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Existence and Multiplicity of Solutions
for Kirchhoff Type Problems Involving

p(x)-Biharmonic Operators

G. A. Afrouzi, M. Mirzapour and N. T. Chung

Abstract. This paper is concerned with the existence and multiplicity of weak solu-
tions for a p(x)-Kirchhoff type problem of the following formM

(∫
Ω

1

p(x)
|∆u|p(x) dx

)
∆(|∆u|p(x)−2∆u) = f(x, u) in Ω

u = ∆u = 0 on ∂Ω,

by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland’s
variational principle in two cases when the Carathéodory function f(x, u) having
special structure.
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1. Introduction

In this paper, we study the following problemM

(∫
Ω

1

p(x)
|∆u|p(x) dx

)
∆(|∆u|p(x)−2∆u) = f(x, u) in Ω

u = ∆u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, p(x) ∈ C(Ω)
with 1 < infΩ p(x) ≤ supΩ p(x) < +∞, ∆(|∆u|p(x)−2∆u) is the p(x)-biharmonic
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operator and M(t) is a continuous real-valued function, f : Ω × R → R is a
Carathéodory function having special structure.

Problem (1) is called a nonlocal one because of the presence of the term M ,
which implies that the equation in (1) is no longer pointwise identities. This
provokes some mathematical difficulties which make the study of such a problem
particularly interesting. Nonlocal differential equations are also called Kirchhoff
type equations because Kirchhoff [19] has investigated an equation of the form

ρ
∂2u

∂t2
−

(
ρ0

h
+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (2)

which extends the classical D’Alembert’s wave equation, by considering the
effect of the changing in the length of the string during the vibration. A dis-
tinguishing feature of equation (2) is that the equation contains a nonlocal

coefficient ρ0
h

+ E
2L

∫ L
0

∣∣∂u
∂x

∣∣2 dx which depends on the average 1
2L

∫ L
0

∣∣∂u
∂x

∣∣2 dx, and
hence the equation is no longer a pointwise identity. The parameters in (2)
have the following meanings: L is the length of the string, h is the area of the
cross-section, E is the Young modulus of the material, ρ is the mass density
and P0 is the initial tension. Lions [20] has proposed an abstract framework for
the Kirchhoff type equations. After the work of Lions [20], various equations
of Kirchhoff type have been studied extensively, see e.g. [3–10]. The study of
Kirchhoff type equations has already been extended to the case involving the
p-Laplacian (for details, see [5, 6], [9, 10]) and p(x)-Laplacian (see [7, 8, 17,21]).

Fourth order elliptic equations arise in many applications such as: Micro
Electro Mechanical systems, thin film theory, surface diffusion on solids, inter-
face dynamics, flow in Hele-Shaw cells, and phase field models of multiphase
systems (see [18, 23]) and the references therein. There is also another im-
portant class of physical problems leading to higher order partial differential
equations. An example of this is Kuramoto-Sivashinsky equation which mod-
els pattern formation in different physical contexts, such as chemical reaction
diffusion systems and a cellular gas flame in the presence of external stabilizing
factors (see [25]).

We assume throughout this paper that the Kirchhoff function M satisfies
the following hypotheses:

(M1) there exists a positive constant m0 such that M(t) ≥ m0,

(M2) there exists µ ∈ (0, 1) such that M̂(t) ≥ (1− µ)M(t)t, where

M̂(t) =
∫ t

0
M(τ)dτ .

There are many functions M satisfying the conditions (M1) and (M2), for ex-
ample, M(t) = a+bt, a, b > 0. Inspired by the ideas in [7,21,22] and the results
in [2, 11], we study (1) in two distinct situations.



Kirchhoff Type Problems 291

First, we consider the case when f(x, u) = λ(x)|u|q(x)−2u in which the weight
function λ(x) does not change sign, i.e.,M

(∫
Ω

1

p(x)
|∆u|p(x) dx

)
∆(|∆u|p(x)−2∆u) = λ(x)|u|q(x)−2u in Ω

u = 0 on ∂Ω.

(3)

The function λ satisfies

(Λ1) λ ∈ L∞(Ω),

(Λ2) there exists an x0 ∈ Ω and two positive constants r and R with 0 < r < R
such that BR(x0) ⊂ Ω and λ(x) = 0 for x ∈ BR(x0)\Br(x0) while λ(x) > 0
for x ∈ Ω\BR(x0) \Br(x0),

and the function q is assumed to satisfy

(Q1) q ∈ C+(Ω) and 1 ≤ q(x) < p∗2(x) for any x ∈ Ω,

(Q2) either maxBr(x0) q(x) < p− < p−

1−µ < p+ < p+

1−µ < minΩ\BR(x0) q(x)

or maxΩ\BR(x0) q(x) < p− < p−

1−µ < p+ < p+

1−µ < minBr(x0) q(x).

Our main result concerning problem (3) is given by the following theorem.

Theorem 1.1. Assume that conditions (M1)–(M2), (Λ1)–(Λ2) and (Q1)–(Q2)
are fulfilled. Then there exists ν∗ > 0 such that problem (3) has at least two
positive non-trivial weak solutions, provided that |λ|L∞(Ω) < ν∗.

For example, the functions

λ(x) =


1
r
(r − |x− x0|), for x ∈ Br(x0)

0, for x ∈ BR(x0)\Br(x0)
1

|x−x0|(|x− x0| −R), for x ∈ Ω\BR(x0) \Br(x0)

and

q(x) =


t1, for x ∈ Br(x0)
t1(R−|x−x0|)

R−r + t2(|x−x0|−r)
R−r , for x ∈ BR(x0)\Br(x0)

t2, for x ∈ Ω\BR(x0) \Br(x0)

satisfy the above conditions, where the positive numbers t1, t2 can be chosen
in a suitable manner such as t1 < p− < p+

1−µ < t2 for the first case in (Q2) and

t2 < p− < p+

1−µ < t1 for the second one.

Next, we consider the case when f(x, u) = λ|u|q(x)−2u, λ is a positive pa-
rameter, that is,M

(∫
Ω

1

p(x)
|∆u|p(x) dx

)
∆(|∆u|p(x)−2∆u) = λ|u|q(x)−2u in Ω

u = 0 on ∂Ω.
(4)

More exactly, we study the existence of solutions for (4) under the hypotheses
(M1), (M2) and q(x) is a assumed to satisfy the following condition
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(Q3) q− < p−

1−µ < p+ and q+ < p∗2(x) for all x ∈ Ω, µ is given by (M2).

Our main result concerning problem (4) in this case is given by the following
theorem.

Theorem 1.2. Assume that the conditions (M1), (M2) and (Q3) are fulfilled.
Then there exists a positive constant λ∗ such that for any λ ∈ (0, λ∗), problem (4)
has at least one non-trivial weak solution.

2. Notations and preliminaries

For the reader’s convenience, we recall some necessary background knowledge
and propositions concerning the generalized Lebesgue-Sobolev spaces. We refer
the reader to the papers [12,13,15,16].

Let Ω be a bounded domain of RN , denote

C+(Ω) =
{
p(x); p(x) ∈ C(Ω), p(x) > 1, for all x ∈ Ω

}
,

p+ = max{p(x); x ∈ Ω},
p− = min{p(x); x ∈ Ω},

Lp(x)(Ω) =

{
u; u measurable real-valued function s.th.

∫
Ω

|u(x)|p(x) dx <∞
}
,

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Proposition 2.1 (see Fan and Zhao [16]). The space (Lp(x)(Ω), | · |p(x)) is sepa-
rable, uniformly convex, reflexive and its conjugate space is Lq(x)(Ω) where q(x)
is the conjugate function of p(x), i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

The Sobolev space with variable exponent W k,p(x)(Ω) is defined as

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},
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where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, with α = (α1, . . . , αN) is a multi-index and

|α| =
∑N

i=1 αi. The space W k,p(x)(Ω) equipped with the norm

‖u‖k,p(x) =
∑
|α|≤k

|Dαu|p(x),

also becomes a separable and reflexive Banach space. For more details, we refer
the reader to [14,16]. Denote

p∗(x) =

{
Np(x)
N−p(x)

if p(x) < N

+∞ if p(x) ≥ N,

p∗k(x) =

{
Np(x)

N−kp(x)
if kp(x) < N

+∞ if kp(x) ≥ N

for any x ∈ Ω, k ≥ 1.

Proposition 2.2 (see Fan and Zhao [16]). For p, r ∈ C+(Ω) such that
r(x) ≤ p∗k(x) for all x ∈ Ω, there is a continuous embedding

W k,p(x)(Ω) ↪→ Lr(x)(Ω).

If we replace ≤ with <, the embedding is compact.

We denote by W
k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x)(Ω). Note that the

weak solutions of problem (1) are considered in the generalized Sobolev space

X = W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω)

equipped with the norm

‖u‖ = inf

{
µ > 0 :

∫
Ω

∣∣∣∣∆u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Remark 2.3. According to [26], the norm ‖ · ‖2,p(x) is equivalent to the norm
|∆ · |p(x) in the space X. Consequently, the norms ‖ · ‖2,p(x), ‖ · ‖ and |∆ · |p(x)

are equivalent.

We consider the functional

ρ(u) =

∫
Ω

|∆u|p(x) dx

and give the following fundamental proposition.
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Proposition 2.4 (see El Amrouss et al. [11]). For u ∈ X and un ⊂ X, we have

(1) ‖u‖ < 1(respectively = 1;> 1)⇐⇒ ρ(u) < 1(respectively = 1;> 1);

(2) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;

(3) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ ;

(4) ‖un‖ → 0 (respectively →∞)⇐⇒ ρ(un)→ 0 (respectively →∞).

Let us define the functional

J(u) =

∫
Ω

1

p(x)
|∆u|p(x) dx.

It is well known that J is well defined, even and C1 in X. Moreover, the operator
L = J ′ : X → X∗ defined as

〈L(u), v〉 =

∫
Ω

|∆u|p(x)−2∆u∆v dx

for all u, v ∈ X satisfies the following assertions.

Proposition 2.5 (see El Amrouss et al. [11]).

(1) L is continuous, bounded and strictly monotone.

(2) L is a mapping of (S+) type, namely
un ⇀ u and lim supn→+∞ L(un)(un − u) ≤ 0, implies un → u.

(3) L is a homeomorphism.

3. Proof of Theorem 1.1

In this section we discuss the existence of two non-trivial weak solutions of (3) by
using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland’s
variational principle. For simplicity, we use C, ci, i = 1, 2, . . . to denote the
general positive constant (the exact value may change from line to line).

We confine ourselves to the case where the former condition of (Q2) holds
true. A similar proof can be made if the later condition holds true. The Euler-
Lagrange functional associated to (3) is given by

I(u) = M̂

(∫
Ω

1

p(x)
|∆u|p(x) dx

)
−
∫

Ω

λ(x)

q(x)
|u|q(x) dx,

where M̂(t) =
∫ t

0
M(τ) dτ . It is easy to verify that I ∈ C1(X,R) is weakly

lower semi-continuous with the derivative given by

〈I ′(u), v〉=M

(∫
Ω

1

p(x)
|∆u|p(x)dx

)∫
Ω

|∆u|p(x)−2∆u∆v dx−
∫

Ω

λ(x)|u|q(x)−2uv dx,

for all u, v ∈ X. Thus, we notice that we can seek weak solutions of (3) as
critical point of the energetic functional I.
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Remark 3.1. From (M1) and Proposition 2.5 we can easily see that φ′, de-
fined by

〈φ′(u), v〉 = M

(∫
Ω

1

p(x)
|∆u|p(x) dx

)∫
Ω

|∆u|p(x)−2∆u∆v dx

is of (S+) type.

Lemma 3.2. There exists ν∗ > 0 such that provided |λ|L∞(Ω) < ν∗ there exist
ρ1 > 0 and δ1 > 0 such that I(u) ≥ δ1 > 0 for any u ∈ X with ‖u‖ = ρ1.

Proof. Let us define q1 : Br(x0)→ [1,∞), q1(x) = q(x) for any x ∈ Br(x0) and
q2 : Ω\BR(x0)→ [1,∞), q2(x) = q(x) for any x ∈ Ω\BR(x0). We also introduce
the notation

q−1 = min
x∈Br(x0)

q1(x), q+
1 = max

x∈Br(x0)
q1(x),

q−2 = min
x∈Ω\BR(x0)

q2(x), q+
2 = max

x∈Ω\BR(x0)
q2(x).

Then by relations (Q1) and (Q2) we have

1 ≤ q−1 ≤ q+
1 < p− <

p−

1− µ
< p+ <

p+

1− µ
< q−2 ≤ q+

2 < p∗2(x),

for any x ∈ X. Thus, we have X ↪→ Lq
±
i (Ω), i ∈ {1, 2}. So, there exists a

positive constant C such that∫
Ω

|u|q
±
i dx ≤ C‖u‖q

±
i , for all u ∈ X, i ∈ {1, 2}.

It follows that there exist two positive constants c1 and c2 such that∫
Br(x0)

|u|q1(x) dx ≤
∫
Br(x0)

|u|q
−
1 dx+

∫
Br(x0)

|u|q
+
1 dx

≤
∫

Ω

|u|q
−
1 dx+

∫
Ω

|u|q
+
1 dx

≤ c1

(
‖u‖q

−
1 + ‖u‖

q+1

)
,

(5)

and ∫
Ω\BR(x0)

|u|q2(x) dx ≤
∫

Ω\BR(x0)

|u|q
−
2 dx+

∫
Ω\BR(x0)

|u|q
+
2 dx

≤
∫

Ω

|u|q
−
2 dx+

∫
Ω

|u|q
+
2 dx

≤ c2

(
‖u‖q

−
2 + ‖u‖

q+2

)
.

(6)
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In view of (M1) and relations (5) and (6), for ‖u‖ sufficiently small, noting
Proposition 2.4, we have

I(u) ≥ m0

p+

∫
Ω

|∆u|p(x) dx−
∫
Br(x0)

λ(x)

q(x)
|u|q(x) dx−

∫
Ω\BR(x0)

λ(x)

q(x)
|u|q(x) dx

≥ m0

p+
‖u‖p+ −

|λ|L∞(Ω)

q−
c3(‖u‖q

−
1 + ‖u‖q

+
1 + ‖u‖q

−
2 + ‖u‖q

+
2 )

≥
[
m0

2p+
‖u‖p+ − c4|λ|L∞(Ω)(‖u‖q

−
1 + ‖u‖q

+
1 )

]
+

[
m0

2p+
‖u‖p+ − c4|λ|L∞(Ω)(‖u‖q

−
2 + ‖u‖q

+
2 )

]
.

Since the function g : [0, 1]→ R defined by

g(t) =
m0

2p+
− c4t

q−2 −p+ − c4t
q+2 −p+

is positive in a neighborhood of the origin, it follows that there exists 0 < ρ1 < 1
such that g(ρ1) > 0. On the other hand, defining

ν∗ = min

{
1,

m0

2c4p+
min{ρp+−q

−
1 , ρp

+−q+1 }
}
, (7)

we deduce that there exists δ1 > 0 such that for any u ∈ X with ‖u‖ = ρ1 we
have I(u) ≥ δ1 > 0 provided |λ|L∞(Ω) < ν∗.

Lemma 3.3. There exists ψ ∈ X, ψ 6= 0 such that limt→+∞ I(tψ)→ −∞.

Proof. Let ψ ∈ C∞0 (Ω), ψ ≥ 0 and there exist x1 ∈ Ω\BR(x0) and ε > 0 such

that for any x ∈ Bε(x1) ⊂ (Ω\BR(x0)) we have ψ(x) > 0. When t > t0, from

(M2) we can easily obtain that M̂(t) ≤ M̂(t0)t
− 1

(1−µ)
0 := c5t

1
(1−µ) , where t0 is an

arbitrary positive constant. Thus, for t > 1 we have

I(tψ) = M̂

(∫
Ω

1

p(x)
|∆tψ|p(x) dx

)
−
∫

Ω

λ(x)

q(x)
|tψ|q(x) dx

≤ c5

(∫
Ω

|t∆ψ|p(x) dx

) 1
1−µ

−
∫

Ω\BR(x0)

λ(x)

q(x)
|tψ|q(x) dx

≤ c5t
p+

1−µ

(∫
Ω

|∆ψ|p(x) dx

) 1
1−µ

− tq
−
2

∫
Ω\BR(x0)

λ(x)

q(x)
|ψ|q(x) dx

→ −∞ as t→ +∞,

due to the fact that p+

1−µ < q−2 .
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By Lemmas 3.2 and 3.3 and the mountain pass theorem of Ambrosetti and
Rabinowitz [1], we deduce the existence of a sequence (un) such that

I(un)→ c6 > 0 and I ′(un)→ 0 in X∗ as n→∞. (8)

We prove that (un) is bounded in X. Assume for the sake of contradiction, if
necessary to a subsequence, still denote by (un), ‖un‖ → ∞ and ‖un‖ > 1 for
all n.

By Proposition 2.4, we may infer that for n large enough

1 + c7 + ‖un‖

≥ I(un)− 1

q−2
〈I ′(un), un〉

= M̂

(∫
Ω

1

p(x)
|∆un|p(x) dx

)
−
∫

Ω

λ(x)

q(x)
|un|q(x) dx

− 1

q−2

[
M
(∫

Ω

1

p(x)
|∆un|p(x) dx

)∫
Ω

|∆un|p(x) dx−
∫

Ω

λ(x)|un|q(x) dx

]
≥ (1− µ)

p+
M

(∫
Ω

1

p(x)
|∆un|p(x) dx

)∫
Ω

|∆un|p(x) dx−
∫

Ω

λ(x)

q(x)
|un|q(x) dx

− 1

q−2

[
M
(∫

Ω

1

p(x)
|∆un|p(x) dx

)∫
Ω

|∆un|p(x) dx−
∫

Ω

λ(x)|un|q(x) dx

]
≥ m0

(
1− µ
p+

− 1

q−2

)∫
Ω

|∆un|p(x) dx+

∫
Br(x0)

(
1

q−2
− 1

q1(x)

)
λ(x)|un|q1(x) dx

≥ m0

(
1− µ
p+

− 1

q−2

)
‖un‖p

− − ν∗
(

1

q−1
− 1

q−2

)∫
Br(x0)

|un|q1(x) dx

≥ m0

(
1− µ
p+

− 1

q−2

)
‖un‖p

− − c1ν
∗
(

1

q−1
− 1

q−2

)(
‖un‖q

−
1 + ‖un‖q

+
1

)
≥ m0

(
1− µ
p+

− 1

q−2

)
‖un‖p

− − c8

(
‖un‖q

−
1 + ‖un‖q

+
1

)
.

But, this cannot hold true since p− > 1. Hence (un) is bounded in X. This
information combined with the fact X is reflexive implies that there exists a
subsequence, still denoted by (un), and u1 ∈ X such that un ⇀ u1 in X. Since X
is compactly embedded in Lq(x)(Ω), it follows that un → u1 in Lq(x)(Ω). Using
Proposition 2.2 we deduce

lim
n→∞

∫
Ω

λ(x)|un|q(x)−2un(un − u1) dx = 0.

This fact and relation (8) yield

lim
n→∞

M

(∫
Ω

1

p(x)
|∆un|p(x) dx

)∫
Ω

|∆un|p(x)−2∆un(∆un −∆u1) dx = 0.
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In view of (M1), we have limn→∞
∫

Ω
|∆un|p(x)−2∆un(∆un −∆u1) dx = 0. Using

Proposition 2.5, we find that un → u1 in X. Then by relation (8) we have

I(u1) = c6 > 0 and I ′(u1) = 0,

that is, u1 is a non-trivial weak solution of (3).
We hope to apply Ekeland’s variational principle [24] to get a nontrivial

weak solution of problem (3).

Lemma 3.4. There exists ϕ1 ∈ X, ϕ1 6= 0 such that I(tϕ1) < 0 for t > 0 small
enough.

Proof. Let ϕ1 ∈ C∞0 (Ω), ϕ1 ≥ 0 and there exist x2 ∈ Br(x0) and ε > 0 such
that for any x ∈ Bε(x2) ⊂ Br(x0) we have ϕ1(x) > 0. For any 0 < t < 1, we
have

I(tϕ1) = M̂

(∫
Ω

1

p(x)
|∆tϕ1|p(x) dx

)
−
∫

Ω

λ(x)

q(x)
|tϕ1|q(x) dx

≤ c9

(∫
Ω

|t∆ϕ1|p(x) dx

) 1
1−µ

−
∫
Br(x0)

λ(x)

q(x)
|tϕ1|q(x) dx

≤ c9t
p−
1−µ

(∫
Ω

|∆ϕ1|p(x) dx

) 1
1−µ

− tq
+
1

∫
Br(x0)

λ(x)

q1(x)
|ϕ1|q1(x) dx.

So I(tϕ1) < 0 for t < θ

1
p−
1−µ−q

+
1 , where

0 < θ < min

{
1,

∫
Br(x0)

λ(x)
q1(x)
|ϕ1|q1(x) dx

c9(
∫

Ω
|∇ϕ1|p(x) dx)

1
1−µ

}
.

Let ν∗ > 0 be defined as in (7) and assume |λ|L∞(Ω) < ν∗. By Lemma 3.2 it
follows that on the boundary of the ball centered at the origin and of radius ρ1

in X, denoted by Bρ1(0) = {ω ∈ X; ||ω|| < ρ1}, we have

inf
∂Bρ1 (0)

I > 0.

By Lemma 3.2, there exists ϕ1 ∈ X such that I(tϕ1) < 0 for t > 0 small enough.
Moreover, for u ∈ Bρ1(0),

I(u) ≥
[ m0

2p+
‖u‖p+ − c4|λ|L∞(Ω)(‖u‖q

−
1 + ‖u‖q

+
1 )
]

+
[ m0

2p+
‖u‖p+ − c4|λ|L∞(Ω)(‖u‖q

−
2 + ‖u‖q

+
2 )
]
.
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It follows that

−∞ < c10 = inf
Bρ1 (0)

I < 0.

We let now 0 < ε < inf∂Bρ1 (0) I − infBρ1 (0) I. Applying Ekeland’s variational

principle [24] to the functional I : Bρ1(0)→ R, we find uε ∈ Bρ1(0) such that

I(uε) < inf
Bρ1 (0)

I + ε,

I(uε) < I(u) + ε‖u− uε‖, u 6= uε.

Since

I(uε) ≤ inf
Bρ1 (0)

I + ε ≤ inf
Bρ1 (0)

I + ε < inf
∂Bρ1 (0)

I,

we deduce that uε ∈ Bρ1(0). Now, we define K : Bρ1(0) → R by K(u) =
I(u) + ε‖u− uε‖. It is clear that uε is a minimum point of K and thus

K(uε + tv)−K(uε)

t
≥ 0,

for small t > 0 and v ∈ Bρ1(0). The above relation yields

I(uε + tv)− I(uε)

t
+ ε‖v‖ ≥ 0.

Letting t→ 0 it follows that 〈I ′(uε), v〉+ε‖v‖ > 0 and we infer that ‖I ′(uε)‖ ≤ ε.
We deduce that there exists a sequence (vn) ⊂ Bρ1(0) such that

I(vn)→ c10 and I ′(vn)→ 0. (9)

It is clear that (vn) is bounded in X. Thus, there exists u2 ∈ X such that,
up to a subsequence, (vn) converges weakly to u2 in X. Actually, with similar
arguments as those used in the proof that the sequence un → u1 in X we can
show that vn → u2 in X. Thus, by relation (9),

I(u2) = c10 < 0 and I ′(u2) = 0,

i.e., u2 is a non-trivial weak solution for problem (3).

Finally, since

I(u1) = c6 > 0 > c10 = I(u2),

we see that u1 6= u2. Thus, problem (3) has two non-trivial weak solutions.
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4. Proof of Theorem 1.2

In this section, assume that we are under the hypotheses of Theorem 1.2, using
the Ekeland’s variational principle we get the result. We define the functional
Iλ : X → R by

Iλ(u) = M̂

(∫
Ω

1

p(x)
|∆u|p(x) dx

)
− λ

∫
Ω

|u|q(x)

q(x)
dx,

where M̂(t) =
∫ t

0
M(τ) dτ . It is easy to verify that Iλ ∈ C1(X,R) is weakly

lower semi-continuous with the derivative given by

〈I ′λ(u), v〉=M

(∫
Ω

1

p(x)
|∆u|p(x)dx

)∫
Ω

|∆u|p(x)−2∆u∆v dx−λ
∫

Ω

|u|q(x)−2uv dx,

for all u, v ∈ X. Thus, weak solutions of problem (4) are exactly critical points
of the functional Iλ. For applying Ekeland’s variational principle, we start with
two auxiliary results.

Lemma 4.1. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) there exist
ρ2, δ2 > 0 such that Iλ(u) ≥ δ2 > 0 for any u ∈ X with ‖u‖ = ρ2.

Proof. Since q(x) < p∗2(x) for all x ∈ Ω, it follows that X is continuously
embedded in Lq(x)(Ω). So, there exists a positive constant c11 such that

|u|q(x) ≤ c11‖u‖, for all u ∈ X. (10)

Now, let us fix ρ2 ∈ (0, 1) such that ρ2 < 1
c11

. Then relation (10) implies
|u|q(x) < 1, for all u ∈ X with ‖u‖ = ρ2. Thus∫

Ω

|u|q(x)dx ≤ |u|q
−

q(x), for all u ∈ X with ‖u‖ = ρ2. (11)

Relations (10) and (11) imply∫
Ω

|u|q(x)dx ≤ cq
−

11 ‖u‖q
−
, for all u ∈ X with ‖u‖ = ρ2. (12)

Taking into account relation (12) and the condition (M1), we deduce that for
any u ∈ X with ‖u‖ = ρ2, we have

Iλ(u) = M̂

(∫
Ω

1

p(x)
|∆u|p(x) dx

)
− λ

∫
Ω

|u|q(x)

q(x)
dx

≥ m0

p+
‖u‖p+ − λ

q−

∫
Ω

|u|q(x) dx

≥ m0

p+
‖u‖p+ − λ

q−
cq
−

11 ‖u‖q
−

=
m0

p+
ρp

+

2 −
λ

q−
cq
−

11 ρ
q−

2

= ρq
−
(
m0

p+
ρp

+−q−
2 − λ

q−
cq
−

11

)
.

(13)
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By (13) if we define

λ∗ =
m0q

−ρp
+−q−

2

2p+cq
−

11

,

then for any λ ∈ (0, λ∗) and u ∈ X with ‖u‖ = ρ2, there exists δ2 > 0 such that
Iλ(u) ≥ δ2 > 0. This completes the proof.

Lemma 4.2. There exists ϕ2 ∈ X such that ϕ2 ≥ 0, ϕ2 6= 0 and Iλ(tϕ2) < 0
for all t > 0 small enough.

Proof. Since q− < p−

1−µ , there exists ε0 > 0 such that q− + ε0 <
p−

1−µ . On the

other hand, since q ∈ C(Ω) it follows that there exists an open set Ω0 ⊂ Ω such

that |q(x)− q−| < ε0, for all u ∈ Ω0. Thus, we conclude that

q(x) ≤ q− + ε0 <
p−

1− µ
for all u ∈ Ω0. (14)

Let ϕ2 ∈ C∞0 (Ω) be such that Ω0 ⊂ supp ϕ2, ϕ2 = 1 for x ∈ Ω0 and
0 ≤ ϕ2(x) ≤ 1 in Ω. Without loss of generality, we may assume ‖ϕ2‖ = 1,
that is ∫

Ω

|∆ϕ2|p(x) dx = 1. (15)

Using relations (14) and (15), (M2) and
∫

Ω0
|ϕ2|q(x) dx = meas(Ω0), for all

t ∈ (0, 1) we have

Iλ(tϕ2) = M̂

(∫
Ω

1

p(x)
|∆tϕ2|p(x) dx

)
− λ

∫
Ω

|tϕ2|q(x)

q(x)
dx

≤
(∫

Ω

1

p(x)
|∆tϕ2|p(x) dx

) 1
1−µ

− λ
∫

Ω

|tϕ2|q(x)

q(x)
dx

≤ t
p−
1−µ

p−

∫
Ω

|∆ϕ2|p(x) dx− λ

q+

∫
Ω0

tq(x)|ϕ2|q(x) dx

≤ t
p−
1−µ

p−
− λtq

−+ε0

q+
meas(Ω0).

Therefore Iλ(tϕ2)<0, for t<η

1
p−
1−µ−q

−−ε0 , with 0<η< min
{

1, λp
−meas(Ω0)

q+

}
.

By Lemma 4.1, we have
inf

∂Bρ2 (0)
Iλ > 0.

On the other hand, from Lemma 4.2, there exists ϕ2 ∈ X such that Iλ(tϕ2) < 0
for t > 0 small enough. Relation (13) implies that for any u ∈ Bρ2(0) we have

Iλ(u) ≥ m0

p+
‖u‖p+ − λ

q−
cq
−

11 ‖u‖q
−
.
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It follows that

−∞ < c12 = inf
Bρ2 (0)

Iλ(u) < 0.

Using the Ekeland’s variational principle and the similar argument as those
used in the proof of Theorem 1.1, we can deduce that there exists a sequence
(v′n) ⊂ Bρ2(0) such that

Iλ(v
′
n)→ c12 and I ′λ(v

′
n)→ 0, (16)

and (v′n) converges strongly to some u3 in X. By (16), Iλ(u3) = c12 < 0 and
I ′λ(u3) = 0, i.e., u3 is a non-trivial weak solution of problem (4).
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