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A Sharp Error Estimate for Numerical
Fourier Transform of Band-Limited

Functions Based on Windowed Samples
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Abstract. W. Dickmeis and R. J. Nessel published their first version of a quanti-
tative extension of the classical uniform boundedness principle in [J. Approx. The-
ory 31 (1981), 161–174]. It is a general approach to finding counterexamples that
prove sharpness of error estimates. So far applications of this principle include error
bounds for approximation processes, cubature rules, ordinary and partial differential
equations, and reconstruction from samples. Here we discuss the error of discrete ap-
proximations of the Fourier transform based on windowed samples for band-limited
functions. The results can be applied to the Hann- and Blackmann-Harris-window
but also to window-functions that enable higher orders of convergence. We describe
a class of such windows.

Keywords. Sharp error bounds, resonance principle, aliasing, window functions,
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1. Introduction

Shannon sampling theorem states that (under reasonable conditions) one can
compute values of the Fourier transform f∧(ω) :=

∫∞
−∞ f(u)e−iωu du on the basis

of samples if the function f is band-limited, i.e. f∧(ω) = 0 for |ω| > Ω, Ω being
a positive constant. Let ∆t > 0 be so small that the Shannon-Nyquist condition
∆t ≤ π

Ω
is valid. Then for all ω ∈ [−Ω,Ω] one has

f∧(ω) = ∆t

∞∑
k=−∞

f(k∆t) exp (−iωk∆t) .
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Also, the sampling theorem is used to reconstruct functions (signals) from sam-
ples f(k∆t). There has been a lot of work regarding the reconstruction of
signals under weaker assumptions than used in the sampling theorem, for a sur-
vey see [7]. Especially, other kernels than the sinc function can be applied. [21]
deals with kernels defined by some window functions that we will discuss, too.
But in contrast to reconstruction here we focus on the approximation of f∧(ω).

In engineering applications only a finite number of samples out of a finite
interval [−R,R] is available. This is equivalent to dealing with a modified
function f ·1[−R,R] where 1[−R,R] is the rectangle function with 1[−R,R](t) = 1 for
t ∈ [−R,R] and 1[−R,R](t) = 0 elsewhere. Unfortunately, this product no longer
is band-limited unless it is the null function. Therefore, one has to cope with
two errors: the difference between the transforms of f and f ·1[−R,R] (truncation
or leakage) and an approximation error that is called aliasing error by engineers.
This aliasing error originates from the absence of band-limitation of f · 1[−R,R].

In the periodic case we analyzed the aliasing error without the influence of
truncation for non-continuous functions in [14]. Since we now deal with band-
limited functions f , it seems natural to require continuity of f so that f equals
the continuous inverse Fourier transform of f∧.

Let us introduce some notations. L1(R) is the space of absolutely inte-
grable (complex-valued) functions on R, the set of real numbers, with norm
∥f∥1 :=

∫
R |f(t)| dt. Also, we use

∥f∥1,[a,b] :=
∫ b

a

|f(t)| dt, and ∥f∥∞,[a,b] := sup
t∈[a,b]

|f(t)|, ∥f∥∞ := ∥f∥∞,R.

To measure smoothness of functions we work with the well-known moduli of
continuity. Let n ∈ N where N := {1, 2, 3, . . . } denotes the set of natural
numbers. The n-th difference of a function f at point t is defined as

∆1
hf(t) := f(t+ h)− f(t), ∆n

hf(t) := ∆1
h∆

n−1
h f(t), n > 1,

or

∆n
hf(t) :=

n∑
j=0

(−1)n−j

(
n

j

)
f(t+ jh),

and moduli of continuity are defined via n-th differences:

ωn(f, δ, C(R)) := sup
0<h<δ

∥∆n
hf(·)∥∞, ωn(f, δ, L

1(R)) := sup
0<h<δ

∥∆n
hf(·)∥1.

To reduce truncation and aliasing errors, often ”better” window functions
than 1[−R,R] are used (see [15]). Here we investigate window functions gR with
compact support in [−R,R] that comply with following requirements:
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(W1) gR(t) = g
(

t
R

)
for an even function g with compact support in [−1, 1].

(W2) g(0) = 1.

(W3) g is (r+1)-times differentiable on R for an even r = 2s, s ∈ N ∪ {0}, and

ω2(δ, g
(r+1), L1(R)) = O(δ2), δ → 0 + .

For example, this asymptotic behaviour is given if g(r+1) is continuous and
piecewise composed of a finite number of two-times continuously differen-
tiable functions.

(W4) First r moments of g∧ are zero:
∫∞
−∞ ukg∧(u) du = 0 for each 1 ≤ k ≤ r

(for odd k this obviously is fulfilled because g is even; (W4) is an empty
condition for r = 0).

(W5) |1 − gR(t)| ≤ CtR
−r−2 (e.g. this is fulfilled if g is (r+2)-times differen-

tiable in a neighbourhood of 0 with g(k)(0) = 0, 1 ≤ k ≤ r + 1, i.e. g
approximates 1[−1,1] near t = 0).

Classical window functions that meet (W1)–(W5) for r=0 are Hann-window
(also known as cos2-, von Hann-, and Hanning-window), Blackmann- and Black-
mann-Harris-window functions. They are special cases of conventional windows
in the form of a sum of cosine terms (cf. (W1), m ∈ N, r = 2s, s ∈ N ∪ {0})

g(t) :=


m∑
k=0

ak cos (πkt) , −1 ≤ t ≤ 1

0 , |t| > 1

(1)

where the constants ak have to be chosen such that (for (2) cf. [19], for (3) see
[15, p. 63])

m∑
k=0

(−1)kak = 0 ,
m∑
k=0

(−1)kk2jak = 0 for all 1 ≤ j ≤ s, (2)

m∑
k=0

ak = 1 , (3)

m∑
k=0

k2jak = 0 for all 1 ≤ j ≤ s. (4)

Equation (3) implies (W2): g(0) =
∑m

k=0 ak = 1. Condition (W3) holds
true, because (2) ensures that all derivatives up to the order r + 1 exist (espe-
cially at ±1). g(r+1) is continuous and infinitely often differentiable on [−1, 1],
(−∞,−1], and [1,∞).

Condition (W5) is fulfilled, too: Let R > |t|, then via Taylor-expansion of
cosine and (3), (4) we find some real numbers ξπkt

R
such that (R → ∞)
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|1− gR(t)| =

∣∣∣∣∣1−
m∑
k=0

ak cos

(
πkt

R

)∣∣∣∣∣
=

∣∣∣∣∣1−
m∑
k=0

ak

[
s∑

j=0

(−1)j
(
πkt
R

)2j
(2j)!

+ (−1)s+1

(
πkt
R

)2s+2

(2s)!
cos

(
ξπkt

R

)]∣∣∣∣∣
=

∣∣∣∣∣1−
[

s∑
j=0

(−1)j
(
πt
R

)2j
(2j)!

m∑
k=0

k2jak

]
−

m∑
k=0

(−1)s+1

(
πkt
R

)2s+2

(2s)!
cos

(
ξπkt

R

)∣∣∣∣∣
=

∣∣∣∣∣
m∑
k=0

ak

(
πkt
R

)2s+2

(2s)!
cos

(
ξπkt

R

)∣∣∣∣∣
= Ot(R

−r−2).

With condition (W4) for r > 0 we deal in Section 3.
Depending on m and ak we get following windows for r = 2s = 0 (see [15]):

• For m = 1 and a0 = a1 =
1
2
the function gR is the Hann-window function:

gR(t) =


1

2
+

1

2
cos

( π

R
t
)
= cos2

( π

2R
t
)
, −R ≤ t ≤ R

0 , |t| > R.

• For m = 2 and a0 = 1−c
2
, a1 = 1

2
, a2 = c

2
, 0 < c < 1, the function gR is

called Blackmann-window.

• The case m = 3 for (rounded) constants a0 = 0.359, a1 = 0.488,
a2 = 0.141, and a3 = 0.012 is the Blackmann-Harris-window.

In engineering applications often a fixed R is used, whereas we discuss
R → ∞. For a fixed R it turns out that violating (2) might give better results.
In this context the settings for the Hamming-window are m = 1, a0 = 0.54,
a1 = 0.46 (cf. [23] for window design).

In this paper we investigate the error of replacing (f∧)∗(ω) by ([f ·gR]∧)∗(ω)
where (f∧)∗(ω) denotes a value of the discrete Fourier transform

(f∧)∗(ω) := ∆t
∑

k∈Z, k∆t∈[−R,R]

f(k∆t) exp (−iωk∆t) ,

where Z := {0, 1,−1, 2,−2, . . . }.
The rate of convergence is determined by (W3), (W4) and the smoothness

of f∧.

Theorem 1.1. Let f ∈L1(R) be a continuous, band-limited function (f∧(ω) = 0
outside [−Ω,Ω]). Further, f∧ should be smooth in the sense that (f∧)(r) exists
for an even r = 2s, s ∈ N ∪ {0}, and

ω2((f
∧)(r), δ, C(R)) ≤ Cδα



A Sharp Error Estimate for Windowed Samples 375

for some 0 < α < 2. Let ∆t > 0 fulfill the Shannon-Nyquist condition

π

∆t
≥ Ω. (5)

The window function gR(t) = g
(

t
R

)
might fulfill (W1)–(W4). Then for each

0 < Ω1 < Ω the following direct estimate holds true (R → ∞) :

sup
ω∈[−Ω1,Ω1]

|f∧(ω)− [(f · gR)∧]∗(ω)| = O(R−r−α). (6)

Smoothness of f∧ (that is measured via the ω2-modulus of the r-th deriva-
tive) is closely connected to the behavior of the tail integral of f (cf. [1]).

Estimate (6) is best possible in the following sense.

Theorem 1.2. Let |u1| ≤ Ω1 < Ω and ∆t > 0 be constants such that (5) is
fulfilled. Let r = 2s, s ∈ N ∪ {0}, and let the window function gR(t) = g

(
t
R

)
fulfill (W1)–(W3). Then for each 0 < α < 2 with r + α > 1 there exists a
continuous, real-valued counterexample fα ∈ L1(R) that is band-limited in the
sense of f∧(ω) = 0 for all |ω| > Ω, such that (f∧)(r) exists and

ω2((f
∧
α )

(r), δ, C(R)) ≤ Cδα

but (R → ∞)
|f∧

α (u1)− [(fα · gR)∧]∗(u1)| ̸= o(R−r−α). (7)

If additionally (W5) holds true, then counterexample fα does not only behave
like (7) at the point u1 but for all ω ∈ [−Ω1,Ω1] there simultaneously is

|f∧
α (ω)− [(fα · gR)∧]∗(ω)| ̸= o(R−r−α).

For window functions of type (1) fulfilling (2), (3) like the Hann- or Black-
mann-Harris-window, Theorem 1.1 holds true for r = 0, 0 < α < 2, and the
estimate is best possible at least for 1 < α < 2 simultaneously on a set [−Ω1,Ω1].
Examples of window functions fulfilling (2)–(4) and (W1)–(W5) for r ≥ 2 are
given in Section 3. For these examples Theorem 1.1 provides an estimate for
r ≥ 2 that is best possible for all values 0 < α < 2 on a set [−Ω1,Ω1].

In what follows we discuss properties of window functions in the frequency
domain, give examples for convergence of order r > 0 and prove Theorem 1.1.
In order to estimate the error, we split it up into a truncation and an aliasing
part:

|f∧(ω)− [(f ·gR)∧]∗(ω)| ≤ |f∧(ω)− (f ·gR)∧(ω)|︸ ︷︷ ︸
truncation error

+ |(f ·gR)∧(ω)− [(f ·gR)∧]∗(ω)|︸ ︷︷ ︸
aliasing error

.

We discuss each error in a separate section and conclude with the proof of
Theorem 1.2.

Proofs of Theorems 1.1 and 1.2 discuss properties of window functions in
terms of Approximation Theory. This perspective might also be helpful to
engineers working in the field of signal analysis.
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2. Window functions as kernels in frequency domain

Window functions that fulfill (W1)–(W3) can be interpreted as kernels of Fejér-
type in the frequency domain.

We define an even (cf. (W1)), real-valued, continuous kernel χ via (inverse)
Fourier transform:

χ(u) :=
1

2π
g∧(u) =

1

2π

∫ 1

−1

g(v)e−ivu dv.

Well-known Riemann-Lebesgue-lemma with orders (cf. [22]) gives the esti-
mate

|χ(u)| = 1

2π
|g∧(u)| ≤ Cωr+3

(
π

|u|
, g, L1(R)

)
.

As a consequence of (W3) we get

ωr+3

(
π

|u|
, g, L1(R)

)
≤ C1|u|−r−1ω2

(
π

|u|
, g(r+1), L1(R)

)
≤ C2|u|−r−3.

We have shown that
|χ(u)| ≤ C|u|−r−3. (8)

That means that χ ∈ L1(R), χ is Fourier transformable with χ∧(t) = g(t) so
that χ is band-limited. The sidelobe falloff rate of order r + 3 implies that the
(r + α)-th absolute moment of χ exists for 0 < α < 2:

m(χ, r + α) :=

∫ ∞

−∞
|u|r+α|χ(u)| du < ∞. (9)

Because of (W2) the kernel is normed:∫ ∞

−∞
χ(u) du = χ∧(0) = g(0) = 1. (10)

We can write gR(t) with χ as follows:

[Rχ(R·)]∧(t) = χ∧
(

t

R

)
= gR(t). (11)

The set of functions {Rχ(Rx) : R > 0} (and also the function χ) is called
a kernel of Fejér-type. In Approximation Theory it serves as an approximate
identity (cf. [6, p. 121]). In Section 5 we estimate the truncation error as a
remainder of such an approximation process.

Condition (W4) is a requirement for moments of the kernel that we verify
for a certain class of window-functions in Section 3:

0 =

∫ ∞

−∞
ukg∧(u) du = 2π

∫ ∞

−∞
ukχ(u) du. (12)
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The continuous kernel corresponding to (1) is a well-known linear combina-

tion of sinc-functions where sinc(u) = sin(u)
u

. By partial integration we get

χ(u) = −u sin(u)

π

m∑
k=0

ak(−1)k

k2π2 − u2

=
sin(u)

2π

m∑
k=0

ak(−1)k
[

1

kπ + u
− 1

kπ − u

]
=

1

2π

m∑
k=0

ak [sinc(kπ + u)+sinc(kπ − u)] ,

(13)

especially the Hann-window function leads to the kernel χ(u) = 1
2π

sinc(u)

1−u2

π2

.

3. Higher order of convergence

So far our examples are chosen for r = 0. To get window-functions for higher
orders r = 2s, s ∈ N, we restrict ourselves to the case where m = r + 1.

Please note that in this case there is a unique solution to linear equations
(2)–(4): With Gauss operations we transform matrix A representing equations
(3), (4), and (2) into the matrix B:

1 1 1 1 1 1 . . .
0 1 41 91 161 251

0 1 42 92 162 252

...
1 −1 1 −1 1 −1 . . .
0 −1 41 −91 161 −251

0 −1 42 −92 162 −252

...


︸ ︷︷ ︸

A

,



1 0 1 0 1 0 . . .
0 0 41 0 161 0
0 0 42 0 162 0
...
0 1 0 1 0 1 . . .
0 1 0 91 0 251

0 1 0 92 0 252

...


︸ ︷︷ ︸

B

.

First r
2
+ 1 rows of B without columns of zeroes make up a Vandermode ma-

trix. The same is true for the remaining r
2
+ 1 rows. Therefore, both groups

of equations are linear independent. Because the groups have different zero
columns, it immediately follows that all rows in B (and therefore in A) are
linear independent such that there is a unique solution.

The next observation is that ak = 0, k ∈ {2, 4, . . . , r}. To see this,
we combine homogeneous equations (2) and (4) for 1 ≤ j ≤ s by adding
them in pairs. Then we get s linear independent equations for the s variables
a2, a4, . . . , ar that are of Vandermonde-type as well (cf. rows 2 to r

2
+ 1 in B).

As a solution of the homogeneous system the variables are zero.
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We show that with these parameters (W4) is fulfilled. To this end, we
compute moments (12) for k = 2j, 1 ≤ j ≤ s = r

2
. Please note that the highest

power of the nominator is less than the highest power of the denominator in
the fraction part of the following integral. The reason is tail estimate (8).
Therefore we can use partial fraction decomposition with constants Ak. With
J := {1, 3, 5, . . . r + 1} we get (cf. (13))∫ ∞

−∞
u2jg∧(u) du = 4π

∫ ∞

0

u2jχ(u) du

=

∫ ∞

0

sin(u)
∑
k∈J

[
Ak

u− kπ
+

Ak

u+ kπ

]
du

=
∑
k∈J

Ak

∫ ∞

0

sin(u)

u− kπ
+

sin(u)

u+ kπ
du

=
∑
k∈J

Ak(−1)k
∫ ∞

0

sin(u− kπ)

u− kπ
+

sin(u+ kπ)

u+ kπ
du

=
∑
k∈J

Ak(−1)k
[π
2
+Si(kπ)+

π

2
−Si(kπ)

]
= π

∑
k∈J

Ak(−1)k

= −π
∑
k∈J

Ak

= 0.

(14)

Note that terms Ak

u−kπ
and Ak

u+kπ
share the same constant Ak. In the last step we

use that
∑

k∈J 2Ak is the coefficient of u2(r+1− r
2
)−1 = ur+1 in the nominator if

we write the sum in (14) as one fraction. The highest power of the denominator
then is 2(r + 1− r

2
) = r + 2. Because of (8) there can be no higher power than

2j + (r + 2)− (r + 3) ≤ r − 1 in the nominator. Therefore
∑

k∈J Ak = 0.
We have proved that for each r = 2s, s ∈ N, there is a window-function

fulfilling (W1)–(W5) so that error estimate Theorem 1.1 gives a sharp error
bound of order O(R−r−α), 0 < α < 2.

Coefficients in the case r = 4, m = 3 are a0 = 1
2
, a1 = 9

16
, a2 = 0, and

a3 = − 1
16
. They define the window-function

gR(t) =


1

2
+

9

16
cos

( π

R
t
)
− 1

16
cos

(
3π

R
t

)
, −R ≤ t ≤ R

0 , |t| > R.

This window was introduced in [2] for aesthetic reasons but not as a result of
mathematical optimiziation (as it is said in [2]).
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4. Aliasing error

It is well known that the Shannon sampling theorem can be proved via the
Poisson summation formula. We use this approach to estimate the aliasing
error.

Let f , ∥f∥1 < ∞, be band-limited to [−Ω,Ω], and gR(t) = g
(

t
R

)
be a

window function satisfying (W1)–(W3).
The inverse Fourier transform (f∧)∨ of f∧ does exist because of band lim-

itation. In Theorem 1.1 we investigate a continuous function f . For the next
arguments the continuity is not required. Without continuity there is f = (f∧)∨

a.e. and (f · gR)∧(ω) can be written as the convolution

1

2π
(f∧ ∗ g∧R)(ω) :=

1

2π

∫ ∞

−∞
f∧(u)g∧R(ω − u) du =

1

2π

∫ Ω

−Ω

f∧(u)g∧R(ω − u) du.

We apply Poisson summation to the function

h(ω) := ∆t(f(·∆t)gR(·∆t))∧(ω) = (fgR)
∧
( ω

∆t

)
=

1

2π
[f∧ ∗ g∧R]

( ω

∆t

)
where parameter ∆t > 0 is fixed.

We verify preliminaries of the Poisson summation formula (cf. [6, p. 202]):

• As a Fourier transform, h is continuous on R.
• The function h is absolutely integrable because∫ ∞

−∞
|h(ω)| dω ≤ 1

2π

∫ ∞

−∞

∫ ∞

−∞

∣∣∣f∧
( ω

∆t
− u

)∣∣∣ |g∧R(u)| dωdu
=

∆t

2π
∥g∧R∥1

∫ Ω

−Ω

|f∧(ω)|dω < ∞.

• Sequence (h∧(k))k∈Z is absolutely summable:

∞∑
k=−∞

|h∧(k)| = 2π∆t
∞∑

k=−∞

|([f∧]∨gR)(−k∆t)|

= 2π∆t
∑

k∈Z∩[− R
∆t

, R
∆t ]

|([f∧]∨gR)(k∆t)| < ∞.

• We show that the series
∑∞

k=−∞ h(ω + k2π) converges uniformly in ω on
[0, 2π] (and therefore on R). To this end, we estimate the summands:

|h(ω + k2π)| = 1

2π

∣∣∣∣∫ Ω

−Ω

f∧(u)g∧R

(
ω

∆t
+ k

2π

∆t
− u

)
du

∣∣∣∣
≤ 1

2π
∥f∧∥∞,[−Ω,Ω]∥g∧R∥1,[−Ω+k 2π

∆t
,Ω+(k+1) 2π

∆t ]
.

(15)
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The right side is independent of ω. Let l ∈ N such that Ω ≤ l 2π
∆t
. Then

∞∑
k=−∞

∥g∧R∥1,[−Ω+k 2π
∆t

,Ω+(k+1) 2π
∆t ]

≤
∞∑

k=−∞

∥g∧R∥1,[(−l+k) 2π
∆t

,(l+k+1) 2π
∆t ]

=(2l+1)∥g∧R∥1.

The convergent majorant (15) proves uniform convergence.

Now we can apply the Poisson summation formula: For each ω0 ∈ R there holds
true

∑∞
k=−∞ h(ω0 + k2π) = 1

2π

∑∞
k=−∞ h∧(k)eikω0 , i.e.

1

2π

∞∑
k=−∞

[f∧ ∗ g∧R]
(
ω0

∆t
+ k

2π

∆t

)
= ∆t

∞∑
k=−∞

[f∧]∨(−k∆t)gR(−k∆t)eikω0

= ∆t
∞∑

k=−∞

[f∧]∨(k∆t)gR(k∆t)e−ikω0 .

By setting ω0 := ω∆t we get

1

2π

∞∑
k=−∞

[f∧ ∗ g∧R]
(
ω + k

2π

∆t

)
= ∆t

∞∑
k=−∞

[f∧]∨(k∆t)gR(k∆t)e−iωk∆t.

This gives a formula for the aliasing error for continuous f (i.e. (f∧)∨ = f):

(f · gR)∧(ω)− [(f · gR)∧]∗(ω)=
1

2π
[f∧∗g∧R](ω)−∆t

∞∑
k=−∞

f(k∆t)gR(k∆t)e−iωk∆t

=− 1

2π

∑
k∈Z\{0}

[f∧∗g∧R]
(
ω + k

2π

∆t

)

=−
∑

k∈Z\{0}

[f · gR]∧
(
ω + k

2π

∆t

)
.

With this formula we now prove an error estimate that is independent of the
smoothness of f∧. It only takes asymptotic behavior of kernel χ (cf. (11))
into account. At this point condition (5) is needed, i.e. Ω ≤ π

∆t
. For each

ω ∈ [−Ω1,Ω1] we get

|(f · gR)∧(ω)−[(f · gR)∧]∗(ω)|≤
1

2π

∑
k∈Z\{0}

∣∣∣∣∫ Ω

−Ω

f∧(u)g∧R

(
ω + k

2π

∆t
− u

)
du

∣∣∣∣
≤ 1

2π
∥f∧∥∞,[−Ω,Ω]

∑
k∈Z\{0}

∥g∧R∥1,[ω+(2k−1) π
∆t

,ω+(2k+1) π
∆t ]

=
1

2π
∥f∧∥∞,[−Ω,Ω]∥g∧R∥1,R\[ω− π

∆t
,ω+ π

∆t ]
.
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This implies |(f · gR)∧(ω)− [(f · gR)∧]∗(ω)| ≤ 1
2π
∥f∧∥∞,[−Ω,Ω]∥g∧R∥1,R\[ω−Ω,ω+Ω] =

1
2π
∥f∧∥∞,[−Ω,Ω]∥Rg∧(R·)∥1,R\[ω−Ω,ω+Ω]= ∥f∧∥∞,[−Ω,Ω]∥χ∥1,R\[R(ω−Ω),R(ω+Ω)]. Note

that ω + Ω ≥ Ω − Ω1 > 0, and ω − Ω ≤ Ω1 − Ω < 0. Together with (8) we
conclude

∥χ∥1,[R(ω+Ω),∞) ≤ ∥χ∥1,[R(Ω−Ω1),∞) ≤ C

r + 2
(Ω− Ω1)

−r−2R−r−2,

∥χ∥1,(−∞,R(ω−Ω)] ≤ ∥χ∥1,(−∞,R(Ω1−Ω)] ≤
C

r + 2
(Ω− Ω1)

−r−2R−r−2,

i.e. |(f · gR)∧(ω)− [(f · gR)∧]∗(ω)| = O(R−r−2) independently of ω ∈ [−Ω1,Ω1].
Because r+α < r+2 this proves that in the context of Theorem 1.1 the aliasing
error is of order O(R−r−α).

5. Truncation error

Let χ ∈ L1(R) be an even kernel that fulfills (9), (10), (12) for an r = 2s,
s ∈ N∪{0}, i.e. the (r+α)-th absolute moments of the normed kernel exist for
0 < α < 2 and all moments up to the r-th moment are zero. Then for every
r-times continuously differentiable φ : R → C with

ω2(φ
(r), δ, C(R)) ≤ Cδα

there holds true (see [6, p. 144]) supω∈R |φ(ω) − [φ ∗ Rχ(·R)](ω)| ≤ CR−r−α.

This classic estimate for a convolution process can be applied to estimate the
truncation error under the preliminaries of Theorem 1.1 with φ = f∧ and
Rχ(·R) = 1

2π
g∧R. Since conditions (9), (10), (12) follow from (W1)–(W4) (see

Section 2) we have shown

sup
ω∈R

|f∧(ω)− (f ·gR)∧(ω)| ≤ CR−r−α.

In connection with the result of the previous section this completes the proof
of Theorem 1.1.

6. Sharpness

In this section we prove Theorem 1.2. Preliminaries ensure that the aliasing
error vanishes with order O(R−r−2). Because α < 2, it is sufficient to construct
a counterexample fα so that the truncation error is ̸= o(R−r−α). This is the
error of a convolution process of Fejér-type as discussed in the previous section.
In [18] sharpness of such error bounds is shown on the basis of quantitative
extensions of the uniform boundedness principle developed by Dickmeis, Nes-
sel and van Wickeren (cf. [9, 10]). We follow this approach and modify it to
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fit for band-limited functions. In this manner we get counterexamples in the
frequency domain. By inverse Fourier transform we then find the results of The-
orem 1.2. Similar applications of the uniform boundedness principle on other
fields of Numerical Analysis are presented in [3–5, 11–13]. In [20] it is applied
to reconstruction from samples.

An abstract modulus of continuity is a function ω, continuous on [0,∞)
such that, for 0 < δ1, δ2,

0 = ω(0) < ω(δ1) ≤ ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2). (16)

Functions ω(δ) := δβ, 0 < β ≤ 1, satisfy these conditions.
For a Banach space X with norm ∥ · ∥X let X∼ be the set of non-negative-

valued sublinear bounded functionals T on X, i.e. T maps X into R such that
for all f, g ∈ X, c ∈ R

Tf ≥ 0, T (f + g) ≤ Tf + Tg, T (cf) = |c|Tf,

∥T∥X∼ := sup{Tf : ∥f∥X ≤ 1} < ∞.

Theorem 6.1. Suppose that for a family of remainders {Tn,u : n ∈N, u ∈ B}
⊂ X∼, B being a non-empty index set, and for a measure of smoothness
{Sδ : δ > 0} ⊂ X∼ there are test elements hn ∈ X and a constant n0 ∈ N
such that for all n > n0, n ∈ N, and all 0 < δ (≤ 1):

∥hn∥X ≤ C1, (17)

Sδhn ≤ C2 min

{
1,

σ(δ)

φn

}
, (18)

Tn,u1hn ≥ C3,u1 > 0, (19)

where σ(δ) is a function, strictly positive on (0,∞), and (φn)n∈N ⊂ R is a
strictly decreasing sequence with limn→∞ φn = 0, and u1 ∈ B is a fixed index.
Then for each modulus ω satisfying (16) and

lim
δ→0+

ω(δ)

δ
= ∞

there exists a counterexample fω ∈ X,

fω =
∞∑
k=1

ω (φnk
)hnk

(20)

for a strictly increasing sequence (nk)
∞
k=1 of natural numbers such that (δ → 0+,

n → ∞)
Sδfω = O (ω(σ(δ))) , Tn,u1fω ̸= o(ω(φn)).
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The sequence (nk)
∞
k=1 can be chosen such that

Tn,ufω ̸= o(ω(φn)) (21)

simultaneously for all u ∈ B, if instead of (19) following conditions are satisfied
for all u ∈ B and 1 ≤ j ≤ n− 1, n > n0:

∥Tn,u∥X∼ ≤ C4,n, (22)

Tn,uhj ≤ C5,uC5,jφn, (23)

Tn,uhn ≥ C6,u > 0. (24)

For a constructive proof of the first part using a gliding hump, further
comments, and applications to Approximation Theory see [10]. The extension
to the index set B is a special case of more general theorems proven in [9,16,17].

We use this general concept to show Theorem 1.2. To this end let σ(δ) :=δ2,
φn := 1

n2 , and ω(δ) := δ
α
2 . Let X be the space of r-times continuously differ-

entiable functions with compact support in [−Ω,Ω] equipped with sup-norm
∥f∥r,∞ :=

∑r
k=0 ∥f (r)∥∞. For f ∈ X we set Sδf := ω2(f

(r), δ, C(R)).
For construction of test elements we place a constant Ω0 between Ω1 and Ω:

0 < |u1| ≤ Ω1 < Ω0 < Ω.
Functionals Tn := Tn,u express the truncation error at the point u (especially

for u = u1):
Tn,uf := nr|f(u)− [f ∗ nχ(·n)](u)|.

Therefore, Tn,u ∈ X∼ with ∥Tn,u∥X∼ ≤ nr[1 + ∥χ∥1].
The sequence of test elements is constructed from functions

h̃n(u) :=
1

nr
exp(iuω0n).

Here, ω0 ∈ R is a constant such that |χ∧(ω0)|≤ 1
2
(note that limu→±∞ χ∧(u)=0).

These functions ensure that

Tn,uh̃n = nr|h̃n(u)− [h̃n ∗ nχ(·n)](u)|

=

∣∣∣∣eiuω0n − eiuω0nn

∫ ∞

−∞
e−iω0ntχ(nt) dt

∣∣∣∣
=

∣∣∣∣1− ∫ ∞

−∞
e−iω0vχ(v) dv

∣∣∣∣
= |1− χ∧(ω0)| ≥

1

2
.

Functions h̃n do not have a compact support so that they do not belong to X.
Therefore, we modify them through multiplication with a smooth window func-
tion H. Let H : R → R be an even function, arbitrary often differentiable with
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compact support in [−Ω,Ω], so that for all u ∈ [−Ω0,Ω0] ⊂ [−Ω,Ω] there is
H(u) = 1. Function H can be chosen such that |H(u)| ≤ 1, u ∈ R. Now we
define the test elements

hn(u) := h̃n(u)H(u).

Obviously, ∥hn∥X=∥hn∥r,∞≤C1, giving (17). Also, Sδhn≤4∥h(r)
n ∥∞=O(1)

and

Sδhn≤C1δ
2∥h(r+2)

n ∥∞≤C1δ
2 1

nr

r+2∑
k=0

(
r+2

k

)
nkωk

0∥H(r+2−k)∥∞≤C2δ
2n2=C2

σ(δ)

φn

.

That validates (18).
For u ∈ [−Ω1,Ω1] there is 1−H(u) = 0 and

Tn,uhn≥nr
∣∣∣h̃n(u)−[h̃n∗nχ(·n)](u)

∣∣∣−nr
∣∣∣h̃n(u)[1−H(u)]−[h̃n[1−H]∗nχ(·n)](u)

∣∣∣
= |1−χ∧(ω0)|−nr|h̃n[1−H]∗nχ(·n)](u)|

≥ 1

2
−
∣∣∣∣einω0u

∫ ∞

−∞
e−inω0v[1−H(u−v)]nχ(nv) dv

∣∣∣∣
=
1

2
−
∣∣∣∣∫

R\[n(u−Ω0),n(u+Ω0)]

e−iω0v
[
1−H

(
u− v

n

)]
χ(v) dv

∣∣∣∣
≥ 1

2
−
∫
R\[n(u−Ω0),n(u+Ω0)]

|χ(v)| dv

≥ 1

2
−
∫
R\[n(Ω1−Ω0),n(−Ω1+Ω0)]

|χ(v)| dv.

Since χ ∈ L1(R), the last integral converges to zero as n → ∞ (independently
of u). We select n0 such that for all n > n0 and u ∈ [−Ω1,Ω1]

Tn,ωhn ≥ 1

4
.

For u := u1 we have shown (17).
Now we can apply Theorem 6.1 to get a continuous counterexample hα with

compact support in [−Ω,Ω] and

ω2(h
(r)
α , δ, C(R)) ≤ Cδα

but
|hα(u1)− (hα ∗Rχ(R·))(u1)| ̸= o(R−r−α).

By inverse Fourier transform we find the required continuous counterexample
fα(t) := h∨

α(t) :=
1
2π
h∧
α(−t). We show that fα(t) belongs to L1(R). To this end

Riemann-Lebesgue-lemma (cf. [22]) gives

|fα(t)| ≤ Cωr+2

(
π

|t|
, hα, L

1(R)
)
.
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Obviously (t → ±∞)

ωr+2

(
π

|t|
, hα, L

1(R)
)

≤
[
2Ω + r

π

|t|

]
ωr+2

(
π

|t|
, hα, C(R)

)
≤ Cω2

(
π

|t|
, h(r)

α , C(R)
)

= O(|t|−r−α).

Because of r+α > 1 the L1-norm of fα is finite. fα can be Fourier transformed
and the transform is hα.

Please note that all test elements hn are complex-valued and that hα is
complex-valued, too. Real parts Re(hn) are even and imaginary parts Im(hn)
are odd. Because of (20) this leads to a counterexample hα in the frequency
domain that has an even real part and an odd imaginary part. Inverse Fourier
transform then gives a real-valued counterexample fα in the time domain. We
have shown (7).

Getting a real-valued counterexample through inverse Fourier transform is
very much simpler than constructing a real-valued counterexample for convolu-
tion processes in the frequency domain (cf. [18]).

It remains to prove simultaneous sharpness on B using condition (W5) in
connection with (11). To this end let 1 ≤ j < n:

Tn,uh̃j = nr|h̃j(u)− [h̃j ∗ nχ(·n)](u)|

=

(
n

j

)r ∣∣∣∣eiuω0j − eiuω0jn

∫ ∞

−∞
e−iω0

j
n
ntχ(nt) dt

∣∣∣∣
=

(
n

j

)r ∣∣∣∣1−∫ ∞

−∞
e−iω0

j
n
vχ(v) dv

∣∣∣∣
=

(
n

j

)r ∣∣∣∣1−χ∧
(
j

n

)∣∣∣∣
≤ Cj

(
n
j

)r

nr+2
≤ Cjφn.

That enables us to show (23) for all u ∈ B:

Tn,uhj ≤ nr
[∣∣∣h̃j(u)−[h̃j∗nχ(·n)](u)

∣∣∣+∣∣∣h̃j(u)[1−H(u)]−[h̃j[1−H]∗nχ(·n)](u)
∣∣∣]

≤ Cφn + nr|h̃j[1−H] ∗ nχ(·n)](u)|

= Cφn +

(
n

j

)r ∣∣∣∣∫
R\[n(u−Ω0),n(u+Ω0)]

e−iω0
j
n
v
[
1−H

(
u− v

n

)]
χ(v) dv

∣∣∣∣
≤ Cφn +

(
n

j

)r ∫
R\[n(Ω1−Ω0),n(−Ω1+Ω0)]

|χ(v)| dv

= Cφn + 2

(
n

j

)r ∫ ∞

n(Ω0−Ω1)

|χ(v)| dv.
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Tail condition (8) completes the estimate against φn with constants not de-
pending on u or n:

Tn,uhj≤Cφn+C2

(
n

j

)r −2

r+2

[
1

ur+2

]∞
n(Ω0−Ω1)

=Cφn+C2

(
1

j

)r
2

r+2

1

(Ω0−Ω1)r+2
φn.

Please note, that we already have shown (22) and (24). With respect to (21) this
brings the proof of Theorem 1.2 to an end. We refer to our previous remark
that counterexample fα (created by inverse Fourier transform of hα) also is
real-valued in the context of simultaneous sharpness because of (20).
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[22] Trebels, W., Estimates for moduli of continuity of functions given by their
Fourier transform. In: Constructive Theory of Functions of Several Variables
(eds.: W. Schempp et al.). Berlin: Springer 1977, pp. 277 – 288.

[23] Tsuchiya, M., A design technique for window functions. Electron. Comm.
Japan, Part 2, 82 (1999), 43 – 48.

Received May 21, 2012; revised February 4, 2013


