xi

∣∣∣∣ p
p−2

dx

) p−2
p

×
(∫

Ω

|∇ψεθ,θ|
p
2
p |∇ϕ|

p
2
p dx

) 2
p

{
by Hölder’s inequality with r = p−2

p−3
, s = (p− 2)

}
≤c2

N∑
i=1

(∫
Ω

(∣∣∣∣∂ỹθ∂xi

∣∣∣∣+

∣∣∣∣∂y0

∂xi

∣∣∣∣)p dx)
p−3
p
(∫

Ω

∣∣∣∣∂ỹθ∂xi
− ∂y0

∂xi

∣∣∣∣p dx) 1
p

× ‖∇ψεθ,θ‖Lp(Ω;RN ) ‖∇ϕ‖Lp(Ω;RN ) . (44)

Since supθ∈[0,1] ‖∇ψεθ,θ‖Lp(Ω;RN ) < +∞ by the H-property of ψεθ,θ, and

{εθ} ⊂ [0, 1], the condition (A2) implies that ỹθ → y0 in W 1,p
0 (Ω) and, therefore,

max
1≤i≤N

sup
θ∈[0,1]

∫
Ω

(∣∣∣∣∂ỹθ∂xi

∣∣∣∣+

∣∣∣∣∂y0

∂xi

∣∣∣∣)p dx < +∞,
∥∥∥∥∂ỹθ∂xi

− ∂y0

∂xi

∥∥∥∥
Lp(Ω)

θ→0→ 0.

Thus, by estimate (44), we conclude: limθ→0 J
θ
1,1 = 0.

As for the case 2 ≤ p ≤ 3, the inequality (43) and condition (A5) lead us

to the estimate |Jθ1,1| ≤ βc1

∑N
i=1

∫
Ω

∣∣∣∂ỹθ∂xi
− ∂y0

∂xi

∣∣∣p−2

|∇ψεθ,θ|p |∇ϕ|p dx. Further it

remains to repeat the trick like in (44). As a result, we obtain

|Jθ1,1| ≤ βc1

N∑
i=1

(∫
Ω

∣∣∣∣∂ỹθ∂xi
− ∂y0

∂xi

∣∣∣∣p dx)
p−2
p

‖∇ψεθ,θ‖Lp(Ω;RN ) ‖∇ϕ‖Lp(Ω;RN ) .

Therefore, having applied the arguments given before, we can conclude: If
2 ≤ p ≤ 3, then limθ→0 J

θ
1,1 = 0.

As for the term Jθ1,2, we have

|Jθ1,2| ≤
∫

Ω

∥∥[(∇ỹθ)p−2]
∥∥
RN×N ‖Uθ−U0‖RN×N ‖∇ψεθ,θ‖RN ‖∇ϕ‖RN dx

≤ c3‖Uθ−U0‖L∞(Ω;RN×N )‖∇ỹθ‖p−2
Lp(Ω;RN )

‖∇ψεθ,θ‖Lp(Ω;RN ) ‖∇ϕ‖Lp(Ω;RN )

≤ c3 sup
θ∈[0,1]

‖ψεθ,θ‖W 1,p
0 (Ω) ‖ỹθ‖

p−2

W 1,p
0 (Ω)

‖ϕ‖W 1,p
0 (Ω) ‖Uθ−U0‖L∞(Ω;RN×N )

≤ c4‖Uθ−U0‖L∞(Ω;RN×N )
by (A1)→ 0 as θ → 0.
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To clarify the asymptotic behavior of the term Jθ1,3 as θ tends to zero, we
note that

Jθ1,3 :=

∫
Ω

(
[(∇y0)p−2]U0

(
∇ψεθ,θ −∇ψ

)
,∇ϕ

)
RN dx

=

∫
Ω

(
∇ψεθ,θ −∇ψ,U0 [(∇y0)p−2]∇ϕ

)
RN dx.

Since ∇ϕ ∈ Lp(Ω;RN), U0 ∈ L∞(Ω;RN×N), and ∇y0 ∈ Lp(Ω;RN), the follow-
ing inclusion U0 [(∇y0)p−2]∇ϕ ∈ Lq(Ω;RN) holds true with q = p

p−1
. Hence, the

condition limθ→0 J
θ
1,3 = 0 is ensured by the H-property of ψεθ,θ. Indeed, in this

case we can suppose that within a subsequence, we have the weak convergence
∇ψεθ,θ ⇀ ∇ψ in Lp(Ω;RN).

Thus, summing up the results given above, we finally obtain

lim
θ→0

Iθ1 = lim
θ→0

(
3∑
j=1

Jθ1,j + J1,4

)
=

∫
Ω

(
[(∇y0)p−2]U0∇ψ,∇ϕ

)
RN dx. (45)

In analogy with the previous case, it is easy to show that

lim
θ→0

Iθ2 = lim
θ→0

∫
Ω

|y0 + εθ(yθ − y0)|p−2 ψεθ,θ ϕdx =

∫
Ω

|y0|p−2 ψ ϕdx.

As for the last term in (39),

Iθ3 :=

∫
Ω

|y0 + εθ(yθ − y0)− yd|p−1ϕdx = 0,

we see that |ỹθ − yd|p−1 := |y0 + εθ(yθ − y0)− yd|p−1 ∈ Lq(Ω) with q = p
p−1

, for

all θ ∈ [0, 1]. Moreover, ‖|ỹθ|p−1‖Lq(Ω) = ‖ỹθ‖p−1
Lp(Ω) . Hence, strong convergence

ỹθ → y0 in W 1,p
0 (Ω) implies strong convergence

|ỹθ − yd|p−1 → |y0 − yd|p−1 in Lq(Ω).

As a result,

lim
θ→0

Iθ3 = lim
θ→0

∫
Ω

|y0+εθ(yθ−y0)−yd|p−1ϕdx=

∫
Ω

|y0−yd|p−1ϕdx, (46)

for all ϕ ∈ W 1,p
0 (Ω).

Thus, combining relations (45)–(46), it is easy to see that passing to the
limit in (39) leads to variational problem (37). Moreover, as immediately follows
from (37), the weak limit ψ in W 1,p

0 (Ω) of the quasi-adjoint states {ψεθ,θ}θ can

also be interpreted as a quasi-adjoint state to y0 ∈ W 1,p
0 (Ω) with ε = 0, namely,

ψ = ψ0(U0, y0). In this sense, ψ corresponds to the “classical” notion of adjoint
state. This concludes the proof.



106 P. I. Kogut et al.

Remark 5.7. We remark that the optimality conditions (35)–(37) can be re-
covered from [2] for scalar controls without state constraints. Similarly, in [5]
these optimality conditions are derived in the context of linear problems with
Tikhonov regularization.

Remark 5.8. In practice, the verification of the H-property for quasi-adjoint
states is not easy. Indeed, the set {x ∈ Ω : |∇y(x)| = 0}, even with zero
Lebesgue measure, prohibits the existence a positive constant δ > 0 satisfy-
ing inequality (

[(∇ỹθ)p−2]U(x)ζ, ζ
)
RN ≥ δ |ζ|22 a.e. in Ω

for all U ∈ Uad, θ ∈ [0, 1], and ζ ∈ RN , where as usual, ỹθ = y0 +εθ(yθ−y0). So,
we can not guarantee the boundedness of the sequence {ψεθ,θ}θ with respect to

the norm of Sobolev space W 1,p
0 (Ω). That’s why it is reasonable to consider the

solvability of variational problem (37) in appropriate weighted spaces.

Remark 5.9. We give a few comments on inequalities (41), (42). As for rela-
tion (42), its validity comes from the fact that the functions y1(x) = 1−xα

(1−x)α
and

y2(x) = 1−xα
(1+x)α

are monotonically decreasing on the interval x ∈ [0, 1] provided

that 0 ≤ α ≤ 1. Hence, yi(x) ≤ yi(0) = 1, and, therefore, for each |a| ≥ |b| > 0,
we get

|a|α − |b|α

|a− b|α
=
|a|α − |b|α

(|a| ± |b|)α
=

(
1−

(
|b|
|a|

)α)(
1±

(
|b|
|a|

))−α
≡ yi

(
|b|
|a|

)
≤ 1.

As a result, we arrive at inequality (42).
If α > 1, then we can apply the following reasoning for the substantiation

of inequality (41). To begin with, we note that the function f(x) = 1−xα
1−x is

monotonically increasing on the interval x ∈ (0, 1]. Therefore,

f(x) ≤ f(1) = lim
x→1

1− xα

1− x
=

{
0

0

}
= lim

x→1

(1− xα)′

(1− x)′
= α.

As a result, we have 1−xα
1−x ≤ α for all x ∈ (0, 1], and hence,

||a|α − |b|α| = (max{|a|, |b|})α
∣∣∣(min{|a|, |b|} (max{|a|, |b|})−1)α − 1

∣∣∣
≤ α

∣∣min{|a|, |b|} (max{|a|, |b|})−1 − 1
∣∣ (max{|a|, |b|})α

≤ α |a− b| (max{|a|, |b|})α−1

≤ α |a− b| (|a|+ |b|)α−1 .
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