Pointwise Limits of Sequences of Right-Continuous Functions and Measurability of Functions of Two Variables

Zbigniew Grande

Abstract. In this article I prove that the pointwise limit $f: \mathbb{R} \to \mathbb{R}$ of a sequence of right-continuous functions has some special property (G) and that bounded functions of two variables $g: \mathbb{R}^2 \to \mathbb{R}$ whose vertical sections g_x, $x \in \mathbb{R}$, are derivatives and horizontal sections g^y, $y \in \mathbb{R}$, are pointwise limits of sequences of right-continuous functions, are measurable and sup-measurable in the sense of Lebesgue.

Keywords. Pointwise convergence, right-continuity, Baire 1 class, derivative, approximate continuity, measurability of functions of two variables

Mathematics Subject Classification (2010). Primary 26A15, secondary 26A21, 26B05, 26B35

1. Introduction

Denote by c_0 be the class of all continuous functions $f: \mathbb{R} \to \mathbb{R}$, by r_0 the class of all right-continuous functions $f: \mathbb{R} \to \mathbb{R}$, and by j_0 the class of all regulated functions $f: \mathbb{R} \to \mathbb{R}$ (a function $f: \mathbb{R} \to \mathbb{R}$ is regulated if for each point $x \in \mathbb{R}$ the both unilateral limits $f(x+)$ and $f(x−)$ exist and are finite). Moreover, let c_1 (resp. r_1 or j_1) be the class of all pointwise limits of sequences of functions from c_0 (resp. from r_0 or j_0). Similarly, if we take pointwise limits of sequences of functions from c_1, r_1 or j_1 we define the classes c_2, r_2 and j_2.

In [10], Reed obtained very interesting characterizations of c_1, r_1 and j_1. He proved that $c_1 \subset r_1 \subset j_1$, $c_1 \neq r_1 \neq j_1$ and $c_2 = r_2 = j_2$. Note that Reed’s considerations in [10] concern functions from $[0, 1]$ to \mathbb{R}, but his theorems are true for functions from \mathbb{R} to \mathbb{R}.

In [6, 7] it is proved the Lebesgue measurability of bounded functions $g: \mathbb{R}^2 \to \mathbb{R}$ whose vertical sections $g_x(t) = g(x, t)$, $x \in \mathbb{R}$, are derivatives and horizontal sections $g^y(t) = g(t, y)$, $y \in \mathbb{R}$, belong to c_1.

Z. Grande: Institute of Mathematics, Kazimierz Wielki University, Plac Weyssenhofa 11, 85-072 Bydgoszcz, Poland; grande@ukw.edu.pl
In [3,4] it is shown that the Continuum Hypothesis (CH) implies that there is a Lebesgue nonmeasurable function $h: \mathbb{R}^2 \to [0,1]$ with approximately continuous sections h_x, $x \in \mathbb{R}$, and such that for each $y \in \mathbb{R}$ the set $\mathbb{R} \setminus (h^y)^{-1}(0)$ is countable. Since every function $f: \mathbb{R} \to \mathbb{R}$ with the countable set $\mathbb{R} \setminus f^{-1}(0)$ belong to j_1 and every approximately bounded function is a derivative [2], we obtain that CH implies that there is a Lebesgue nonmeasurable function $h: \mathbb{R}^2 \to [0,1]$ with vertical sections h_x, $x \in \mathbb{R}$, being derivatives and horizontal sections h^y, $y \in \mathbb{R}$, belonging to j_1.

Hence the following natural question arises.

Problem. Let a bounded function $h: \mathbb{R}^2 \to \mathbb{R}$ be such that the vertical sections h_x, $x \in \mathbb{R}$, are derivatives and the vertical sections h^y, $y \in \mathbb{R}$, belong to r_1. Is the function h Lebesgue measurable?

In this article I prove that the answer is affirmative.

2. Main results

In [7] I introduce the following property (G) for the investigation of the Lebesgue measurability of functions of two variables. This definition bases on the notion of the density topology T_d [2].

For a point $x \in \mathbb{R}$ and for a Lebesgue measurable set $A \subset \mathbb{R}$ we define the lower density $D_l(A,x)$ of A at x as

$$\liminf_{h \to 0^+} \frac{\mu(A \cap [x-h,x+h])}{2h},$$

where μ denotes the Lebesgue measure on \mathbb{R}. If $D_l(A,x) = 1$ then x is called a density point of A. If B is arbitrary subset of \mathbb{R} then x is said a density point of B if there is a Lebesgue measurable subset $A \subset B$ with $D_l(A,x) = 1$. A nonempty set $B \subset \mathbb{R}$ belongs to the density topology T_d if every point $x \in B$ is a density point of B. All sets belonging to T_d are Lebesgue measurable [2].

Definition. A function $f: \mathbb{R} \to \mathbb{R}$ has the property (G) if for each nonempty set $A \in T_d$ and each real $\eta > 0$ there is an open interval I with $I \cap A \neq \emptyset$ such that the diameter $d(f(I \cap A))$ of the image of $f(I \cap A)$ is less than η.

Theorem 2.1. If a function $f: \mathbb{R} \to \mathbb{R}$ belongs to r_1 then it has the property (G).

Proof. Let $A \in T_d$ be a nonempty set and let η be a positive real. Since $f \in r_1$, there is a sequence of continuous on the right functions $f_n: \mathbb{R} \to \mathbb{R}$ which pointwise converges to f. For each point $x \in \mathbb{R}$ we find a positive integer $n(x)$ such that

$$|f_k(x) - f(x)| < \frac{\eta}{30} \quad \text{for } k \geq n(x).$$
Denote by B the closure of the set A and for $k \geq 1$ let $A_k = \{ x \in B : n(x) = k \}$. Since B is of the second category in itself and since $B = \bigcup_{k \geq 1} A_k$, there is a positive integer m such that A_m is of the second category in B. So there is an open interval I_1 such that $I_1 \cap B \neq \emptyset$ and the intersection $I_1 \cap A_m$ is dense in $I_1 \cap B$. Since $B = \text{cl}(A)$, there is a point $u \in A \cap I_1$. Let $i = \max(m, n(u))$. From the continuity on the right of the function f_i it follows that there is an open interval $I \subset I_1$ for which u is the left endpoint, and such that $|f_i(t) - f_i(u)| \leq \frac{\eta}{30}$ for $t \in I$. Since u is a density point of A, the intersection $I \cap A \neq \emptyset$. For $w \in I \cap A_m$ we have

$$|f(w) - f(u)| \leq |f(w) - f_i(w)| + |f_i(w) - f_i(u)| + |f_i(u) - f(u)|$$

$$(*)$$

We will prove that

$$f(t) \in \left[f(u) - \frac{\eta}{3}, f(u) + \frac{\eta}{3} \right] \quad \text{for} \quad t \in I \cap A.$$

Suppose, contrary to our claim, that $|f(s) - f(u)| > \frac{2}{3}$ for some point $s \in A \cap I$. Let $j > i$ be a positive integer such that $|f_k(s) - f(s)| < \frac{\eta}{30}$ for $k \geq j$. From the continuity on the right of the function f_j it follows that there is an open interval $K \subset I$ with the left endpoint s such that $|f_j(t) - f_j(s)| < \frac{\eta}{30}$ for $t \in K$. Since s is a density point of A, the set $K \cap A \neq \emptyset$. But $K \subset I$, so the intersection $K \cap A_m$ is dense in $K \cap A$. Consequently, there is a point $w_1 \in A_m \cap I$. We have

$$|f(w_1) - f(s)| \leq |f(w_1) - f_j(w_1)| + |f_j(w_1) - f_j(s)| + |f_j(s) - f(s)|$$

$$< \frac{\eta}{30} + \frac{\eta}{30} + \frac{\eta}{30} = \frac{\eta}{10}.$$

Thus

$$|f(w_1) - f(u)| = |(f(s) - f(u)) + (f(w_1) - f(s))|$$

$$\geq |f(s) - f(u)| - |f(w_1) - f(s)|$$

$$> \frac{\eta}{3} - \frac{\eta}{10}$$

$$> \frac{\eta}{10},$$

contradicting $(*)$. So the oscillation of f on $I \cap A$ is $\leq \frac{2\eta}{3} < \eta$ and f has the property (G).

From the above Theorem 2.1 and from [7, Theorem 4] we obtain the following theorem.
Theorem 2.2. Let \(g : \mathbb{R}^2 \to \mathbb{R} \) be a bounded function such that the vertical sections \(g_x, x \in \mathbb{R} \), are derivatives and the horizontal sections \(g^y, y \in \mathbb{R} \), belong to \(r_1 \). Then the function \(g \) is measurable in the sense of Lebesgue.

The continuity of functions \(f : \mathbb{R} \to \mathbb{R} \) considered as some applications from \((\mathbb{R}, T_d)\) to \((\mathbb{R}, T_e)\), where \(T_e \) denotes the natural topology in \(\mathbb{R} \), is said approximate continuity [2]. Since bounded approximately continuous functions are derivatives [2], from the above Theorem 2.2 we obtain the following.

Theorem 2.3. Let \(g : \mathbb{R}^2 \to \mathbb{R} \) be a bounded function. If the vertical sections \(g_x, x \in \mathbb{R} \), are approximately continuous and the horizontal sections \(g^y, y \in \mathbb{R} \), belong to \(r_1 \), then \(g \) is measurable in the sense of Lebesgue.

Observe that in Theorem 2.3 the condition of boundedness of the function \(g \) can be omitted, since the class of approximately continuous functions and \(r_1 \) are both invariant under outer homeomorphisms.

3. Final observations

3.1. Property (K). Earlier in [5] I introduce the property (K) which is more special than the property (G). A function \(f : \mathbb{R} \to \mathbb{R} \) has the property (K) if for each nonempty closed set \(A \subset \mathbb{R} \) such that for each open interval \(I \) with \(I \cap A \neq \emptyset \), the intersection \(I \cap A \) is of positive Lebesgue measure, the restricted function \(f|_A \) is continuous at a point \(x \in A \). Evidently all functions from \(c_1 \) have the property (K) and if a function \(f \) has the property (K) then it has also the property (G).

However, there are functions \(f \in r_1 \) without the property (K).

Example 3.1. Let \(A \subset (0,1) \) be a nonempty nowhere dense closed set such that for each open interval \(I \) with \(I \cap A \neq \emptyset \), the intersection \(I \cap A \) is of positive Lebesgue measure. If \(x \in A \) is isolated in \(A \) from the right then we put \(f(x) = 1 \). For other points \(x \in \mathbb{R} \) we put \(f(x) = 0 \). Then evidently \(f \in r_1 \), but \(f \) does not have the property (K).

3.2. Lebesgue sup-measurability. Recall that a function \(g : \mathbb{R}^2 \to \mathbb{R} \) is said to be Lebesgue sup-measurable if for each Lebesgue measurable function \(f : \mathbb{R} \to \mathbb{R} \) the Carathéodory superposition \(x \mapsto g(x, f(x)) \) is Lebesgue measurable [7]. It is known that the Lebesgue measurability of a bounded function \(g : \mathbb{R}^2 \to \mathbb{R} \) with the vertical sections \(g_x, x \in \mathbb{R} \), being derivatives implies its Lebesgue sup-measurability [8]. So from Theorem 2.2 we obtain the following.

Theorem 3.2. Let \(g : \mathbb{R}^2 \to \mathbb{R} \) be a bounded function such that the vertical sections \(g_x, x \in \mathbb{R} \), are derivatives and the horizontal sections \(g^y, y \in \mathbb{R} \), belong to \(r_1 \). Then the function \(g \) is Lebesgue sup-measurable.
In [7] it is shown an example of Lebesgue measurable bounded function \(g: \mathbb{R}^2 \to \mathbb{R} \) with constant horizontal sections \(g^y, y \in \mathbb{R} \), and almost everywhere continuous (so having the property (K)) vertical sections \(g_x, x \in \mathbb{R} \), which is not Lebesgue sup-measurable.

On the other hand Borel functions are Lebesgue sup-measurable and bounded functions \(g: \mathbb{R}^2 \to \mathbb{R} \), whose the vertical sections \(g_x, x \in \mathbb{R} \), belong to \(c_1 \) and whose the horizontal sections \(g^y, y \in \mathbb{R} \), are approximately continuous, are Borel functions of Baire class 2 [9]. On applying the same argument as in the proof of Theorem 1 from [9] we obtain that bounded functions \(g: \mathbb{R}^2 \to \mathbb{R} \), whose the vertical sections \(g_x, x \in \mathbb{R} \), belong to \(c_1 \) and whose the horizontal sections \(g^y, y \in \mathbb{R} \), are derivatives, are Borel functions of Baire class 2.

In this situation the following natural problems are open.

Problems. Let \(g: \mathbb{R}^2 \to \mathbb{R} \) be a bounded function whose the vertical sections \(g_x \in c_1 \) for \(x \in \mathbb{R} \) and the horizontal sections \(g^y, y \in \mathbb{R} \), are derivative. Is \(g \)

(1) a Borel function?

(2) a Lebesgue sup-measurable function?

In the investigation of the sup-measurability very important role play the numerous contributions of Isaak V. Shragin. In particular, Shragin obtained many closely related results on sup-measurable functions which should be compared with Theorem 3.2 (see for example [11]). Moreover, the book [1] contains a whole chapter dedicated to this topic.

References

Received March 5, 2013; revised August 14, 2013