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Approximation by Polyhedral
G Chains in Banach Spaces

Thierry De Pauw

Abstract. In a Banach space with the metric approximation property, each com-
pactly supported rectifiable G chain whose boundary is rectifiable as well, is approxi-
matable in the flat norm by a polyhedral G chain of nearly the same normal Hausdorff
mass.
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1. Introduction

Integral currents in Euclidean space are strongly approximated by polyhedral
integral currents, according to H. Federer and W. H. Fleming, see e.g. [7, 4.2.20].
Specifically, if Y ∼= `N2 is a Euclidean space, T ∈ In(Y ) and ε > 0, there exist
P ∈Pn(Y ) and a C1 diffeomorphism f : Y → Y such that

sptP ⊆ B(sptT, ε),

N (P − f#T ) < ε,

max{Lip f,Lip f−1} < 1 + ε,

f(x) = x for all x 6∈ B(sptT, ε),

‖f − idY ‖∞ < ε.

One step in proving this consists in showing that the carrying n rectitifable
set A ⊆ Y of the integral current T is well approximated, in a strong sense,
by a C1 submanifold of dimension n, M ⊆ Y , i.e. H n(M 	 A) < ε, and
that M is, locally, the image of a tangent n plane by a C1 diffeomorphism of
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the ambient space which is as close to the identity as one wishes. In turn, the
approximation of A by M relies upon a Lusin type approximation of Lipschitz
maps f : Rn → Y by C1 maps, see [7, 3.1.6] or [6, 6.6.1]. The proof of this boils
down to the Whitney Extension Theorem (see e.g. [15] or [13, Chapter VI]) and
Rademacher Theorem (see e.g. [6, 3.1.2] or [7, 3.1.6]).

In this paper we address the problem of approximating rectifiable G chains
in a Banach space Y by polyhedral G chains, i.e. we replace the coefficient
group Z by a general complete normed Abelian group G, and we replace the
ambient space `N2 by a general Banach space Y . We work in the context set up
in [4]. Unless Y has the Radon-Nikodym property, a Lipschitz map f : Rn → Y
need not be differentiable anywhere. In fact, the Radon-Nikodym property of
Y is equivalent to the Lusin type approximation property of f by a C1 map.
This means we cannot expect the above approximation to hold at that level of
generality.

Here is a classical example illustrating what can go wrong with the differ-
entiability of Lipschitz maps. We let n = 1 and Y = L1[0, 1], and we consider
f : [0, 1]→ Y : t→ 1[0,t]. One checks that Lip f = 1 and that f is differentiable
nowhere. Yet we seek a polyhedral approximation of the chain T = f#[[0, 1]].
Recalling that M (T ) = H 1(f([0, 1])) is simply the variation V 1

0 f of the map f ,
we readily find a polygonal line P with the same endpoints as T , with M (P )
as close as we please to M (T ), and with sptP contained in a small tubular
neighborhood of sptT . In fact P is simply obtained as P = f̂#[[0, 1]], con-
sidering a fine partition I1, . . . , Iκ of the domain [0, 1] and defining a PL map
f̂ : [0, 1] → Y that coincides with f at the endpoints of the Ik. Our goal is to
extend the scope of this observation.

In case n > 2, V is an n dimensional Banach space, B ⊆ V is a bounded
Borel set, and f : B → Y is an injective Lispchitz map with max{Lip f,Lip f−1}
nearly equal to 1, we ought to approximate the chain T = f#(g · [[B]]), g ∈ G,
by a polyhedral chain P . In case B itself is a polyhedron one can consider
simplicial subdivisions K of B and the corresponding PL approximation f̂ of f.
One classical trap here is that if the simplexes of which K consists are too
thin then M (f̂#(g · [[B]])) may by far exceed M (T ) (recall H. A. Schwarz’
accordeon [12] and see the definition of the shape of a simplex before Lemma 3.1,
and Proposition 3.2 for a relevant estimate which is common practice in finite
elements method for instance). Now if B is merely a Borel set then one first
needs to approximate it by a polyhedron S, possibly from the outside, and
hence extend f as well. Such extension f̃ indeed exists (use the usual Whitney
cube procedure, see e.g. [13, Chapter VI]) but in general Lip f̃ 6 c(dimV ) Lip f
with c(dimV ) much larger than 1. Therefore S must not wander too much
outside of B: relevant technicalities are taken care of in Theorem 3.3. Use of
the homotopy formula then yields a polyhedral approximation P ∈ Pn(Y ;G)
such that: M (P ) < ε + M (T ); sptP ⊆ B(sptT, ε) and F (P − T ) < ε. The
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latter means that P and T are nearly homologous in a “small way”, i.e. that
the equality P − T = ∂R nearly holds for some R, with M (R) < ε, specifically
that M (P − T − ∂R) < ε.

Now if T ∈ Rn(Y ;G) is a general n dimensional rectifiable G chain, then
T =

∑∞
i=1 Ti where the sum is mass convergent and each Ti is of the type

considered in the previous paragraph. Thus Ti is nearly some polyhedral Pi.
Choosing a large integer N one can thus approximate T in the sense above
by a polyhedral P =

∑N
i=1 Pi. However each Pi contributes, possibly a lot,

to ∂P , so that M (∂P ) will in general be much larger than M (∂T ). In order to
remedy this problem one then wants to fill in the gaps T −

∑N
i=1 Pi. In case Y

is finite dimensional, the technique used in [7, 4.2.20] consists in applying the
Deformation Theorem (see [7, 4.2.9] and [14]). This result does not hold when Y
is infinite dimensional, but according to the principle developed in the Appendix
(see Theorem A.1), it very nearly does – in an appropriate sense – when Y has
the metric (or bounded) approximation property and sptT is assumed to be
compact. As an illustration of this principle, the Appendix also contains a
compactness theorem that applies to showing existence for a Plateau problem
in the separable Hilbert space.

Technical variations of this theme applied to both ∂T and a slight modifi-
cation of T then yield our main

Theorem. Assume the Banach space Y has the metric approximation property,
T ∈ Rn(Y ;G) is so that ∂T ∈ Rn−1(Y ;G) and sptT is compact, and let ε > 0.
There then exists P ∈Pn(Y ;G) such that

(A) M (P ) < ε+ M (T )

(B) M (∂P ) < ε+ M (∂T )

(C) F (T − P ) < ε

(D) sptP ⊆ B(sptT, ε).

2. Preliminaries

In the remaining part of this paper we let V and Y be Banach spaces, with
n = dimV < ∞. Furthermore (G, | · |) denotes a complete normed Abelian
group.

2.1. Rectifiable G chains. For the definition of Rn(Y ;G), whose members
are called n dimensional rectifiable G chains in Y , we refer to [4]. Here we recall
(see [4, §3.6]) that such T ∈ Rn(Y ;G) is characterized as an H n equivalence
class of a pair (A,g) where A ⊆ Y is a Borel n rectifiable subset of Y and g
is a G valued orientation of A such that |g| ∈ L1(H n A). We abbreviate
this by writing T = H n A ∧ g. This means that at H n almost every x ∈ A
where an n dimensional approximate tangent space Wx of A is defined, g(x) is a
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choice of a G valued orientation of Wx, i.e. an equivalence class of a pair (O, g)
where O is an orientation of Wx and g ∈ G\{0} (the equivalence relation being
(O, g) ∼= (−O,−g)). Furthermore g(x) depends on x in a Borel way (this is
conveniently stated in [4] in terms of almost parametrizations of A), and |g(x)|
is the norm of the coefficient g in g(x) = (O, g). Corresponding to T we define
a finite measure ‖T‖ in Y (denoted µT in [4]) by ‖T‖ = |g| ·H n A. When
g = g is constant and A has a canonical orientation, we also use the notation
g · [[A]]. This is the case for instance when A ⊆ Rn is given the orientation of
Rn, and when σ ⊆ Y is an oriented n-simplex.

2.2. Lipschitz extensions. If A ⊆ V and f : A → Y is Lipschitz then H.
Whitney’s construction of an extension of f by means of so-called Whitney
cubes (see [15] where both V and Y are Euclidean) applies verbatim in the
present case, as has been reported in [8]. Thus there exists a Lipschitz map
f̃ : V → Y such that f̃ �A= f and Lip f̃ 6 c2.0(n) Lip f .

2.3. Piecewise linearity. Our reference for elementary statements regarding
simplicial complexes and PL maps is [11]. A cell in V is a bounded set which
is the finite intersection of closed half spaces. Each cell is the convex hull of
its finitely many extreme points, called its vertices. An n-simplex has n + 1
vertices x0, x1, . . . , xn such that x1−x0, . . . , xn−x0 are linearly independent. A
polyhedron is a finite union of cells. Each polyhedron is the set |K| of a simplicial
complex K (see e.g. [11, Theorem 2.11]). The n skeleton of K is denoted K(n).
A PL map is a map f : |K| → Y where K is a simplicial complex, subject to
the requirements that (a) f is continuous, and (b) each restriction f �σ, σ ∈ K,
is affine.

2.4. Jacobians. Here we recall a particular case of the area formula, [1]. If W
is a Banach space with k = dimW < ∞, and f : W → Y is Lipschitz, then f
is metrically differentiable at H k almost every x ∈ W , [9, Theorem 2]. We
denote its metric differential at x by mdfx. This is a seminorm on W defined
by the requirement that

‖f(x+ h)− f(x)‖Y = (mdfx)(h) + o(‖h‖W ),

h ∈ W . Its Jacobian is defined as

(Jkf)(x) = Jk(mdfx) =
H k(W ∩ {‖ · ‖W 6 1})
H k(W ∩ {mdfx 6 1})

.

Since readily (mdfx)(h) 6 (Lip f)‖h‖W it follows that (Jkf)(x) 6 (Lip f)k.
Now if A ⊆ W is Borel then∫

Y

card(A ∩ f−1{y})dH k(y) =

∫
A

(Jkf)(x)dH k(x). (1)



Approximation by Polyhedral Chains 315

2.5. Jacobian of a map of two variables. We consider a map f : V1×V2 → Y
where V1, V2, Y are Banach spaces with m1 =dimV1<∞ and m2 =dimV2<∞.
We claim that for H m1 almost every x1 ∈ V1 and H m2 almost every x2 ∈ V2,
f is metrically differentiable at (x1, x2), the map V2 → Y : ξ2 7→ f(x1, ξ2) is
metrically differentiable at x2, the map V1 → Y : ξ1 7→ f(ξ1, x2) is metrically
differentiable at x1, and

(Jm1+m2f)(x1, x2) 6 c2.0(m1,m2)(Jm1f �V1×{x2})(x1) · (Jm2f �{x1}×V2)(x2). (2)

The first part of our claim follows from 2.4 and Fubini’s Theorem, since H m1⊗
H m2 and H m1+m2 are both Haar measures on V1×V2. The specific value of the
Jacobian (Jm1+m2f)(x1, x2) depends on the choice of a norm on V1×V2, but since
these are all equivalent, the upper bound above doesn’t depend on such choice
(it is implemented in the constant c2.0(m1,m2)). Letting ‖·‖V1 and ‖·‖V2 be the
norms of V1 and V2, we henceforth assume that V1×V2 is equipped with the norm
‖(h1, h2)‖ = max{‖h1‖V1 , ‖h2‖V2}. We next observe that im f is separable, thus
isometrically isomorphic as a metric space to a subset of `∞(N) (see e.g. [1, end
of §2]). Since the metric differential is invariant under such isometry, we may
as well assume Y = `∞(N). The latter being the dual of a separable space, f is
weakly* differentiable almost everywhere and mdfx(h) = ‖wdfx(h)‖ according
to [1, Theorem 3.5]. It follows that the proof of (2) reduces to the case when
f = L is linear. Our choice of a norm ‖ · ‖ on V1 × V2 readily implies that
H m1 ⊗H m2 = H m1+m2 . Furthermore, if we let L1 : V1 → Y : h1 → L(h1, 0)
and L2 : V2 → Y : h2 → L(0, h2) then L(h1, h2) = L1(h1)+L2(h2) and therefore
(V1×V2)∩{‖L‖ 6 1} ⊇ (V1∩{‖L1‖V1 6 1/2})× (V2∩{‖L2‖V2 6 1

2
}). It ensues

that

H m1+m2{‖ · ‖ 6 1}
H m1+m2{‖L‖ 6 1}

=
H m1(‖ · ‖V1 6 1}) ·H m2({‖ · ‖V2 6 1})

H m1+m2{‖L‖ 6 1}

6
H m1(‖ · ‖V1 6 1}) ·H m2({‖ · ‖V2 6 1})

H m1({‖L1‖V1 6 1
2
}) ·H m2({‖L2‖V2 6 1

2
})

6 2m1+m2(Jm1L1)(Jm2L2).

2.6. Homotopy formula. Here f0, f1 : V → Y are Lipschitz maps. We
consider the affine homotopy

H : [0, 1]× V → Y : (t, x) 7→ f0(x) + t(f1(x)− f0(x)).

If T ∈ Rk(V ;G), 0 6 k 6 m, then

f1#T − f0#T = ∂H#([[0, 1]]× T ) +H#([[0, 1]]× ∂T ) (3)

where the Cartesian product of [[0, 1]] and a chain in V is a chain in R × V
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defined in the obvious way. In order to prove (3) we compute ∂H#([[0, 1]]×T ) =
H#∂([[0, 1]]×T ) and we obtain the formula ∂([[0, 1]]×T ) = [[1]]×T − [[0]]×T −
[[0, 1]]×∂T first in the case when T is a Lipschitz chain, reasoning as in [4, §5.1],
and in the general case by mass approximation. In order to complete the proof
of (3) on then notices that H#([[j]] × T ) = fj#T because H(j, x) = fj(x),
j = 0, 1, so that [4, Proposition 5.5.2(1)] applies.

In order to estimate the flat norm of f1#T − f0#T we will next refer to 2.5
to find an upper bound for J1+kH(t, x). Given (t, x) we put Ht(x) = H(t, x) =
Hx(t). If H, Ht and Hx are metrically differentiable respectively at (t, x), x
and t, then

(J1Ht)(x) 6 LipHt 6 ‖f1(x)− f0(x)‖
and

(JkHx)(t) 6 (LipHx)
k 6 (tLip f1 + (1− t) Lip f0)

k 6 max{Lip f0,Lip f1}k.

Thus

(J1+kH)(t, x) 6 c2.5(1, k) max{Lip f0,Lip f1}k‖f1(x)− f0(x)‖

according to 2.5. We now apply the area formula (1) to find out that

M (H#([[0, 1]]× T ))6
∫
R×V

(J1+kH)(t, x)d(L 1 ⊗ ‖T‖)(t, x)

6c2.5(1, k) max{Lip f0,Lip f1}k
∫
V

‖f1(x)−f0(x)‖d‖T‖(x).

Applying this formula to both T and ∂T we thus obtain

F (f1#T − f0#T ) 6 c2.0(k,Lip f0,Lip f1)

(
sup

x∈sptT
‖f1(x)− f0(x)‖

)
N (T ), (4)

where

c2.0(k,Lip f0,Lip f1)=c2.5(1, k) max
{
(Lip f0)

k,(Lip f1)
k,(Lip f0)

k−1,(Lip f1)
k−1}.

3. Approximating Lipschitz maps by PL maps

If f : V → Y and σ is an n-dimensional simplex in V we let

A(σ, f) : σ → Y

be the affine map that coincides with f on the vertices of σ. Thus if x ∈
σ = co{x0, x1, . . . , x,} has barycentric coordinates t1, . . . , tn ∈ R+,

∑n
i=0 ti = 1,

x =
n∑
i=0

tixi
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then

A(σ, f)(x) =
n∑
i=0

tif(xi).

We observe that

‖A(σ, f)(x)− f(x)‖ =

∥∥∥∥∥
n∑
i=0

tif(xi)−
n∑
i=0

tif(x)

∥∥∥∥∥
6

n∑
i=0

ti‖f(xi)− f(x)‖

6 diam f(σ).

Therefore if f is continuous and if σ is small then A(σ, f) is a good approxima-
tion of f �σ in the norm ‖ · ‖∞. In particular, if f is Lipschitz then

‖A(σ, f)− f �σ ‖∞ 6 (Lip f)(diamσ). (5)

In case K is a simplicial complex in V we put

meshK = max{diamσ : σ ∈ K(n)}.

Now if we define

A(K, f) : |K| → Y

to coincide with A(σ, f) on each σ ∈ K(n), we notice that A(K, f) is a PL map.
We infer from (5) that

‖A(K, f)− f �|K| ‖∞ 6 (Lip f)(meshK). (6)

If 〈Kj〉j is a sequence of successive subdivisions of K such that limj mesh(Kj)=0
then limj ‖A(Kj, f) − f �|K| ‖∞ = 0. To find such a sequence we may use, for
instance, barycentric subdivisions. If no further restriction is imposed upon Kj,
however, it may happen that limj LipA(Kj, f) =∞ (recall [12]). In the remain-
ing part of this section, we explain how to avoid this obstacle.

We define the shape of an n-dimensional simplex σ in Euclidean space `n2
by the formula

shapeσ =
L n(σ)

(diamσ)n
.

Shape appears (under the name of fullness) in the following computation taken
from H. Whitney’s [16, Ch. IV Lemma 15b(2)]. We denote by

· the Eu-
clidean norm of `n2 .
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Lemma 3.1. Let σ be an n-simplex in `n2 , and let u1, . . . , un be independent
unit vectors parallel to the edges of σ. It follows that for every a1, . . . , an ∈ R
the following holds: 

n∑
i=1

aiui

 > (n!)(shapeσ) max
i=1,...,n

|ai|.

Proof. We start by recalling that L n(co{0, e1, . . . , en}) = (n!)−1, according to
Fubini’s Theorem applied inductively on n. Considering σ = co{x0, x1, . . . , xn}
as the affine image of co{0, e1, . . . , en} by a map A such that A(ei) = x0 + vi,
vi = xi − x0, i = 1, . . . , n, we infer that

L n(σ) =
1

(n!)

v1 ∧ · · · ∧ vn (7)

where
v1 ∧ · · · ∧ vn denotes the absolute value of the determinant of the

matrix DA whose rows contains the coordinates of the edges v1, . . . , vn.

We now show that
n∑
i=1

aiui

 > u1 ∧ · · · ∧ un max
i=1,...,n

|ai|. (8)

This will establish the lemma since

u1 ∧ · · · ∧ un =

v1 ∧ · · · ∧ vnv1 · · ·vn > (n!)L n(σ)

(diamσ)n
> (n!)(shapeσ)

in view of (7). We prove (8) by reductio ad absurdum. Assuming if possible that
the reverse inequality holds, we write a = |an| = maxi=1,...,n |ai| (renumbering
the ai’s if necessary) and we define

w = b1u1 + · · ·+ bn−1un−1 + anun

where the coefficients b1, . . . , bn−1 are chosen so as to minimize
w. Then,

w 6 
n∑
i=1

aiui


< a

u1 ∧ · · · ∧ un
=
u1 ∧ · · · ∧ un−1 ∧ w

6
u1 · · ·un−1 .

w =
w,

a contradiction.
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In the finite dimensional Banach space V we consider an Auerbach system
e1, . . . , en, e

∗
1, . . . , e

∗
n, chosen once for all. This means that e1, . . . , en are unit

vectors in V , that e∗1, . . . , e
∗
n are unit covectors in V ∗ and that e∗j(ei) = δi,j, the

Kronecker symbol, i, j = 1, . . . , n. We then consider a Euclidean structure on
V defined in order that e1, . . . , en is a Euclidean basis, and we denote by

·
the corresponding Euclidean norm. One easily checks that

1√
n
‖x‖ 6 x 6 √n‖x‖ (9)

for every x ∈ V . Both inequalities are based on the relation e∗i (x) = 〈x, ei〉,
i = 1, . . . , n. The first one follows from the triangle inequality applied to ‖x‖ =
‖
∑

i e
∗
i (x)ei‖, and comparing the norms of `n1 and `n2 . The second one follows

from evaluating x∗ =
∑

j e
∗
j(x)e∗j at x, and the inequality ‖x∗‖ 6 n‖x‖.

In the next result, shape σ refers to the shape of the simplex with respect
to the Euclidean structure of V , associated with the chosen Auerbach basis
e1, . . . , en. Furthermore |||L||| denotes the operator norm of a linear map L :
V → Y . Finally we recall that the oscillation of Dg on a subset S ⊆ V is
defined by

osc(Dg;S) = sup{|||Dg(x)−Dg(x′)||| : x, x′ ∈ S}.

Proposition 3.2. Assume g : V → Y is continuously differentiable, σ is an
n-dimensional simplex in V , and x0 is a vertex of σ. It follows that

|||DA(σ, g)−Dg(x0)||| 6 c3.0(n)

(
osc(Dg;σ)

shapeσ

)
.

Proof. We let x0, x1, . . . , xn be a numbering of the vertices of σ (the first one
of which being that appearing in the statement of the proposition). We also
let vi = xi − x0 be the edges of σ, and ui =

vi−1 vi be the corresponding
Euclidean unit vectors, i = 1, . . . , n. Writing x ∈ σ in barycentric coordinates,
x =

∑n
i=0 tixi, we infer that

A(σ, g)(x) = g(x0) +
n∑
i=1

ti(g(xi)− g(x0)) = g(x0) + L(x− x0)

where the second equality defines the linear part L : V → Y of A(σ; g), i.e.
L = DA(σ; g). We note that

‖L(vi)−Dg(x0)(vi)‖ = ‖g(xi)− g(x0)−Dg(x0)(vi)‖

=

∥∥∥∥∫ 1

0

(Dg(x0 + t(xi − x0))(vi)−Dg(x0)(vi)) dL
1(t)

∥∥∥∥
6 osc(Dg;σ)‖vi‖
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Now if u =
∑n

i=1 aiui then

‖L(u)−Dg(x0)(u)‖ =

∥∥∥∥∥
n∑
i=1

ai
vi−1(L(vi)−Dg(x0)(vi)

)∥∥∥∥∥
6

n∑
i=1

|ai|
vi−1 ‖vi‖ osc(Dg;σ)

6 n

(
max
i=1,...,n

|ai|
)√

n osc(Dg;σ)

6
n

3
2
u osc(Dg;σ)

(n!)(shapeσ)

6

(
n2

n!

)(
osc(Dg;σ)

shapeσ

)
‖u‖,

according to (9) and Lemma 3.1.

Theorem 3.3. Assume that

(A) f : V → Y is Lipschitz;

(B) B ⊆ V is a nonnegligible bounded Borel set;

(C) U ⊇ B is open and bounded;

(D) ε > 0.

There then exists a polyhedron S in V such that

(E) S ⊆ U and H n(S 	B) < ε;

and there exists η0 > 0 with the following property. For every 0 < η 6 η0 there
exist a simplicial complex Kη and a PL map f̂η : |Kη| → Y such that

(F) |Kη| = S;

(G) ‖f̂η − f �S ‖∞ 6 η;

(H) K
(n)
η = Kg ∪Kb where

(i) For every σ ∈ Kg one has Lip(f̂η �σ) < ε+ Lip(f �B);

(ii) H n(∪Kb) < ε and for every σ ∈ Kb one has Lip(f̂η �σ) < ε+ Lip f .

Proof. We consider dyadic cubes in V relative to the Auerbach system e1, . . . , en
chosen before Proposition 3.2. There exists a set S which is a finite union of
dyadic cubes and has the following properties: S ⊆ U and

H n(S 	B) <
ε

2
. (10)

This S is the polyhedron in conclusion (E).
We choose a mollifier function ϕ : V → R of class C1 such that ϕ > 0,

suppϕ ⊆ V ∩ {x : ‖x‖ 6 1}, and
∫
V
ϕdH n = 1. Given r > 0 we then
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let ϕr(x) = r−nϕ(r−1x), x ∈ V . We use Bochner integration to define the
convolution product

fr(x) :=

∫
V

ϕr(x− ξ)f(ξ)dH m(ξ) =

∫
V

ϕr(ξ)f(x− ξ)dH m(ξ),

upon noticing that the integrand is indeed strongly measurable (i.e. the limit H n

a.e. of a sequence of simple maps), see [5, Chapter 2]. It is easy to see that
‖f − fr‖∞ 6 r Lip f , that fr is of class C1, and that Lip fr 6 Lip f .

We let

B1 = B ∩
{
x : lim

r→0+

H n(B ∩B(x, r))

H n(B(x, r))
= 1

}
,

so that H n(B\B1) = 0, according to the Lebesgue Density Theorem. For β > 0
to be determined momentarily, Egoroff’s Theorem guarantees the existence of a
compact subset C ⊆ B1 such that H n(B1 \C) < β, and the existence of r0 > 0
such that

H n(B ∩B(x, r)) > (1− β)H n(B(x, r)) (11)

for every x ∈ C and every 0 < r 6 r0. For the remaining part of this proof we
assume 0 < r 6 r0. Given x ∈ V we put Gx = B(0, r) ∩ {ξ : x− ξ ∈ B}. Since
readily x−Gx = B ∩B(x, r), we infer from (11) that

H n(B(0, r) \ (Gx ∩Gx′)) < 2βH n(B(0, r))

whenever x, x′ ∈ C. In that case,

‖fr(x)− fr(x′)‖

=

∥∥∥∥∫
V

ϕr(ξ)
(
f(x− ξ)− f(x′ − ξ)

)
dH n(ξ)

∥∥∥∥
6

∥∥∥∥∥
∫
Gx∩Gx′

ϕr(ξ)
(
f(x− ξ)− f(x′ − ξ)

)
dH n(ξ)

∥∥∥∥∥
+

∥∥∥∥∥
∫
B(0,r)\(Gx∩Gx′ )

ϕr(ξ)
(
f(x− ξ)− f(x′ − ξ)

)
dH n(ξ)

∥∥∥∥∥
6 ‖x− x′‖(Lip f �B) + ‖x− x′‖(Lip f)r−n(supϕ)2βH n(B(0, r))

6 ‖x− x′‖
(

(Lip f �B) + 2β(Lip f)(supϕ)H n(B(0, 1))

)
.

It is now clear how to choose β small enough so that C and fr have the following
properties.

H n(B \ C) <
ε

2
(12)

and
Lip(fr �C) <

ε

3
+ Lip(f �B) (13)
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for every 0 < r 6 r0. In order to apply the above inequality later, we note that
if x is a Lebesgue point of C then |||Dfr(x)||| 6 Lip(fr �C).

Given 0 < r 6 r0 we define

ωr(δ) = sup {|||Dfr(x)−Dfr(x′)||| : x, x′ ∈ ClosU and ‖x− x′‖ 6 δ} .

We next choose δr > 0 small enough for

ωr(δr) <
ε

3
min

{
1,

s(n)

c3.2(n)

}
where s(n) > 0 will be determined momentarily.

Now we choose a decomposition S = ∪jQj into finitely many dyadic
cubes Qj, all of a same generation, so that diamQj < min{δr, r}. We let Kr

denote the simplicial complex obtained from the complete barycentric subdivi-
sion of each of these cubes Qj. The simplexes used are clearly all homothetic to
those belonging to the complete barycentric subdivision of the unit cube, and
therefore there exists s(n) > 0 such that shape(σ) > s(n) for all σ ∈ K(n)

r (the
shape of a simplex is defined relative to the Euclidean structure of V for which
the Auerbach system e1, . . . , en is an orthonormal basis).

We consider the PL map f̂r = A(Kr, fr). Recall that meshKr < r, therefore

‖f̂r − f �S ‖∞ 6 ‖A(Kr, fr)− fr �S ‖∞ + ‖fr − f‖∞ 6 2r Lip f,

according to (6). Up to a change of parameter η = 2r Lip f we note that
conclusions (F) and (G) are satisfied.

Furthermore, for each σ ∈ K(n)
r , if x0 is a vertex of σ, we infer from Propo-

sition 3.2 that

|||DA(σ, fr)−Dfr(x0)||| 6 c3.2(n)

(
osc(Dfr;σ)

shapeσ

)
6

c3.2(n)ωr(δr)

s(n)
<
ε

3
. (14)

We let C1 = C ∩ {x : Θn(H n C, x) = 1} and we decompose K
(n)
r = Kg ∪Kb

where
Kg = K(n)

r ∩ {σ : σ ∩ C1 6= ∅}

and
Kb = K(n)

r \Kg.

If σ ∈ Kg there exists x′0 ∈ C1 such that ‖x0 − x′0‖ < δr. Thus, referring to
(13) and (14), we obtain LipA(σ, fr) = |||DA(σ, fr)||| < ε

3
+ |||Dfr(x0)||| 6

ε
3

+ωr(δr)+ |||Dfr(x′0)||| 6 ε
3

+ ε
3

+Lip(fr �C) 6 ε+Lip(f �B). Conclusion (H)(i)
is now established. Furthermore,

H n(∪Kb) 6H n(S \ C1) 6H n(S \B) + H n(B \ C) < ε
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according to (12) and (10). If σ ∈ K(n) and x0 is a vertex of σ then

LipA(σ, fr) = |||DA(σ, fr)||| <
ε

3
+ |||Dfr(x0)||| 6

ε

3
+ Lip fr 6

ε

3
+ Lip f.

This completes the proof.

One technical point of Theorem 3.3 is that the Lipschitz constant of the
approximating PL map f̂ outside of B (but close to B) is nearly not larger than
the Lipschitz constant of f in B (in general |K| will not be contained in B). If
one relaxes this request then the proof simplifies. The following version may be
of independent interest.

Theorem 3.4. Assume that

(A) f : V → Y is Lipschitz;

(B) K is a simplicial complex in V ;

(C) ε > 0.

There then exists a simplicial map f̂ : |K| → Y such that

(D) ‖f̂ − f �|K| ‖∞ < ε;

(E) Lip f̂ < ε+ Lip f .

Since we will not use this result in the present paper, we merely sketch
its proof. We start by replacing the polyhedron |K| by its convex hull S0. It
is itself a polyhedron, and admits a simplicial decomposition K0. The point
is that there exists a sequence 〈Kj〉j of simplicial decompositions of S0, all
being refinements of both K and K0, and so that limj mesh(Kj) = 0 as well as
infj shape(Kj)>0, see [16, Appendix 2 §4]. Thus limj ‖A(Kj, frj)−f �|K0| ‖∞=0,
and an application of Proposition 3.2 shows that LipA(σ, frj) < εj + Lip f for

all σ ∈ K(n)
j . Since S0 is convex one can replace σ by Kj in the last inequality.

4. Approximating rectifiable chains by polyhedral chains

Theorem 4.1. Assume that ε > 0 and

(A) B ⊆ V is a bounded Borel subset;

(B) f : B → Y is Lipshitz;

(C) β > 0 and (1 +β)−1‖x−x′‖ 6 ‖f(x)− f(x′)‖ 6 (1 +β)‖x−x′‖ whenever
x, x′ ∈ B;

(D) g ∈ G.

There then exists a simplicial complex K in V and a PL map f̂ : |K| → Y such
that on letting T = f#(g · [[B]]) and P = f̂#(g · [[|K|]]) the following hold:

(E) M (P ) < ε+ (1 + 2β)2mM (T );

(F) F (P − T ) < ε;

(G) sptP ⊆ B(sptT, ε).
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Proof. We start by extending f to the whole of V , using the same symbol f
for such extension (see 2.2). We apply Theorem 3.3 with U = U(B, ε

2
(Lip f)−1)

and some ε̂ to be determined in the course of the present proof. We thus
obtain a polyhedron S ⊆ U(B, ε

2
(Lip f)−1) such that H n(S 	 B) < ε̂. We

define P0 = g · [[S]] ∈ Pn(V ;G) and T0 = g · [[B]] ∈ Rn(V ;G). The simplicial
complex K and the PL map f̂ of our conclusion will be the Kη and f̂η given by
Theorem 3.3, corresponding to some η sufficiently small.

We start by observing that

M (T ) = |g|H n(f(B)) > |g|(1 + β)−nH n(B). (15)

Furthermore, since |Kη| = S we have f̂η#P0 =
∑

σ∈K(n) f̂η#(g ·[[σ]]). It therefore
ensues from conclusions (E) and (H) of Theorem 3.3, and from (15), that

M
(
f̂η#P0

)
6
∑
σ∈Kg

M
(
f̂η#(g · [[σ]])

)
+
∑
σ∈Kb

M
(
f̂η#(g · [[σ]])

)
< (ε̂+ Lip(f �B))n |g|

∑
σ∈Kg

H n(σ) + (ε̂+ Lip f)n |g|
∑
σ∈Kb

H n(σ)

6 (ε̂+ 1 + β)n |g|H n(S) + (ε̂+ Lip f)n |g|H n(Kb)

6 (ε̂+ 1 + β)n |g| (ε̂+ H n(B)) + (ε̂+ Lip f)n |g|ε̂
6 (ε̂+ 1 + β)n (ε̂|g|+ (1 + β)nM (T )) + (ε̂+ Lip f)n |g|ε̂.

It should now be obvious how to choose ε̂ sufficiently small – depending upon
β, |g|, Lip f , H n(B) and ε –, in order that

M
(
f̂η#P0

)
< ε+ (1 + 2β)2nM (T ).

In other words, conclusion (E) will be verified for each 0 < η 6 η0.
We notice that conclusion (G) is verified for every 0 < η 6 ε

2
. Indeed, it

follows from Theorem 3.3(G) that

sptP ⊆ f̂η(S) ⊆ B[f(S), η] ⊆ B
[
f(B), η +

ε

2

]
⊆ B[sptT, ε].

Finally we show that conclusion (F) is verified if η is sufficiently small. We
consider the affine homotopy Hη(t, x) = f(x)+ t(f̂η(x)−f(x)) and we apply (4)
together with Theorem 3.3(G) to obtain

F
(
f̂η#P0 − f#P0

)
6 c2.6(n,Lip f̂η,Lip f)N (P0)η.

Since also

M (f#P0 − f#T0) 6 (Lip f)nH n(S 	B) 6 (Lip f)nε̂,

it should now be obvious how to choose ε̂ and η so that conclusion (F) holds.
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From now on, let n > 2.

Theorem 4.2. Assume that T ∈ Rn(Y ;G) and ε > 0. There then exists
P ∈Pn(Y ;G) subject to the following requirements.

(A) M (P ) < ε+ M (T );

(B) F (P − T ) < ε;

(C) sptP ⊆ B(sptT, ε);

(D) If ∂T ∈ Pn−1(Y ;G), sptT is compact and Y is finite dimensional, then
P can be chosen so that ∂P = ∂T , and conclusion (B) can be strengthen
to P − T = ∂Z for some Z ∈ Rn+1(Y ;G) such that

(i) M (Z) < ε;

(ii) sptZ ⊆ B(sptT, ε);

(E) If ∂T ∈ Pn−1(Y ;G), sptT is compact and Y has the metric approxima-
tion property, then P can be chosen so that M (∂P ) 6 M (∂T ), and in
case ∂T = 0 conclusion (B) can be strengthen to P − T = ∂Z for some
Z ∈ Rn+1(Y ;G) such that

(i) M (Z) < ε;

(ii) sptZ ⊆ B(sptT, ε);

Proof. We choose β > 0 sufficiently small for

(1 + 2β)2nM (T ) < ε̂+ M (T ).

Recalling 2.1 we associate with T a Borel n rectifiable set A ⊆ Y and a Borel G
valued orientation g of A such that T = H n A∧g and ‖T‖ = |g|·H n A. We
represent T as an n dimensional parametrized G chain [γ,Ei, g], using an almost
bilipschitz parametrization of A, as in [4, §3.2]. We apply Lusin’s Theorem
[7, 2.3.5] to finitely many of the γ �Ei to find a closed set C ⊆ ∪iEi such
that g �C is continuous and ‖T‖(A \ γ(C)) < ε̂ where ε̂ will be determined in
the course of this proof.

We further decompose γ(C) = N ∪ (∪∞i=1Ai), where each Ai is Borel, the
oscillation of g on each Bi = γ−1(Ai) doesn’t exceed ε̂ infBi |g|, H n(N) = 0,
and for each i = 1, 2, . . . there exists an n dimensional Banach space (Vi, ‖ · ‖i)
and a Lipschitz map fi : Bi → Y such that Ai = fi(Bi) and (1+β)−1‖x−x′‖i 6
‖fi(x)−fi(x′)‖ 6 (1+β)‖x−x′‖i. That such a decomposition be possible follows
from the definition of n rectifiability and [1, Lemma 5.2 and Theorem 8.2]. We
also choose xi ∈ Ai and we let gi ∈ G be so that fi#(gi ·[[Bi]]) = H n Ai∧g(xi).
Therefore

M (fi#(gi · [[Bi]])− T Ai) 6 ε̂M (T Ai). (16)

We now apply Theorem 4.1 to 2−iε̂, fi, Vi, Bi, β and gi. We obtain a polyhe-
dron Si ⊆ Vi, a simplicial complex Ki such that |Ki| = Si, a PL map f̂i : Si → Y
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with the following properties. Letting Pi = f̂i#(gi · [[Si]]) ∈Pn(Y ;G),

M (Pi) < 2−iε̂+
(
(1 + 2β)2n + ε̂

)
M (T Ai)

F (Pi − T Ai) < 2−iε̂+ ε̂M (T Ai)

sptPi ⊆ B(spt(T Ai), 2
−iε̂),

according to Theorem 4.1(E)–(G), and (16).
We choose an integer N large enough for

M

(
T −

N∑
i=1

T Ai

)
< ε̂+ ‖T‖(A \ C) < 2ε̂. (17)

We claim that P =
∑N

i=1 Pi satisfies our conclusions (A)–(C). Indeed, M (P ) 6∑N
i=1 M (Pi)6

∑N
i=1

[
2−iε̂+((1+2β)2n+ε̂) M (T Ai)

]
6 ε̂+

(
ε̂+M (T )

)
+ ε̂M (T )

6 ε + M (T ), provided ε̂ is chosen small enough according to ε and M (T ).
Furthermore,

F (P − T ) 6 F

(
N∑
i=1

Pi − T Ai

)
+ M

(
T −

N∑
i=1

T Ai

)

6
N∑
i=1

[
2−iε̂+ ε̂M (T Ai)

]
+ 2ε̂

6 ε̂+ ε̂M (T ) + 2ε̂

< ε

provided ε̂ is chosen small enough. Finally,

sptP ⊆ ∪Ni=1 sptPi ⊆ ∪Ni=1B(spt(T Ai), 2
−iε̂) ⊆ B(sptT, ε̂).

We now turn to proving conclusion (D). The proof will consist in modifying
the polyhedral G chain P obtained above, according to the Deformation Theo-
rem [14]. To this end we suppose that the P obtained so far verifies conclusions
(A)–(C) with some ε̃ instead of ε, which will be chosen small according to var-
ious quantities including dimY . Since F (P − T ) < ε̃ and d = dimY < ∞
we infer from the definition of flat norm and the fact that Y is an absolute
c(d)-Lipschitz retract that there are Q ∈ Rn(Y ;G) and R ∈ Rn+1(Y ;G) such
that P − T = Q + ∂R and M (Q) + M (R) < c(d)ε̃. We now show how to
modify Q and R, not increasing their mass too much and making sure their
supports remain close to that of T . We let u(y) = dist(y, sptT ), y ∈ Y , and
we notice that P has been defined so that sptP ⊆ {u < t} whenever t > ε̃.
Thus, for such t, P − T = (P − T ) {u < t} = Q {u < t}+ (∂R) {u < t} =
Q {u < t}+ ∂(R {u < t})− 〈R, u, t〉. Furthermore,∫ 2

√
ε̃

√
ε̃

M (〈R, u, t〉)dL 1(t) 6 2(n+ 1)M (R),
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according to [4, 3.7.1(9)]. There thus exists
√
ε̃ < t < 2

√
ε̃ such that

M (〈R, u, t〉) 6 4(n+ 1)√
ε̃

M (R) 6 4(n+ 1)c(d)
√
ε̃.

We now define Q′ = Q {u < t} − 〈R, u, t〉 and R′ = R {u < t}. It follows
that P − T = Q′ + ∂R′ and

M (Q′) < ε̃+ 4(n+ 1)c(d)
√
ε̃ 6 c′(d, n)

√
ε̃,

M (R′) < ε̃,

(sptQ′) ∪ (sptR′) ⊆ B(sptT, 2
√
ε̃),

because there is no restriction to assume that ε̃ < 1.
Applying the Deformation Theorem in Y to the chain Q′ with some ε′

(which will be determined momentarily), we obtain Q′ − P ′ = Q′′ + ∂R′′

for some P ′ ∈ Pn(Y ;G), Q′′ ∈ Pn(Y ;G) (Q′′ is polyhedral because so is
∂Q′ = ∂P − ∂T ), R′′ ∈ Rn+1(Y ;G) such that

M (P ′) 6 c′′(d)M (Q′),

M (Q′′) 6 ε′c′′(d)M (∂Q′) = ε′c′′(d)M (∂P − ∂T ),

M (R′′) 6 ε′c′′(d)M (Q′),

(sptP ′) ∪ (sptQ′′) ∪ (sptR′′) ⊆ B(sptQ′, ε′c′′(d)).

We claim that the polyhedral G chain P − P ′ − Q′′ (replacing P ) verifies all
four conclusions of the theorem, with Z = R′+R′′. We start by observing that

P −P ′−Q′′−T = (P −T )−P ′−Q′′ = Q′+∂R′−P ′−Q′′ = ∂R′′+∂R′ = ∂Z.

This immediately shows that ∂P = ∂T . Furthermore

M (Z) 6 M (R′) + M (R′′) < ε̃ + ε′c′′(d)M (Q′) 6 ε̃ + ε′c′′(d)c′(d, n)
√
ε̃

so that conclusion (D)(i) (and hence also conclusion (B)) is verified provided ε̃
is chosen small enough and ε′ 6 1. Furthermore,

sptZ ⊆ (sptR′) ∪ (sptR′′) ⊆ B
(

sptT, 2
√
ε̃+ ε′c′′(d)

)
,

so that conclusion (D)(ii) is verified as well provided ε̃ and ε′ are both chosen
small enough. Regarding conclusion (A) we observe that

M (P − P ′ −Q′′) 6M (P ) + M (P ′) + M (Q′′)

< ε̃+ M (T ) + c′′(d)M (Q′) + ε′c′′(d)M (∂P − ∂T )

6 ε̃+ M (T ) + c′′(d)c′(d, n)
√
ε̃+ ε′c′′(d)M (∂P − ∂T )

6 ε+ M (T )
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provided ε̃ is chosen small enough according to d = dimY and n, and ε′ is chosen
small enough (in applying the Deformation Theorem) according to M (∂P−∂T )
and d = dimY . Finally conclusion (C) holds as well because

(sptP ) ∪ (sptP ′) ∪ (sptQ′′) ⊆ B(sptT, ε̃) ∪B
[

sptQ′, ε′c′′(d)
]

⊆ B(sptT, ε̃) ∪B
[

sptT, 2
√
ε̃+ ε′c′′(d)

]
.

It remains only to prove conclusion (E). Given ε̂ we associate with the
compact set sptT a finite dimensional subspace Y ′ ⊆ Y and a linear map π
according to the definition of M.A.P. (see the Appendix). We notice that
π#T ∈ Rn(Y ′;G) and that ∂π#T = π#∂T is polyhedral because π is linear. Ac-
cording to the previous case there exists P ∈Pn(Y ′;G) and Z ∈Pn+1(Y

′;G)
such that

M (P ) < ε̂+ M (π#T )

P − π#T = ∂Z and M (Z) < ε̂

(sptP ) ∪ (sptZ) ⊆ B(spt π#T, ε̂).

Referring to Theorem A.1 it is now clear that

M (P ) < ε̂+ M (T )

F (T − P ) < ε̂ (1 + c2.6(n, 1, 1)) N (T )

sptP ⊆ B(sptT, 2ε̂)

M (∂P ) = M (π#∂T ) 6M (∂T ).

Choosing ε̂ small enough according to ε, n and N (T ) completes the proof of the
the first part of conclusion (E). If we assume that ∂T = 0 then the homotopy
formula yields

π#T − T = ∂H#([[0, 1]]× T )

where H is the affine homotopy between π and idY . Since

M (H#([[0, 1]]× T )) 6 c2.6(1, n+ 1)ε̂M (T )

sptH#([[0, 1]]× T ) ⊆ B(sptT, ε̂),

conclusions (E)(i) and (ii) follow upon choosing ε̂ small enough according to ε, n
and M (T ).

Remark 4.3. It follows in particular from conclusion (E) that P is a cycle
whenever T is a cycle. In fact one can further strengthen conclusion (E) by
requesting that ∂P = ∂T even when T is not a cycle, as in the case when Y
is finite dimensional. This can be seen from the proof above by replacing P
with P ′ = P − S where S = H#([[0, 1]]× ∂T ) and H(t, y) = π(y) + t(y− π(y)).
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It indeed ensues from the homotopy formula that ∂P ′ = ∂T , and that M (S)
is bounded by a multiple of ε̂. However, a standard mistake would consist in
claiming that P ′ is polyhedral because S is polyhedral. In fact S need not be
polyhedral. Here one ought to approximate the Lipschitz affine homotopy H by
a PL map Ĥ such that Ĥ(0, ·) = H(0, ·), Ĥ(1, ·) = H(1, ·), and the relevant n
dimensional Jacobians of Ĥ are not much larger than those of H. It is possible
to modify the proof of Theorem 3.3 in order to obtain such an approximation,
but we will not do it here since it is not needed for our next result.

Theorem 4.4. Assume Y has the metric approximation property, T∈Rn(Y ;G)
is so that ∂T ∈ Rn−1(Y ;G) and sptT is compact, and let ε > 0. There then
exists P ∈Pn(Y ;G) such that

(A) M (P ) < ε+ M (T )

(B) M (∂P ) < ε+ M (∂T );

(C) F (T − P ) < ε;

(D) sptP ⊆ B(sptT, ε).

Proof. The proof consists in applying twice Theorem 4.2(E) to two different
chains. We first apply it to the chain ∂T , with ε̂ = ε

2
. We obtain P0 ∈Pn1(Y ;G)

such that

M (P0) < ε̂+ M (∂T )

sptP0 ⊆ B(spt ∂T, ε̂)

P0 − ∂T = ∂Z for some Z ∈ Rn(Y ;G)

M (Z) < ε̂

sptZ ⊆ B(spt ∂T, ε̂).

We next define T ′ = T + Z ∈ Rn(Y ;G). Notice that ∂T ′ = P0 is polyhedral.
It therefore ensues from Theorem 4.2(E) again that there exists P ∈Pn(Y ;G)
such that

M (P ) < ε̂+ M (T ′) 6 2ε̂+ M (T )

M (∂P ) 6M (∂T ′) = M (P0) < ε̂+ M (∂T )

F (P − T ) 6 F (P − T ′) + M (T ′ − T ) < 2ε̂

sptP ⊆ B(sptT ′, ε̂) ⊆ B(sptT, 2ε̂).
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A. Appendix: The bounded approximation property of
Banach spaces

We recall that a Banach space Y has the bounded approximation property (ab-
breviated B.A.P.) if the following holds. There exists 1 6 λ < ∞ such that
for every compact set C ⊆ Y and every ε > 0 there exist a finite dimensional
subspace Y ′ ⊆ Y and a bounded linear map π : Y → Y ′ with Lipπ 6 λ and
‖y−π(y)‖ 6 ε for every y ∈ C. In case one can choose λ = 1 we say that Y has
the metric approximation property (abbreviated M.A.P.). It is useful to notice
that for Y to have the B.A.P. it suffices that the definition be satisfied for finite
sets C.

The following approximation principle is rather useful.

Theorem A.1 (Approximation principle is spaces having the B.A.P.).
Assume Y is a Banach space having the bounded approximation property. Let
C ⊆ Y be a compact set and ε > 0. Let λ, Y ′ and π be associated with C and
ε in the definition. If T ∈ Fn(Y ;G) then

(A) π#T ∈ Fn(Y ′;G);

(B) M (π#T ) 6 λnM (T ) and M (∂π#T ) 6 λn−1M (∂T );

(C) F (T − π#T ) 6 εc2.6(n, λ, 1)N (T );

(D) sptπ#T ⊆ Y ′ ∩B(sptT, ε) ⊆ Y ′ ∩B(π(C), ε).

Proof. Conclusions (A), (B) and (D) are obvious, whereas (C) follows from the
homotopy formula as in (4) (applied with f1 = π and f0 = idY ).

Theorem A.1 says that if one is concerned about properties of chains T in
X = Fn(Y ;G) ∩ {T : sptT ⊆ C} that are not sensitive to small perturbations
of T relative to the localized topology of X, then the analysis is the same as if T
were supported in some finite dimensional space. The localized topology of X
is a sequential locally convex topology characterized by the condition Tj → 0 if
and only if F (Tj) → 0 and supj N (Tj) < ∞. See [3], [10, §§10.2–10.4] or the
forthcoming [2] for more on localized topologies.

This is illustrated in the last step of the proof of Theorem 4.2 of the present
paper, for instance. Here we give another application, showing how the Defor-
mation Theorem almost applies in X. Here ˆN denotes the slicing normal mass
defined in [4].

Theorem A.2. Let C be a compact metric space, and M > 0. Assume that
G ∩ {g : |g| 6 m} is compact for every m > 0. It follows that

Fn(C;G) ∩ {T : ˆN (T ) 6M}

is F -compact.
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Proof. Since the slicing normal mass is lower semicontinuous with respect to F
convergence, it suffices to establish that the set above is totally bounded. We
first recall how this is a consequence of the Deformation Theorem [14] in case
C ⊆ Y ′ and Y ′ is finite dimensional. Let N = dimY ′ and choose a basis
e1, . . . , eN of Y ′. There exists a constant κN with the following property. Given
ε > 0 we denote by Fn,ε the collection of all oriented n-faces of the ε-cubical de-
composition of Y ′ according to the basis e1, . . . , eN . In other words we consider
the cubes Ck1,...,kN = Y ′ ∩ {y : εki 6 e∗i (y) 6 ε(1 + ki) for every i = 1, . . . , N},
corresponding to integers k1, . . . , kN ∈ Z, and Fn,ε consists of all m-dimensional
faces of the cubes Ck1,...,kN together with a choice of an orientation (relative to
that of the basis e1, . . . , eN). The Deformation Theorem implies that for every
T ∈ Fn(Y ′;G) there exists P ∈Pn(Y ′;G) such that the following hold:

(1) There are gF ∈ G corresponding to each F ∈ Fn,ε such that

P =
∑

F∈Fm,ε

gF · [[F ]];

(2) N (P ) 6 κNN (T );

(3) F (P − T ) 6 εκNN (T );

(4) sptP ⊆ B(sptT, κNε).

We now further assume that sptT ⊆ C and N (T ) 6 M . Since gF = 0 if
(ClosF ) ∩ B(sptT, κNε) = ∅, according to (4), it follows that gF 6= 0 only for
a finite collection Fn,ε,C of F ’s depending only on C and ε. We also notice
that inf{H m(F ) : F ∈ Fn,ε} =: α > 0. SInce αmaxF |gF | 6 M (P ) 6 κNM
we immediately infer that maxF |gF | 6 κNMα−1. Now the assumption on the
coefficient group (G, | · |) implies that

Pn(Y ′;G) ∩

P : P =
∑

F∈Fn,ε,C

gF · [[F ]] and max
F
|gF | 6 κNMα−1


is M -compact, and hence also F -compact. The theorem now easily follows in
case Y ′ is finite dimensional.

We now consider the general case. Recall that C is isometric to a com-
pact subset (still denoted C) of some Banach space Y having the M.A.P., for
instance Y = `∞(N) or Y = C[0, 1]. Given ε > 0 we associate Y ′ and π
with C and ε as in the definition of M.A.P. Each T ∈ Fn(Y ;G) with sptT ⊆ C
and N (T ) 6 M is εc2.6(n, 1, 1)M -close in the F norm to a member of
Fn(Y ′;G)∩ {T ′ : sptT ′ ⊆ π(C) and N (T ′) 6M}, according to Theorem A.1.
Since the latter is F compact according to the previous paragraph, the proof
is complete.
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Remark A.3. It is maybe worth pointing out the following consequence of the
Compactness Theorem. We let `2 denote the separable Hilbert space and G
a group verifying the hypothesis of Theorem A.2. Given T0 ∈ Fn(`2;G) such
that spt ∂T0 is compact, the following Plateau problem

(P)

{
minimize M (T )

among T ∈ Fn(`2;G) with ∂T = ∂T0

admits a minimizer. There indeed exists a minimizing sequence supported in
the convex hull C of spt ∂T0, because C is a 1-Lipschitz retract of `2. Since C
is compact, such sequence is relatively compact with respect to the F norm,
according to Theorem A.2. The limit of a converging subsequence minimizes,
because M is lower semicontinuous in `2.

For the reader’s convenience we now give examples of Banach spaces having
the M.A.P., together with elementary proofs. None of the following is new.

Proposition A.4. Hilbert spaces have the M.A.P.

Proof. Let Y be a Hilbert space, let C ⊆ Y be compact and ε > 0. Choose a
maximal subset F ⊆ C such that ‖y − y′‖ > ε

2
whevener y, y′ ∈ F are distinct.

Since C is compact, F is finite. We let Y ′ = spanF and we let π be the
orthogonal projector on Y ′. One readily checks that Y ′ and π have the sought
for properties.

Proposition A.5. C[0, 1] has the M.A.P.

Proof. If C ⊆ C[0, 1] is compact and ε > 0 then there exists δ > 0 such that
|u(t) − u(t′)| < ε whenever u ∈ C and t, t′ ∈ [0, 1] are so that |t − t′| < δ. Let
I1, . . . , Iκ be a finite cover of [0, 1] by open intervals of length less than δ, and
ϕ1, . . . , ϕκ a partition of unity associated with it. Choose arbitrarily tk ∈ Ik.
Let Y ′ = span{ϕ1, . . . , ϕκ} and given u ∈ C[0, 1] define π(u) =

∑κ
k=1 u(tk)ϕk.

One readily checks that π is linear, that Lipπ 6 1, and that ‖π(u) − u‖∞ < ε
when u ∈ C.

Notice that π obtained in Proposition A.4 is a linear retract on Y ′, a prop-
erty not shared by π obtained in Proposition A.5. The proof of Proposition A.5
generalizes to the case of the Banach space C(K) where K is a Hausdorff com-
pact topological space. As `∞(N) ∼= C(K) isometrically for some K, this in
particular implies the following, for which we give an elementary proof instead.

Proposition A.6. `∞(N) has the M.A.P.

Proof. We start with a construction. Given u ∈ `∞(N) and ε > 0 we find
finitely many disjoint intervals Ij, j ∈ Ju,ε, in the real line such that

[−‖u‖∞, ‖u‖∞] = ∪j∈Ju,εIj
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and each Ij has length less that ε. We then define

Au,j := N ∩ {ξ : u(ξ) ∈ Ij} = u−1(Ij)

and we notice that Au,j, j ∈ Ju,ε, is a finite partition of N with the property
that if ξ1, ξ2 ∈ Au,j for some j ∈ Ju,ε then |u(ξ1)− u(ξ2)| 6 ε.

Next, given a subset A ⊆ N, we define a linear map QA : `∞(N) → `∞(N)
by the formula

QA(v)(ζ) :=

{
v(minA) if ζ ∈ A
0 otherwise.

We are now ready to prove the proposition. We first observe that there
is no restriction to assume the given compact set C is finite. Given a finite
collection u1, . . . , uκ and ε > 0, we apply the construction of the first paragraph
to each uk and we obtain κ finite partitions of N, Auk,j, j ∈ Juk,ε, k = 1, . . . , κ.
We then choose a new finite partition A1, . . . , AN of N with the property that
for every k = 1, . . . , κ, each An is contained in Auk,j for some j ∈ Juk,ε. We

then define P :=
∑N

n=1QAn . This is readily a linear operator on `∞(N). Since
A1, . . . , AN is a partition, the definition of the QAn implies that each ζ ∈ N
belongs to exactly one An(ζ) and hence, for each v ∈ `∞(N)

P (v)(ζ) =
N∑
n=1

QAn(v)(ζ) = QAn(ζ)(v)(ζ) = v(minAn(ζ)).

This readily implies that LipP 6 1. It also readily shows that the range of P
is spanned by eAn , n = 1, . . . , N where

eAn(ζ) =

{
1 if ζ ∈ An
0 otherwise.

Finally if v = uk for some k = 1, . . . , κ, and ζ ∈ N is given then An(ζ) is contained
in some Auk,j. The definition of Auk,j and the formula above for P (uk)(ζ) then
imply that |uk(ζ)− P (uk)(ζ)| 6 ε because ζ,minAn(ζ) ∈ An(ζ) ⊆ Auk,j. Since ζ
is arbitrary we infer that ‖uk − P (uk)‖∞ 6 ε and the proof is complete.

The last two propositions are interesting (as far as we are concerned about
applications of Theorem A.1) because any separable metric space admits an
isometric embedding into `∞(N) and an isometric embedding into C[0, 1].

Finally we recall that if a (separable) Banach Y has a Schauder basis
e1, e2, . . . then it has the B.A.P. Letting Yn = span{e1, . . . , en} and πn : Y → Yn
be defined by πn =

∑n
k=1 e

∗
kek, it follows indeed from the Open Mapping Theo-

rem that supn Lipπn = λ <∞.



334 Th. De Pauw

References

[1] Ambrosio, L. and Kirchheim, B., Rectifiable sets in metric and banach spaces.
Math. Ann. 318 (2000), 527 – 555.

[2] De Pauw, Th., Hardt, R. and Pfeffer, W. F., Homology of normal chains and
cohomology of charges. Preprint 2013.

[3] De Pauw, Th., Moonens, L. and Pfeffer, W. F., Charges in middle dimensions.
J. Math. Pures Appl. 92 (2009), 86 – 112.

[4] De Pauw, Th. and Hardt, R., Rectifiable and flat G chains in a metric space.
Amer. J. Math. 134 (2012)(1), 1 – 69.

[5] Diestel, J. and Uhl, Jr., J. J., Vector Measures. Foreword by B. J. Pettis. Math.
Surveys 15. Providence (RI): Amer. Math. Soc. 1977.

[6] Evans, L. C. and Gariepy, R. F. Measure Theory and Fine Properties of Func-
tions. Stud. Adv. Math. Boca Raton (FL): CRC Press 1992.

[7] Federer, H., Geometric Measure Theory. Grundlehren math. Wiss. 153. New
York: Springer 1969.

[8] Johnson, W. B., Lindenstrauss, J. and Schechtman, G., Extensions of Lipschitz
maps into Banach spaces. Israel J. Math. 54 (1986)(2), 129 – 138.

[9] Kirchheim, B., Rectifiable metric spaces: local structure and regularity of the
Hausdorff measure. Proc. Amer. Math. Soc. 121 (1994)(1), 113 – 123.

[10] Pfeffer, W. F., The Divergence Theorem and Sets of Finite Perimeter. Pure
Appl. Math. (Boca Raton). Boca Raton (FL): CRC Press 2012.

[11] Rourke, C. P. and Sanderson, B. J., Introduction to Piecewise-Linear Topology.
Ergebn. Math. Grenzgebiete 69. New York: Springer 1972.
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