Convolution in Rearrangement-Invariant Spaces Defined in Terms of Oscillation and the Maximal Function

Martin Křepela

Abstract. We characterize boundedness of a convolution operator with a fixed kernel between the classes $S^p(v)$, defined in terms of oscillation, and weighted Lorentz spaces $\Gamma^q(w)$, defined in terms of the maximal function, for $0 < p, q \leq \infty$. We prove corresponding weighted Young-type inequalities of the form

$$\|f * g\|_{\Gamma^q(w)} \leq C\|f\|_{S^p(v)}\|g\|_Y$$

and characterize the optimal rearrangement-invariant space Y for which these inequalities hold.

Keywords. Convolution, Young inequality, weighted Lorentz spaces, oscillation

Mathematics Subject Classification (2010). Primary 44A35, secondary 26D10, 46E30

1. Introduction

The classical Young inequality

$$\|f * g\|_q \leq \|f\|_p\|g\|_r,$$

where $1 \leq p, q, r \leq \infty$, $\frac{1}{p} + \frac{1}{r} = 1 + \frac{1}{q}$ and $f * g$ is the convolution given by

$$(f * g)(t) = \int_{-\infty}^{\infty} f(x)g(t-x)\,dx, \quad t \in \mathbb{R},$$

is one of the fundamental results related to the convolution and function spaces. It has been already modified and generalized for classes of function spaces that

M. Křepela: Karlstad University, Faculty of Health, Science and Technology, Department of Mathematics and Computer Science, 651 88 Karlstad, Sweden; Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 186 75 Praha 8, Czech Republic; martin.krepela@kau.se
are wider than the Lebesgue spaces in the original Young inequality. O’Neil [14] extended the result for the two-parametric Lorentz spaces \(L_{p,q} \). Precisely, he proved that, for \(1 < p,q,r < \infty \) and \(1 \leq a,b,c \leq \infty \) such that \(1 + \frac{1}{q} = \frac{1}{p} + \frac{1}{r} \) and \(\frac{1}{a} = \frac{1}{b} + \frac{1}{c} \), the inequality
\[
\|f \ast g\|_{L_{q,a}} \leq C \|f\|_{L_{p,b}} \|g\|_{L_{r,c}}, \quad f \in L_{p,b}, \ g \in L_{r,c},
\]
holds. This problem was further studied e.g. in [3,10,18] and the result was also improved up to the range \(1 < p,q,r < \infty \) and \(0 < a,b,c \leq \infty \). Nursultanov and Tikhonov [13] recently studied the same question considering convolution of periodic functions.

In the preceding paper [11] the author studied the boundedness of the operator \(T_g \) given by
\[
T_g f(t) := (f \ast g)(t)
\]
between weighted Lorentz spaces \(\Lambda^p(v) \) and \(\Gamma^q(w) \) with given weights \(v,w \) and exponents \(p,q \). It turned out that the result could be expressed by Young-type inequalities of the form
\[
\|f \ast g\|_{\Gamma^q(w)} \leq C \|f\|_{\Lambda^p(v)} \|g\|_Y, \quad f \in \Lambda^p(v), \ g \in Y,
\]
where the best r.i. space \(Y \), such that this inequality holds, was characterized.

In this paper we deal with similar questions with \(S^p(v) \) in place of \(\Lambda^p(v) \). The class \(S^p(v) \) is defined in terms of \(f^{**} - f^* \), where \(f^* \) is the nonincreasing rearrangement of \(f \) and \(f^{**} \) is the maximal function of \(f \) (for precise definitions see Section 2 below). The quantity \(f^{**} - f^* \) naturally represents the oscillation of \(f \) (see the fundamental paper of Bennett, DeVore and Sharpley [1]) and has appeared in numerous applications, particularly within the theory of Sobolev embeddings (see e.g. [4] and the references therein).

We are going to solve the following problems: At first, given exponents \(p,q \in (0, \infty] \) and weights \(v,w \), we provide conditions on the kernel \(g \in L^1 \) under which \(T_g \) is bounded between \(S^p(v) \) and \(\Gamma^q(w) \), written \(T_g : S^p(v) \to \Gamma^q(w) \). Precisely, we will show that there exists an r.i. space \(Y \) such that \(T_g : S^p(v) \to \Gamma^q(w) \) if (and in reasonable cases also only if) \(g \in Y \) and characterize the norm of \(Y \). Next, we write these results in the form of Young-type convolution inequalities
\[
\|f \ast g\|_{\Gamma^q(w)} \leq C \|f\|_{S^p(v)} \|g\|_Y, \quad f \in S^p(v), \ g \in L^1 \cap Y. \tag{1}
\]
The constant \(C \) here in general depends on \(p,q \) but is independent of \(f,g,v,w \). We will also show that the space \(Y \) we obtained is the essentially largest (optimal) r.i. space for which the inequality (1) is valid.

To get the desired results, we employ a similar technique as in [11]. We represent the investigated convolution-related inequalities by certain Hardy-type weighted inequalities and then treat the problem by working with the latter ones. This is done in Section 3. The final result shaped as the Young-type inequality (1) is presented in Section 4.
2. Preliminaries

Let us present some definitions and technical results we are going to use. The set of all measurable functions on \mathbb{R} is denoted by $\mathcal{M}(\mathbb{R})$. The symbols $\mathcal{M}_+(0, \infty)$ and $\mathcal{M}_+(\mathbb{R})$ stand for the sets of all nonnegative measurable functions on $(0, \infty)$ and \mathbb{R}, respectively. If $p \in (1, \infty)$, we define $p' := \frac{p}{p-1}$. The notation $A \lesssim B$ means that $A \leq CB$ where C is a positive constant independent of relevant quantities. Unless specified else, C actually depends only on the exponents p and q, if they are involved. If $A \lesssim B$ and $B \lesssim A$, we write $A \simeq B$. The optimal constant C in an inequality $A \leq CB$ is the least C such that the inequality holds. By writing inequalities in the form $A(f) \lesssim B(f)$, $f \in X$, we always mean that $A(f) \lesssim B(f)$ is satisfied for all $f \in X$.

A weight is any nonnegative function on $(0, \infty)$ such that $0 < W(t) < \infty$ for all $t > 0$, where $W(t) := \int_0^t w(s) \, ds$.

If $f \in \mathcal{M}(\mathbb{R})$, we define the nonincreasing rearrangement of f by

$$f^*(t) := \inf \{s > 0; \{x \in \mathbb{R}; |f(x)| > s\} \leq t\}, \quad t > 0,$$

and the Hardy-Littlewood maximal function of f by

$$f^{**}(t) := \frac{1}{t} \int_0^t f^*(s) \, ds, \quad t > 0.$$

If u is a weight, then a generalized version of the maximal function is defined by

$$f^{**}_u(t) := \frac{1}{U(t)} \int_0^t f^*(s)u(s) \, ds, \quad t > 0.$$

By L^1 we denote the Lebesgue-integrable functions on \mathbb{R}. The symbol L^1_{loc} stands for locally integrable functions on \mathbb{R}. If $q \in (0, \infty]$ and w is a weight, then $L^q(w)$ denotes the Lebesgue L^q-space over the interval $(0, \infty)$ with the measure $w(t) \, dt$.

Let $\varrho : \mathcal{M}(\mathbb{R}) \to [0, \infty]$ be a functional with the following properties:

(i) $E \subset \mathbb{R}$, $|E| < \infty \Rightarrow \varrho(\chi_E) < \infty$,
(ii) $f \in \mathcal{M}(\mathbb{R})$, $c \geq 0 \Rightarrow \varrho(cf) = c\varrho(f)$ (positive homogeneity),
(iii) $f, g \in \mathcal{M}(\mathbb{R})$, $0 \leq f \leq g$ a.e. \, $\Rightarrow \varrho(f) \leq \varrho(g)$ (lattice property),
(iv) $f, g \in \mathcal{M}(\mathbb{R})$, $f^* = g^* \Rightarrow \varrho(f) = \varrho(g)$ (r.i. property).

The set $X = X(\varrho) := \{f \in \mathcal{M}(\mathbb{R}); \varrho(f) < \infty\}$ is called a rearrangement-invariant (r.i.) lattice. For such X we define $\|f\|_X := \varrho(|f|)$ for all $f \in X$.

For the definition of a rearrangement-invariant space see [2, p. 59].
Let \(p \in (0, \infty] \) and \(u, v \) be weights. The weighted Lorentz spaces are defined by what follows:

\[
\Lambda^p(v) := \left\{ f \in \mathcal{M}(\mathbb{R}); \| f \|_{\Lambda^p(v)} := \left(\int_0^\infty (f^*(t))^p v(t) \, dt \right)^{\frac{1}{p}} < \infty \right\}, \quad p \in (0, \infty),
\]

\[
\Lambda^\infty(v) := \left\{ f \in \mathcal{M}(\mathbb{R}); \| f \|_{\Lambda^\infty(v)} := \text{ess sup}_{t > 0} f^*(t) v(t) < \infty \right\}, \quad p = \infty,
\]

\[
\Gamma^p_u(v) := \left\{ f \in \mathcal{M}(\mathbb{R}); \| f \|_{\Gamma^p_u(v)} := \left(\int_0^\infty (f_u^*(t))^p v(t) \, dt \right)^{\frac{1}{p}} < \infty \right\}, \quad p \in (0, \infty),
\]

\[
\Gamma^\infty_u(v) := \left\{ f \in \mathcal{M}(\mathbb{R}); \| f \|_{\Gamma^\infty_u(v)} := \text{ess sup}_{t > 0} f_u^*(t) v(t) < \infty \right\}, \quad p = \infty.
\]

If \(u \equiv 1 \), we write just \(\Gamma^p(v) \), \(\Gamma^\infty(v) \). Next, we denote

\[
A := \left\{ f \in \mathcal{M}(\mathbb{R}); f^*(\infty) = 0 \right\}.
\]

Clearly, any function \(f \in A \) satisfies \(f^{**}(\infty) = 0 \).

The class \(S^p(v) \) is given by

\[
S^p(v) := \left\{ f \in A; \| f \|_{S^p(v)} := \left(\int_0^\infty (f^{**}(t) - f^*(t))^p v(t) \, dt \right)^{\frac{1}{p}} < \infty \right\}, \quad p \in (0, \infty),
\]

\[
S^\infty(v) := \left\{ f \in A; \| f \|_{S^\infty(v)} := \text{ess sup}_{t > 0} (f^{**}(t) - f^*(t)) v(t) < \infty \right\}, \quad p = \infty.
\]

The \(\Gamma \)-spaces with \(u \equiv 1 \) are linear and the functional \(\| \cdot \|_{\Gamma^p(v)} \) is at least a quasi-norm. In fact, for \(p \in [1, \infty] \) it is a norm. The key property is the sublinearity of the maximal function (see e.g. [2, p. 54]), i.e.

\[
(f + g)^{**}(t) \leq f^{**}(t) + g^{**}(t), \quad t > 0.
\]

On the other hand, the rearrangement itself is not sublinear and the \(\Lambda \)-“spaces” need not to be linear [7]. However, they are always at least r.i. lattices.

In contrast with that, \(S^p(v) \) in general does not even have the lattice property. A detailed study of this and other functional properties of \(S^p(v) \) was published in [4].

Obviously, \(\Gamma^p(v) \subset S^p(v) \) for any \(p \in (0, \infty] \) and any weight \(v \). In case of \(p \in (0, \infty) \), we will work with weights \(v \) satisfying the conditions

\[
\int_\varepsilon^\infty \frac{v(t)}{t^p} \, dt < \infty \text{ for every } \varepsilon > 0 \quad \text{and} \quad \int_0^\infty \frac{v(t)}{t^p} \, dt = \infty.
\]

(2)

It can be checked easily that if the first part of (2) is not satisfied, then \(\Gamma^p(v) = S^p(v) = \{0\} \), while failing the other part implies that \(L^1 \subset \Gamma^p(v) \subset S^p(v) \). By
the symbol \mathcal{V}_p we denote the set of all weights v satisfying (2) with $p \in (0, \infty)$. Similarly, \mathcal{V}_∞ stands for the set of all weights satisfying
\[
\text{ess sup}_{t > \varepsilon} \frac{v(t)}{t} < \infty \text{ for every } \varepsilon > 0 \quad \text{and} \quad \text{ess sup}_{t > 0} \frac{v(t)}{t} = \infty.
\]

A useful tool for investigation of convolution inequalities is the O’Neil inequality [14, Lemma 2.5]:

Lemma 2.1. Let $f, g \in L^1_{\text{loc}}$. Then, for every $t \in (0, \infty)$ it holds
\[
(f * g)**(t) \leq tf**(t)g**(t) + \int_t^\infty f**(s)g**(s) \, ds.
\]

We are going to use this inequality with an alternative expression of its right-hand side from [11, Proposition 4.1]:

Lemma 2.2. Let $f, g \in L^1_{\text{loc}}$. Then for every $t \in (0, \infty)$ it holds
\[
tf**(t)g**(t) + \int_t^\infty f**(s)g**(s) \, ds
= \limsup_{s \to \infty} sf**(s)g**(s) + \int_t^\infty (f**(s) - f**(s))(g**(s) - g**(s)) \, ds.
\]

In particular, if $f \in \mathcal{A}$ and $g \in L^1$, then $\lim_{s \to \infty} sf**(s)g**(s) = 0$. Thus, Lemmas 2.1 and 2.2 together yield
\[
(f * g)**(t) \leq \int_t^\infty (f**(s) - f**(s))(g**(s) - g**(s)) \, ds, \quad t > 0. \tag{3}
\]

As observed already in [14], O’Neil inequality has also a converse form (for the proof of the following statement see e.g. [11, Lemma 2.3]).

Lemma 2.3. Let $f, g \in L^1_{\text{loc}}$ be nonnegative even functions which are nonincreasing on $(0, \infty)$. Then for every $t \in (0, \infty)$ it holds
\[
tf**(t)g**(t) + \int_t^\infty f**(s)g**(s) \, dy \leq 12(f * g)**(t).
\]

From now on we denote the “positive symmetrically decreasing” functions by
\[
PSD := \{ f; f \in \mathcal{M}_+(\mathbb{R}), \text{ f is even, } f \text{ is nonincreasing on } (0, \infty) \}.
\]

Applying Lemmas 2.2, 2.3 and the observation (3), we reach the following conclusion: Let $f \in \mathcal{A}$, $g \in L^1$ and assume that both $f, g \in PSD$. Then
\[
\int_t^\infty (f**(s) - f**(s))(g**(s) - g**(s)) \, ds \leq 12(f * g)**(t), \quad t > 0. \tag{4}
\]

The last preliminary result is the proposition below (cf. e.g. [16, Lemma 1.2], [5, Proposition 7.2]).
Proposition 2.4. Let \(h \) be a nonnegative and nonincreasing real-valued function on \((0, \infty)\). Then there exists a sequence \(\{ f_n \}_{n \in \mathbb{N}} \) of functions \(f_n \in \mathcal{M}(\mathbb{R}) \) such that for a.e. \(t > 0 \) it holds
\[
\frac{f_n^*(\frac{1}{t}) - f_n^*(\frac{1}{t})}{t} \uparrow h(t), \quad n \to \infty.
\]

Proof. There exists a nonnegative Radon measure \(\nu \) on \((0, \infty)\) such that for a.e. \(t > 0 \) it is
\[
h(t) = \int_{[t, \infty)} \frac{d\nu(x)}{x}.
\]
For any \(n \in \mathbb{N} \) we can find a function \(f_n \in \mathcal{M}(\mathbb{R}) \) such that
\[
f_n^*(t) = \int_{(0, \frac{1}{t})} \chi(x, \infty) \, d\nu(x)
\]
for all \(t > 0 \). Now choose any \(t > 0 \) such that (5) holds. By Fubini theorem,
\[
\frac{f_n^*(\frac{1}{t}) - f_n^*(\frac{1}{t})}{t} = \int_0^\frac{1}{t} \int_{(0, \frac{1}{t})} \chi(x, \infty) \, d\nu(x) \, ds - \frac{1}{t} \int_{(0, t]} \chi(x, \infty) \, d\nu(x)
\]
\[
= \int_{(0, \frac{1}{t})} \int_{0}^{\min\left\{ \frac{1}{t}, \frac{1}{n^2} \right\}} \chi(x, \infty) \, d\nu(x) - \frac{1}{t} \int_{(0, t]} \chi(x, \infty) \, d\nu(x)
\]
\[
= \int_{[t, \infty)} \chi(x, \infty) \, d\nu(x) \uparrow h(t), \quad n \to \infty. \quad \Box
\]

3. Inequalities with \(f^{**} - f^* \) and boundedness of the convolution operator

As mentioned in the introduction, we are going to describe when \(T_g : S^p(v) \to \Gamma^q(w) \) is bounded and, above all, what is the optimal r.i. space \(Y \) such that the inequality \(\| f * g \|_{\Gamma^q(w)} \lesssim \| f \|_{S^p(v)} \| g \|_Y \) holds for all \(f \in S^p(v) \) and \(g \in L^1 \cap Y \).

The problem is connected to inequalities involving the expression \(f^{**} - f^* \) which are shown in the following lemma. It is a direct consequence of the O’Neil inequality (3).

Lemma 3.1. Let \(p, q \in (0, \infty] \). Let \(v, w \) be weights, \(v \in \mathcal{K}_p \). Let \(g \in L^1 \).

(i) If \(p, q \in (0, \infty) \) and
\[
\left(\int_0^\infty \left(\int_x^\infty (f^{**}(t) - f^*(t)) (g^{**}(t) - g^*(t)) \, dt \right)^q w(x) \, dx \right)^{\frac{1}{q}} \leq C(6) \left(\int_0^\infty (f^{**}(x) - f^*(x))^p v(x) \, dx \right)^{\frac{1}{p}}, \quad f \in S^p(v),
\]

(ii) If \(p \in (0, \infty) \) and \(q = \infty \) then
\[
\left(\int_0^\infty \left(\int_x^\infty (f^{**}(t) - f^*(t)) (g^{**}(t) - g^*(t)) \, dt \right) w(x) \, dx \right)^{\frac{1}{p}} \leq C(6) \left(\int_0^\infty (f^{**}(x) - f^*(x))^p v(x) \, dx \right)^{\frac{1}{p}}, \quad f \in S^p(v),
\]

(iii) If \(p = \infty \) and \(q \in (0, \infty) \) then
\[
\left(\int_0^\infty \left(\int_x^\infty (f^{**}(t) - f^*(t)) (g^{**}(t) - g^*(t)) \, dt \right)^q w(x) \, dx \right)^{\frac{1}{q}} \leq C(6) \left(\int_0^\infty (f^{**}(x) - f^*(x))^p v(x) \, dx \right)^{\frac{1}{p}}, \quad f \in S^p(v),
\]

(iv) If \(p, q \in (0, \infty) \) and \(q \neq \infty \) then
\[
\left(\int_0^\infty \left(\int_x^\infty (f^{**}(t) - f^*(t)) (g^{**}(t) - g^*(t)) \, dt \right)^q w(x) \, dx \right)^{\frac{1}{q}} \leq C(6) \left(\int_0^\infty (f^{**}(x) - f^*(x))^p v(x) \, dx \right)^{\frac{1}{p}}, \quad f \in S^p(v),
\]

(v) If \(p = \infty \) and \(q = \infty \) then
\[
\left(\int_0^\infty \left(\int_x^\infty (f^{**}(t) - f^*(t)) (g^{**}(t) - g^*(t)) \, dt \right) w(x) \, dx \right)^{\frac{1}{p}} \leq C(6) \left(\int_0^\infty (f^{**}(x) - f^*(x))^p v(x) \, dx \right)^{\frac{1}{p}}, \quad f \in S^p(v),
\]
then $T_g : S^p(v) \to \Gamma^q(w)$ and, moreover, the optimal constant $C_{(6)}$ satisfies
\[\|T_g\|_{S^p(v) \to \Gamma^q(w)} \leq C_{(6)}.\]

(ii) If $0 < p < \infty = q$ and
\[
\begin{align*}
\text{ess sup}_{x > 0} \int_x^\infty (f^{**}(t) - f^*(t))(g^{**}(t) - g^*(t)) dt \ w(x) \\
& \leq C_{(7)} \left(\int_0^\infty (f^{**}(x) - f^*(x)) p v(x) \ dx \right)^{\frac{1}{p}}, \ f \in S^p(v),
\end{align*}
\]

then $T_g : S^p(v) \to \Gamma^q(w)$ and, moreover, the optimal constant $C_{(8)}$ satisfies
\[\|T_g\|_{S^p(v) \to \Gamma^q(w)} \leq C_{(8)}.
\]

(iii) If $0 < q < \infty = p$ and
\[
\begin{align*}
\left(\int_0^\infty \left(\int_x^\infty (f^{**}(t) - f^*(t))(g^{**}(t) - g^*(t)) dt \right)^q w(x) \ dx \right)^{\frac{1}{q}} \\
& \leq C_{(8)} \text{ess sup}_{x > 0} (f^{**}(x) - f^*(x)) v(x), \ f \in S^\infty(v),
\end{align*}
\]

then $T_g : S^\infty(v) \to \Gamma^q(w)$ and, moreover, the optimal constant $C_{(7)}$ satisfies
\[\|T_g\|_{S^\infty(v) \to \Gamma^q(w)} \leq C_{(7)}.
\]

(iv) If $p = q = \infty$ and
\[
\begin{align*}
\text{ess sup}_{x > 0} \int_x^\infty (f^{**}(t) - f^*(t))(g^{**}(t) - g^*(t)) dt \ w(x) \\
& \leq C_{(9)} \text{ess sup}_{x > 0} (f^{**}(x) - f^*(x)) v(x), \ f \in S^\infty(v),
\end{align*}
\]

then $T_g : S^\infty(v) \to \Gamma^\infty(w)$ and, moreover, the optimal constant $C_{(9)}$ satisfies
\[\|T_g\|_{S^\infty(v) \to \Gamma^\infty(w)} \leq C_{(9)}.
\]

The next result is inverse to the previous lemma, showing that the validity of the inequalities with $f^{**} - f^*$ from that lemma is also necessary for the boundedness of T_g, given that $g \in PSD$.

Lemma 3.2. Let $p, q \in (0, \infty]$. Let v, w be weights, $v \in \mathcal{V}_p$. Let $g \in L^1 \cap PSD$.

(i) If $p, q \in (0, \infty)$ and $T_g : S^p(v) \to \Gamma^q(w)$, then (6) holds and the optimal constant $C_{(6)}$ satisfies $C_{(6)} \lesssim \|T_g\|_{S^p(v) \to \Gamma^q(w)}$.

(ii) If $0 < p < \infty = q$ and $T_g : S^p(v) \to \Gamma^\infty(w)$, then (7) holds and the optimal constant $C_{(7)}$ satisfies $C_{(7)} \lesssim \|T_g\|_{S^p(v) \to \Gamma^\infty(w)}$.

(iii) If $0 < q < \infty = p$ and $T_g : S^\infty(v) \to \Gamma^q(w)$, then (8) holds and the optimal constant $C_{(8)}$ satisfies $C_{(8)} \lesssim \|T_g\|_{S^\infty(v) \to \Gamma^q(w)}$.

(iv) If $p = q = \infty$ and $T_g : S^\infty(v) \to \Gamma^\infty(w)$, then (9) holds and the optimal constant $C_{(9)}$ satisfies $C_{(9)} \lesssim \|T_g\|_{S^\infty(v) \to \Gamma^\infty(w)}$.
Proof. Let us show (i), the other cases are analogous. By (4), for the optimal constant $C(6)$ we get

$$C(6) = \sup_{\|f\|_{\mathcal{F}(\nu)} \leq 1} \left(\int_0^\infty \left(\int_x^\infty (f^{**}(t) - f^*(t))(g^{**}(t) - g^*(t)) \, dt \right)^q w(x) \, dx \right)^{\frac{1}{q}}$$

$$= \sup_{\|f\|_{\mathcal{F}(\nu)} \leq 1, f \in \mathcal{P}D} \left(\int_0^\infty \left(\int_x^\infty (f^{**}(t) - f^*(t))(g^{**}(t) - g^*(t)) \, dt \right)^q w(x) \, dx \right)^{\frac{1}{q}}$$

$$\leq 12 \sup_{\|f\|_{\mathcal{F}(\nu)} \leq 1, f \in \mathcal{P}D} \left(\int_0^\infty ((f \ast g)^{**}(t))^q w(t) \, dt \right)^{\frac{1}{q}}$$

$$\leq \|T_g\| s_{\nu(v) \rightarrow \Gamma} = 0(w). \quad \square$$

Now we characterize under which conditions on weights and exponents the inequalities of Lemma 3.1 are satisfied.

Theorem 3.3. Let $p, q \in (0, \infty)$. Let v, w be weights, $v \in \mathcal{V}_p$. Let $g \in L^1$.

(i) If $1 < p \leq q < \infty$, then (6) holds if and only if

$$A(10) := \sup_{x > 0} \left(\int_x^\infty (g^{**}(t))^q w(t) \, dt \right)^{\frac{1}{q}} \left(\int_x^\infty \frac{v(s)}{s^p} \, ds \right)^{-\frac{1}{p}} < \infty$$

and

$$A(11) := \sup_{x > 0} W^{\frac{1}{q}}(x) \left(\int_x^\infty (g^{**}(t))^{p'} \left(\int_t^\infty \frac{v(s)}{s^p} \, ds \right)^{-p'} v(t) \, dt \right)^{\frac{1}{p'}} < \infty.$$

The optimal constant $C(6)$ satisfies $C(6) \simeq A(10) + A(11)$.

(ii) If $0 < p \leq 1$, $0 < p \leq q < \infty$, then (6) holds if and only if $A(10) < \infty$ and

$$A(12) := \sup_{x > 0} g^{**}(x) W^{\frac{1}{q'}}(x) \left(\int_x^\infty v(t) \, dt \right)^{\frac{1}{p'}} < \infty.$$

The optimal constant $C(6)$ satisfies $C(6) \simeq A(10) + A(12)$.

(iii) If $1 < p < \infty$, $0 < q < p$, then (6) holds if and only if

$$A(13) := \left(\int_0^\infty \left(\int_x^\infty (g^{**}(t))^q w(t) \, dt \right)^{\frac{1}{q}} \left(\int_x^\infty \frac{v(t)}{t^p} \, dt \right)^{-\frac{1}{p}} v(x) \, dx \right)^{\frac{1}{q}} < \infty$$

and

$$A(14) := \left(\int_0^\infty W^{\frac{1}{q'}}(x) w(x) \right) \times \left(\int_x^\infty (g^{**}(t))^{p'} \left(\int_t^\infty \frac{v(s)}{s^p} \, ds \right)^{-p'} v(t) \, dt \right)^{\frac{1}{p'}} < \infty.$$

The optimal constant $C_{(6)}$ satisfies $C_{(6)} \simeq A_{(13)} + A_{(14)}$.

(iv) If $0 < q < p \leq 1$, then (6) holds if and only if $A_{(13)} < \infty$ and

$$A_{(15)} := \left(\int_0^\infty \sup_{x \leq t < \infty} (g^{**}(t))^r \left(\int_0^t v(s) \, ds \right)^{-\frac{r}{p}} W^r(x)w(x) \, dx \right)^{\frac{1}{r}} < \infty.$$

The optimal constant $C_{(6)}$ satisfies $C_{(6)} \simeq A_{(13)} + A_{(15)}$.

Proof. Let us show (i). After the change of variable $x \mapsto \frac{1}{x}$, inequality (6) is written as

$$\left(\int_0^\infty \left(\int_0^x \frac{f^{**}(\frac{1}{t}) - f^*(\frac{1}{t})}{t} \frac{g^{**}(\frac{1}{t}) - g^*(\frac{1}{t})}{t} \, dt \right)^{q} \frac{w\left(\frac{1}{x}\right)}{x^2} \, dx \right)^{\frac{1}{q}} \leq C_{(6)} \left(\int_0^\infty \varphi(t) \frac{v\left(\frac{1}{t}\right)}{x}^{p-2} \, dx \right)^{\frac{1}{p}}, \quad f \in \mathcal{M} (\mathbb{R}).$$

Let us denote by $\mathcal{M}_+(0, \infty)$ the cone of nonnegative and nonincreasing functions on \mathbb{R}. We claim that (16) is true if and only if

$$\left(\int_0^\infty \left(\int_0^\varphi(t) - f^*(\frac{1}{t}) \, dt \right) \frac{v\left(\frac{1}{x}\right)}{x^2} \, dx \right)^{\frac{1}{p}} \leq C_{(6)} \left(\int_0^\infty \varphi(x) \frac{v\left(\frac{1}{x}\right)}{x}^{p-2} \, dx \right)^{\frac{1}{p}}, \quad \varphi \in \mathcal{M}_+(0, \infty).$$

Indeed, every function $t \mapsto \frac{f^{**}(\frac{1}{t}) - f^*(\frac{1}{t})}{t}$ is nonnegative and nonincreasing on $(0, \infty)$, hence (17) implies (16). On the other hand, if $\varphi \in \mathcal{M}_+(0, \infty)$ is given, by Proposition 2.4 we find $f_n \in \mathcal{M} (\mathbb{R})$ such that

$$\frac{f^{**}(\frac{1}{t}) - f^*(\frac{1}{t})}{t} \uparrow \varphi(t) \text{ for a.e. } t \in (0, \infty).$$

Since (16) holds for every f_n in place of f, by the monotone convergence theorem we get (17) for the given φ, hence (16) implies (17).

Inequality (17) defines the embedding

$$\Lambda^p (\tilde{v}) \hookrightarrow \Gamma_u^q (\tilde{w})$$

with

$$\tilde{v}(x) := v\left(\frac{1}{x}\right)x^{p-2}, \quad \tilde{w}(x) := w\left(\frac{1}{x}\right)x^{q-2}, \quad u(x) := \frac{g^{**}\left(\frac{1}{x}\right) - g^*(\frac{1}{x})}{x}.$$

By [8, Theorem 3.1(iii)] or a modified version of [6, Theorem 4.1(i)], (18) (as well as (17)) holds if and only if $A_{(10)} + A_{(11)} < \infty$ and the optimal $C_{(6)}$ satisfies $C_{(6)} \simeq A_{(10)} + A_{(11)}$, which is the result.
In cases (ii)–(iv) we proceed in the same way, the only difference being the conditions characterizing (18) for different settings of \(p \) and \(q \). These characterizations of (18) may be found in [8, Theorem 3.1] or, alternatively, in [6, Theorem 4.1] for (ii) and (iii) and [5, Theorem 3.1] for (iv). Note that in [5,6] the results are given just for \(u = 1 \).

\[\square \]

\textbf{Remark 3.4.} For \(1 \leq p < \infty \), Theorem 3.3 can be alternatively obtained using the reduction theorem [9, Theorem 2.2] and Hardy inequalities for nonnegative functions (see e.g. [12,15]).

In the case \(q = \infty \), i.e. for (7), we get

\textbf{Theorem 3.5.} Let \(p \in (0, \infty) \). Let \(v, w \) be weights, \(v \in V_p \). Let \(g \in L^1 \). Then

(i) If \(0 < p \leq 1 \), then (7) holds if and only if

\[
A_{(19)} := \operatorname{ess sup}_{x > 0} w(x) \sup_{t > x} g^{**}(t) \left(\int_t^\infty \frac{v(s)}{s^p} \, ds \right)^{-\frac{1}{p}} < \infty. \tag{19}
\]

Moreover, the optimal constant \(C_{(7)} \) satisfies \(C_{(7)} \simeq A_{(19)} \).

(ii) If \(1 < p < \infty \), then (7) holds if and only if

\[
A_{(20)} := \operatorname{ess sup}_{x > 0} w(x) \left[\left(\int_x^\infty (g^{**}(t))^{p'} \left(\int_t^\infty \frac{v(s)}{s^p} \, ds \right)^{-p'} \frac{v(t)}{t^p} \, dt \right)^{\frac{1}{p'}} + g^{**}(x) \left(\int_x^\infty \frac{v(s)}{s^p} \, ds \right)^{-\frac{1}{p}} \right] < \infty. \tag{20}
\]

Moreover, the optimal constant \(C_{(7)} \) satisfies \(C_{(7)} \simeq A_{(20)} \).

\textbf{Proof.} Following the same reasoning as in the proof of Theorem 3.3, the inequality (7) is equivalent to

\[
\operatorname{ess sup}_{x > 0} \int_0^x \varphi(t) \frac{g^{**} \left(\frac{1}{t} \right) - g^* \left(\frac{1}{t} \right)}{t} \, dt \, w \left(\frac{1}{x} \right) \leq C_{(7)} \left(\int_0^\infty \varphi^p(x) v \left(\frac{1}{x} \right) x^{p-2} \, dx \right)^{\frac{1}{p}}, \quad \varphi \in M_+^+(0, \infty).
\]

Denote \(v_p(x) := v \left(\frac{1}{x} \right) x^{p-2} \). The optimal \(C_{(7)} \) satisfies

\[
C_{(7)} = \sup_{\|f\|_{L^p(v_p)} \leq 1} \operatorname{ess sup}_{x > 0} w \left(\frac{1}{x} \right) \int_0^x f^*(t) \frac{g^{**} \left(\frac{1}{t} \right) - g^* \left(\frac{1}{t} \right)}{t} \, dt \leq \operatorname{ess sup}_{x > 0} w \left(\frac{1}{x} \right) \sup_{\|f\|_{L^p(v_p)} \leq 1} \int_0^x f^*(t) \frac{g^{**} \left(\frac{1}{t} \right) - g^* \left(\frac{1}{t} \right)}{t} \, dt. \tag{21}
\]
In the following calculations, we are going to use the condition (2) without further comment.

(i) If $0 < p \leq 1$, [6, Theorem 3.1(i)] gives

$$\sup_{\|f\|_{\mathcal{L}(p)}} \int_0^x f^*(t) \frac{g^{**}(\frac{1}{x}) - g^*(\frac{1}{x})}{t} \, dt \simeq \sup_{t \in (0, x)} \int_0^t \frac{g^{**}(\frac{1}{x}) - g^*(\frac{1}{x})}{s} \, ds \left(\int_0^t v_p(s) \, ds\right)^{-\frac{1}{p}}.$$

Hence, we get

$$C(7) \simeq \sup_{x > 0} w \left(\frac{1}{x}\right) \sup_{t \in (0, x)} \int_0^t \frac{g^{**}(\frac{1}{x}) - g^*(\frac{1}{x})}{s} \, ds \left(\int_0^t v_p(s) \, ds\right)^{-\frac{1}{p}} \sup_{x > 0} w \left(\frac{1}{x}\right) \sup_{t \in (1, x]} g^{**}(t) \left(\int_t^\infty \frac{v(s)}{sp} \, ds\right)^{-\frac{1}{p}} = A(19).$$

(ii) If $1 < p < \infty$, by [6, Theorem 3.1(ii)] we have

$$\sup_{\|f\|_{\mathcal{L}(p)}} \int_0^x f^*(t) \frac{g^{**}(\frac{1}{x}) - g^*(\frac{1}{x})}{t} \, dt$$

$$\simeq \left(\int_0^x \left(\int_0^t \frac{g^{**}(\frac{1}{x}) - g^*(\frac{1}{x})}{s} \, ds\right)^{\frac{1}{p'}} \left(\int_0^t v_p(s) \, ds\right)^{-\frac{1}{p'}} v_p(t) \, dt\right)^{\frac{1}{p'}}$$

$$+ \left(\int_0^x \frac{g^{**}(\frac{1}{x}) - g^*(\frac{1}{x})}{s} \, ds \left(\int_x^\infty \left(\int_0^t v_p(s) \, ds\right)^{-\frac{1}{p'}} v_p(t) \, dt\right)\right)^{\frac{1}{p'}}$$

$$= \left(\int_{\frac{1}{x}}^\infty (g^{**}(t))^{\frac{1}{p'}} \left(\int_0^t \frac{v(s)}{sp} \, ds\right)^{-\frac{1}{p'}} \frac{v(t)}{t^{p'}} \, dt\right)^{\frac{1}{p'}}$$

$$+ \frac{g^{**}(\frac{1}{x})}{x} \left(\int_0^\frac{1}{x} \left(\int_0^t \frac{v(s)}{sp} \, ds\right)^{-\frac{1}{p'}} \frac{v(t)}{t^{p'}} \, dt\right)^{\frac{1}{p'}}$$

$$= \left(\int_{\frac{1}{x}}^\infty (g^{**}(t))^{\frac{1}{p'}} \left(\int_0^t \frac{v(s)}{sp} \, ds\right)^{-\frac{1}{p'}} \frac{v(t)}{t^{p'}} \, dt\right)^{\frac{1}{p'}} + g^{**}(\frac{1}{x}) \left(\int_{\frac{1}{x}}^\infty \frac{v(s)}{sp} \, ds\right)^{-\frac{1}{p'}}.$$

Hence, (21) implies $C(7) \simeq A(20)$ for the optimal $C(7)$.

For the last case, $p = \infty$, which covers the inequalities (8) and (9), we have the following theorem.
Theorem 3.6. Let \(v, w \) be weights, \(v \in \mathcal{V}_\infty \). Let \(g \in L^1 \). Then

(i) For \(0 < q < \infty \), the inequality (8) holds and only if

\[
A_{(22)} := \left(\int_0^\infty \left(\int_0^\infty \frac{g^{**}(t) - g^*(t)}{t \operatorname{ess sup}_{s \in (t, \infty)} v(s)s^{-1}} \, dt \right)^{\frac{q}{q-1}} w(x) \, dx \right)^{\frac{1}{q}} < \infty. \tag{22}
\]

Moreover, the optimal constant \(C_{(8)} \) satisfies \(C_{(8)} \simeq A_{(22)} \).

(ii) The inequality (9) holds if and only if

\[
A_{(23)} := \operatorname{ess sup}_{x > 0} \int_x^\infty \frac{g^{**}(t) - g^*(t)}{t \operatorname{ess sup}_{s \in (t, \infty)} v(s)s^{-1}} \, dt \, w(x) < \infty. \tag{23}
\]

Moreover, the optimal constant \(C_{(9)} \) satisfies \(C_{(9)} \simeq A_{(23)} \).

Proof. Here we use the same technique as in Theorems 3.3 and 3.5. During the process we apply e.g. the result of [17, Proposition 2.7]. We omit the details. \(\square \)

Remark 3.7. In each of the particular settings of the exponents \(p, q \) in Theorem 3.3(i)–(iv), the functionals \(A_{(10)}, \ldots, A_{(15)} \) are r.i. norms of \(g \), with the following exceptions: In (iii) and (iv), if \(0 < q < 1 \), then \(A_{(13)} \) is in general just an r.i. quasi-norm, the same applies to \(A_{(15)} \) in (iv) if \(r < 1 \). Similarly, the functionals \(A_{(19)} \) and \(A_{(20)} \) in Theorem 3.5 are r.i. norms of \(g \). For a detailed proof of this, see e.g. [11, Proposition 5.6].

In Theorem 3.6, the functional \(A_{(23)} \) acting on \(g \in L^1 \) is an r.i. norm of \(g \). The functional \(A_{(22)} \) is, in general, an r.i. quasi-norm, for \(q \geq 1 \) an r.i. norm. Let us prove the claim about \(A_{(22)} \). At first, since \(t \mapsto (\operatorname{ess sup}_{s \in (t, \infty)} v(s)s^{-1})^{-1} \) is nondecreasing, its derivative, which we denote by

\[
\delta(t) := \frac{d}{dt} \operatorname{ess sup}_{s \in (t, \infty)} v(s)s^{-1},
\]

exists and is nonnegative for a.e. \(t \in (0, \infty) \). Let \(x \in (0, \infty) \). Suppose that

\[
\int_x^\infty \frac{g^{**}(t) - g^*(t)}{t \operatorname{ess sup}_{s \in (t, \infty)} v(s)s^{-1}} \, dt < \infty.
\]

Then, by monotonicity of \((\operatorname{ess sup}_{s \in (t, \infty)} v(s)s^{-1})^{-1} \), we have

\[
\frac{g^{**}(t)}{\operatorname{ess sup}_{s \in (t, \infty)} v(s)s^{-1}} = \frac{1}{\operatorname{ess sup}_{s \in (t, \infty)} v(s)s^{-1}} \int_t^\infty \frac{g^{**}(y) - g^*(y)}{y} \, dy \\
\leq \int_t^\infty \frac{g^{**}(y) - g^*(y)}{y \operatorname{ess sup}_{s \in (y, \infty)} v(s)s^{-1}} \, dy \xrightarrow{t \to \infty} 0.
\]
Hence, by partial integration and the previous, we get

\[
\int_{x}^{\infty} g^{**}(t) \delta(t) \, dt = \left[\frac{g^{**}(t)}{\text{ess sup}_{s \in (t, \infty)} v(s) s^{-1}} \right]_{t=x}^{\infty} + \int_{x}^{\infty} \frac{g^{**}(t) - g^*(t)}{t \, \text{ess sup}_{s \in (t, \infty)} v(s) s^{-1}} \, dt
\]

\[
= \int_{x}^{\infty} \frac{g^{**}(t) - g^*(t)}{t \, \text{ess sup}_{s \in (t, \infty)} v(s) s^{-1}} \, dt - \frac{g^{**}(x)}{\text{ess sup}_{s \in (x, \infty)} v(s) s^{-1}} < \infty.
\]

Now assume, on the other hand, that \(\int_{x}^{\infty} g^{**}(t) \delta(t) \, dt < \infty \). Then,

\[
\int_{x}^{\infty} \frac{g^{**}(t) - g^*(t)}{t \, \text{ess sup}_{s \in (t, \infty)} v(s) s^{-1}} \, dt = \frac{g^{**}(x)}{\text{ess sup}_{s \in (x, \infty)} v(s) s^{-1}} + \int_{x}^{\infty} g^{**}(t) \delta(t) \, dt < \infty.
\]

Thus, we see that \(A_{(22)} \) is equal to

\[
\left(\int_{0}^{\infty} \left(\frac{g^{**}(x)}{\text{ess sup}_{s \in (x, \infty)} v(s) s^{-1}} + \int_{x}^{\infty} g^{**}(t) \delta(t) \, dt \right)^{\frac{q}{p}} w(x) \, dx \right)^{\frac{1}{q}}.
\]

This expression is an r.i. quasi-norm of \(g \), for \(q \geq 1 \) it is an r.i. norm. To check this, we refer again to [11].

In the same way as above, we may show that \(A_{(23)} \) is an r.i. norm.

4. Young-type convolution inequalities with the class \(S \)
on the right-hand side

In the previous part we obtained the conditions for boundedness of \(T_g \). Let us now summarize these results and apply them to get the desired convolution inequalities. Note that, in what follows, if we define \(\| \cdot \|_Y \) first, then the space \(Y \) is naturally defined as \(Y := \{ f \in \mathcal{M}(\mathbb{R}); \| f \|_Y < \infty \} \).

Theorem 4.1. Let \(p, q \in (0, \infty] \). Let \(v, w \) be weights, \(v \in \mathcal{V}_p \). For \(g \in L^1 \) define \(\| g \|_Y \) by what follows:

\[
\| g \|_Y := \begin{cases}
A_{(10)} + A_{(11)} & \text{if } 1 < p \leq q < \infty; \\
A_{(10)} + A_{(12)} & \text{if } 0 < p \leq 1, \ 0 < p \leq q < \infty; \\
A_{(13)} + A_{(14)} & \text{if } 1 < p \leq \infty, \ 0 < q < p; \\
A_{(13)} + A_{(15)} & \text{if } 0 < q \leq 1; \\
A_{(19)} & \text{if } 0 < p \leq 1, \ q = \infty; \\
A_{(20)} & \text{if } 1 < p \leq \infty, \ q = \infty; \\
A_{(22)} & \text{if } p = \infty, \ 0 < q < \infty; \\
A_{(23)} & \text{if } p = q = \infty.
\end{cases}
\]

Then
(i) If \(g \in Y \), then \(T_g : \mathcal{S}^p(v) \to \Gamma^q(w) \) and
\[
\|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)} \lesssim \|g\|_Y.
\]
(ii) If \(g \in \text{PSD} \) and \(T_g : \mathcal{S}^p(v) \to \Gamma^q(w) \), then \(g \in Y \) and
\[
\|g\|_Y \lesssim \|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)}.
\]
(iii) The inequality
\[
\|f \ast g\|_{\Gamma^q(w)} \lesssim \|f\|_{\mathcal{S}^p(v)}\|g\|_Y, \quad f \in \mathcal{S}^p(v), \ g \in L^1 \cap Y,
\]
(24)
is satisfied. Moreover, if \(\tilde{Y} \) is any r.i. lattice such that (24) holds with \(\tilde{Y} \) in place of \(Y \), then \(L^1 \cap \tilde{Y} \to L^1 \cap Y \).

Proof. Let us prove the assertions for the case \(1 < p \leq q < \infty \). In the other cases, the only difference is that we work with another appropriate functional \(A(_____) \).

(i) Let \(g \in Y \), thus \(A_{(10)} + A_{(11)} < \infty \). Then, by Theorem 3.3(i), the inequality (6) holds. Thus, from Lemma 3.1(i) it follows that \(T_g : \mathcal{S}^p(v) \to \Gamma^q(w) \) and \(\|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)} \lesssim C(6) \approx \|g\|_Y \).

(ii) Assume that \(g \in \text{PSD} \) and \(T_g : \mathcal{S}^p(v) \to \Gamma^q(w) \). By Lemma 3.2(i), inequality (6) holds and the optimal \(C(6) \) satisfies \(C(6) \lesssim \|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)} \). Theorem 3.1(i) now yields that \(A_{(10)} + A_{(11)} < \infty \), i.e. \(g \in Y \). Moreover, we also get \(\|g\|_Y \approx C(6) \lesssim \|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)} \).

(iii) The inequality (24) follows from (i) and the relation \(\|T_gf\|_{\Gamma^q(w)} \leq \|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)}\|f\|_{\mathcal{S}^p(v)} \). Let us prove the optimality of \(Y \). Assume that \(\tilde{Y} \) is an r.i. lattice such that
\[
\|f \ast g\|_{\Gamma^q(w)} \lesssim \|f\|_{\mathcal{S}^p(v)}\|g\|_{\tilde{Y}}, \quad f \in \mathcal{S}^p(v), \ g \in L^1 \cap \tilde{Y}.
\]
(25)
Let \(h \in L^1 \cap \tilde{Y} \). We can find a function \(g \in L^1 \cap \tilde{Y} \cap \text{PSD} \) such that \(g^* = h^* \). The inequality (25) yields that \(\|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)} \lesssim \|g\|_{\tilde{Y}} \). Thus, \(T_g : \mathcal{S}^p(v) \to \Gamma^q(w) \) and by (ii) it holds \(\|g\|_Y \lesssim \|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)} \). Together we get
\[
\|g\|_Y \lesssim \|T_g\|_{\mathcal{S}^p(v) \to \Gamma^q(w)} \lesssim \|g\|_{\tilde{Y}}.
\]
The functionals \(\|\cdot\|_Y \) and \(\|\cdot\|_{\tilde{Y}} \) are r.i., thus we obtain
\[
\|h\|_Y \lesssim \|h\|_{\tilde{Y}}.
\]
Since \(h \) was chosen arbitrarily, we got the desired embedding \(L^1 \cap \tilde{Y} \to L^1 \cap Y \).

Remark 4.2. For given weights \(v, w \) and exponents \(p, q \), the optimal space \(Y \) may equal \(\{0\} \). (Let us formally consider \(\{0\} \) to be an r.i. space.) In that case, the operator \(T_g \) with a nonnegative kernel \(g \) is bounded between \(\mathcal{S}^p(v) \) and \(\Gamma^q(w) \) if and only if \(g = 0 \) a.e. (cf. [11, Corollary 3.3]).
References

Received October 1, 2013