On a Singular Logistic Equation with the p-Laplacian

Dang Dinh Hai

Abstract. We prove the existence and nonexistence of positive solutions for the boundary value problems

\[
\begin{cases}
-\Delta_p u = g(x,u) - \frac{h(x)}{u^\alpha} & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where $\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u)$, $p > 1$, Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$, $\alpha \in (0, 1)$, $g : \Omega \times (0, \infty) \to \mathbb{R}$ is possibly singular at $u = 0$. An application to a singular logistic-like equation is given.

Keywords. Sup-supersolutions, singular, positive solutions

Mathematics Subject Classification (2010). Primary 35J, secondary 35J75, 35J92

1. Introduction

Consider the boundary value problem

\[
\begin{cases}
-\Delta_p u = g(x,u) - \frac{h(x)}{u^\alpha} & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where $\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u)$, $p > 1$, Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$, $h : \Omega \to \mathbb{R}$, $g : \Omega \times (0, \infty) \to \mathbb{R}$, and $0 < \alpha < 1$.

In [4, Theorem 5.3], Drabek and Hernandez show that the logistic equation involving the p-Laplacian

\[
\begin{cases}
-\Delta_p u = \lambda m(x)u^{p-1} - u^{\gamma-1} & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

D. D. Hai: Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA; email: dang@math.msstate.edu
where \(1 < p < \gamma, m \in L^r(\Omega), r > \frac{N(\gamma-1)}{p(\gamma-p)}, m(x) \geq m_0 > 0 \) in \(\Omega \), has a unique positive solution \(u \) with \(u \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega) \) for \(\lambda > \lambda_1 \). Here \(\lambda_1 \) denotes the first eigenvalue of
\[
\begin{cases}
-\Delta_p u = \lambda m(x) |u|^{p-2} u & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega.
\end{cases}
\] (3)

Note that the nonlinearity \(g(x,u) = \lambda m(x) u^{p-1} - u^{\gamma-1} \) is continuous in \(u \) for a.e. \(x \in \Omega \), and satisfies
\[
\lim_{u \to \infty} \frac{g(x,u)}{m(x)u^{p-1}} = -\infty, \quad \lim_{u \to 0^+} \frac{g(x,u)}{m(x)u^{p-1}} = \lambda > \lambda_1.
\] (4)

uniformly for \(x \in \Omega \).

When \(p = 2 \), Lee et al. [8] consider the singular problem
\[
\begin{cases}
-\Delta u = \lambda u - f(u) - \frac{c}{u^\alpha} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}
\] (5)

where \(\lambda, c, \alpha \) are positive constants with \(\alpha < 1 \), \(f : [0, \infty) \to \mathbb{R} \) is continuous and satisfies
\[
\lambda u - M \leq f(u) \leq Au^q
\]
for all \(u \geq 0 \), where \(M, A, q \) are positive constants with \(q > 1 \). Under these assumptions, they show that (5) has a solution \(u \in C^2(\Omega) \cap C(\overline{\Omega}) \) for \(\lambda > \frac{2\lambda_1}{1+\alpha} \) and \(c \) is sufficiently small [8, Theorem 2.1]. Here \(\lambda_1 \) corresponds to \(m(x) \equiv 1 \).

Note that the nonlinearity \(g(u) = \lambda u - f(u) \) is continuous and satisfies
\[
\limsup_{u \to \infty} \frac{g(u)}{u} \leq 0, \quad \liminf_{u \to 0^+} \frac{g(u)}{u} \geq \lambda > \frac{2\lambda_1}{1+\alpha}.
\] (6)

Note that for \(f(u) = u^q \), (5) is a singular perturbation problem of (2) with \(p = 2 \) and \(m(x) \equiv 1 \), but the result in [8] is not as good as the corresponding one in [4] when \(c = 0 \). In this paper, we shall study positive solutions to the general problem (1) when \(h \) is a bounded function with small \(\sup_{\Omega} h \) and \(g(\cdot,u) \) is allowed to be singular at \(u = 0 \) and satisfies a weaker condition than (4) and (6). To be precise, we shall assume the following:

(A1) \(m \in L^\infty(\Omega) \) and there exists a constant \(m_0 > 0 \) such that \(m(x) \geq m_0 \) for a.e. \(x \in \Omega \).

(A2) \(g : \Omega \times (0, \infty) \to \mathbb{R} \) is continuous and
\[
\limsup_{u \to \infty} \frac{g(x,u)}{m(x)u^{p-1}} < \lambda_1, \quad \liminf_{u \to 0^+} \frac{g(x,u)}{m(x)u^{p-1}} > \lambda_1
\]
uniformly for \(x \in \Omega \).
(A3) There exists $\alpha \in (0, 1)$ such that
\[
\limsup_{u \to 0^+} u^\alpha g(x, u) < \infty
\]
uniformly for $x \in \Omega$.

In particular, our result can be applied to the following singular perturbation problem of (2)
\[
\begin{cases}
-\Delta_p u = \lambda m(x) u^{p-1} - u^{\gamma-1} - \frac{h(x)}{u^\alpha} & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
where $1 < p < \gamma$, $\alpha \in (0, 1)$, m is as above, gives the existence of a positive solution $u \in C^{1, \beta}(\bar{\Omega})$ for some $\beta \in (0, 1)$ when $\lambda > \lambda_1$ and $\sup_{\Omega} h$ is sufficiently small. Also, if h is a constant, there exists a constant $h^* > 0$ such that (7) has a positive solution for $h < h^*$ and no positive solution for $h > h^*$.

Our main result complements the result in [4] and improves the corresponding result in [8] in many ways. Our approach is based on the method of sub- and supersolutions developed in [6] for singular problems. However, the type of nonlinearities $g(u)$ covered in [6] does not apply here as it requires
\[
\lim_{u \to \infty} \frac{g(u)}{u^{p-1}} = 0 \quad \text{and} \quad g(u) > 0 \quad \text{for } u \text{ large},
\]
whereas the one in this paper allows
\[
\lim_{u \to \infty} \frac{g(u)}{u^{p-1}} = -\infty \quad \text{and} \quad g(u) \to -\infty \quad \text{as } u \to \infty.
\]

Let λ_1 be the first eigenvalue of (3) with a positive, normalized corresponding eigenfunction ϕ_1, i.e., $||\phi_1||_\infty = 1$. It is well known that $\lambda_1 > 0$, $\phi_1 \in C^1(\bar{\Omega})$, $\frac{\partial \phi_1}{\partial n} < 0$ on $\partial \Omega$, where n denotes the outer unit normal vector on $\partial \Omega$ (see [1]).

By a positive solution of (1) we mean a function $u \in C^{1, \beta}(\bar{\Omega})$ for some $\beta \in (0, 1)$ with $u = 0$ and $\frac{\partial u}{\partial n} < 0$ on $\partial \Omega$ such that
\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \xi \, dx = \int_{\Omega} \left(g(x, u) - \frac{h(x)}{u^\alpha} \right) \xi \, dx
\]
for all $\xi \in W_0^{1,p}(\Omega)$. Here n denotes the outer unit normal vector. Our main result is

Theorem 1.1. Let $h \in L^\infty(\Omega)$ and suppose (A1)-(A3) hold. Then there exists a constant $\eta > 0$ such that Problem (1) has a positive solution when $\sup_{\Omega} h < \eta$. Moreover, if h is a constant, then there exists a positive number h^* such that (1) has a positive solution for $h < h^*$ and no positive solutions for $h > h^*$.
2. Preliminary results

We shall denote the norms in $L^p(\Omega)$, $W^{1,p}_0(\Omega)$, $C^1(\Omega)$ and $C^{1,\alpha}(\overline{\Omega})$ by $\| \cdot \|_{p}$, $\| \cdot \|_{1,p}$, $\| \cdot \|$ and $\| \cdot \|_{1,\alpha}$, respectively.

For $x \in \Omega$, let $d(x)$ denote the distance from x to $\partial \Omega$. The following regularity result in [6, Lemma 3.1] plays a key role in the proof of the main results:

Lemma 2.1. Let $h \in L^\infty_{\text{loc}}(\Omega)$ and suppose there exist numbers $\alpha \in (0, 1)$ and $C > 0$ such that

$$|h(x)| \leq C d^{\alpha}(x)$$

for a.e. $x \in \Omega$. Let $u \in W^{1,p}_0(\Omega)$ be the solution of

$$\begin{cases}
-\Delta_p u = h & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega.
\end{cases}$$

Then there exist constants $\beta \in (0, 1)$ and $M > 0$ depending only on C, α, Ω such that $u \in C^{1,\beta}(\overline{\Omega})$ and $\|u\|_{1,\beta} < M$.

Remark 2.2. (i) Since $\frac{\partial \phi_1}{\partial n} < 0$ on $\partial \Omega$, there exists a constant $k > 0$ such that $\phi_1(x) \geq kd(x)$ for $x \in \Omega$. Hence Lemma 2.1 holds if (8) is replaced by

$$|h(x)| \leq \frac{C}{\phi_1^\delta(x)}$$

for a.e. $x \in \Omega$.

(ii) Note that under the assumptions of Lemma 2.1, (9) has a unique solution $u \in W^{1,p}_0(\Omega)$. Indeed, define $A: W^{1,p}_0(\Omega) \to W^{-1,p'}_0(\Omega)$ and $\hat{h} \in W^{-1,p'}_0(\Omega)$, where $p' = \frac{p}{p-1}$, by

$$\langle Au, \xi \rangle = \int_\Omega |\nabla u|^{p-2} \nabla u \cdot \nabla \xi \, dx, \quad \hat{h}(\xi) = \int_\Omega h \xi \, dx.$$

By Hardy’s inequality (see e.g. [2, p. 194]), we obtain

$$|\hat{h}(\xi)| \leq C \int_\Omega \left| \frac{\xi}{d^\alpha} \right| dx \leq C \|d\|_{\infty}^{1-\alpha} \int_\Omega \left| \frac{\xi}{d} \right| dx \leq \tilde{C} \|\xi\|_{1,p}$$

for all $\xi \in W^{1,p}_0(\Omega)$, where \tilde{C} is a constant independent of ξ. Thus $\hat{h} \in W^{-1,p'}_0(\Omega)$. Since A is continuous, coercive, and strictly monotone, it follows from the Minty-Browder Theorem (see [2, p. 88]) that there exists a unique $u \in W^{1,p}_0(\Omega)$ such that $Au = \hat{h}$.

Lemma 2.3. Let $\varepsilon > 0$ and let $h, h_\varepsilon \in L^\infty_{\text{loc}}(\Omega)$ satisfy (8). Let $u, u_\varepsilon \in W^{1,p}_0(\Omega)$ be the solutions of
\[
\begin{cases}
-\Delta_p u = h & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
and
\[
\begin{cases}
-\Delta_p u_\varepsilon = h_\varepsilon & \text{in } \Omega \\
u_\varepsilon = 0 & \text{on } \partial \Omega,
\end{cases}
\]
respectively. Suppose $||h_\varepsilon - h||_1 \to 0$ as $\varepsilon \to 0$. Then
\[
|u_\varepsilon - u|_1 \to 0
\]
as $\varepsilon \to 0$.

Proof. By Lemma 2.1, there exist $\beta \in (0, 1)$, $M > 0$ such that $u, u_\varepsilon \in C^{1,\beta}(\bar{\Omega})$ and
\[
|u|_{1,\beta}, |u_\varepsilon|_{1,\beta} < M. \tag{10}
\]
Multiplying the equation $-\Delta_p u_\varepsilon - (-\Delta_p u) = h_\varepsilon - h$ in Ω by $u_\varepsilon - u$ and integrating, we obtain
\[
\int_{\Omega} (||\nabla u_\varepsilon||^{p-2}\nabla u_\varepsilon - ||\nabla u||^{p-2}\nabla u) \cdot (\nabla u_\varepsilon - \nabla u) \, dx \leq 2M||h_\varepsilon - h||_1. \tag{11}
\]
By [9, Lemma 30.1], for $x, y \in \mathbb{R}^n$,
\[
(|x| + |y|)^{2-\min(p,2)}(|x|^{p-2}x - |y|^{p-2}y) \cdot (x - y) \geq C_0|x - y|^{\max(p,2)}, \tag{12}
\]
where $C_0 = \left(\frac{1}{2}\right)^{p-1}$ if $p \geq 2$, $C_0 = p - 1$ if $p < 2$.

Using (12) with $x = \nabla u_\varepsilon, y = \nabla u$ and the fact that $|x| + |y| < 2M$, we obtain from (11) that
\[
C_1 \int_{\Omega} |\nabla (u_\varepsilon - u)|^q \, dx \leq 2M||h_\varepsilon - h||_1,
\]
where $C_1 = C_0 \cdot (2M)^{\min(p,2) - 2}$ and $q = \max(p, 2)$.

Hence, by Poincaré’s inequality,
\[
||u_\varepsilon - u||_q \to 0 \tag{13}
\]
as $\varepsilon \to 0$. Suppose $|u_\varepsilon - u|_1 \neq 0$ as $\varepsilon \to 0$. Then there exists a sequence (ε_n) which converges to 0 such that
\[
|u_{\varepsilon_n} - u|_1 \neq 0 \quad \text{as } n \to \infty. \tag{14}
\]
By (10), (u_{ε_n}) is bounded in $C^{1,\beta}(\bar{\Omega})$, and since $C^{1,\beta}(\bar{\Omega})$ is compactly embedded in $C^1(\bar{\Omega})$, there exist $v \in C^1(\bar{\Omega})$ and a subsequence $(u_{\varepsilon_{n_k}})$ of (u_{ε_n}) such that
\[
|u_{\varepsilon_{n_k}} - v|_1 \to 0 \quad \text{as } k \to \infty. \tag{15}
\]
From (13) and (15), we see that $u = v$ and so $|u_{\varepsilon_{n_k}} - u|_1 \to 0$ as $k \to \infty$, a contradiction with (14). This completes the proof of Lemma 2.3. \qed
Next, we recall some results in sub- and supersolutions method for singular boundary value problems in [6, Appendix A]. Related results can be found in [3]. Consider the problem
\begin{equation}
\begin{cases}
-\Delta_p u = h(x, u) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\end{equation}
where \(h : \Omega \times (0, \infty) \to \mathbb{R} \) is continuous.

Let \(\phi, \psi \in C^1(\bar{\Omega}) \). Suppose there exist constants \(c_0, C, \alpha > 0 \) with \(\alpha < 1 \) such that \(\phi(x), \psi(x) \geq c_0d(x) \) for \(x \in \Omega \) and
\begin{equation}
|h(x, w)| \leq \frac{C}{d^\alpha(x)}
\end{equation}
for a.e. \(x \in \Omega \) and all \(w \in C(\bar{\Omega}) \) with \(\phi \leq w \leq \psi \) in \(\Omega \). Suppose \(\phi, \psi \) are sub- and supersolutions of (16) respectively, i.e., for all \(\xi \in W^{1,p}_0(\Omega) \) with \(\xi \geq 0 \),
\begin{align*}
\int_\Omega |\nabla \phi|^{p-2} \nabla \phi \cdot \nabla \xi \, dx &\leq \int_\Omega h(x, \phi) \xi \, dx , \\
\int_\Omega |\nabla \psi|^{p-2} \nabla \psi \cdot \nabla \xi \, dx &\geq \int_\Omega h(x, \psi) \xi \, dx ,
\end{align*}
and \(\phi \leq 0 \leq \psi \) on \(\partial \Omega \). Note that the integrals on the right-hand side are defined by virtue of Hardy’s inequality.

Lemma 2.4. Under the above assumptions, there exists a constant \(\beta \in (0, 1) \) such that (16) has a solution \(u \in C^{1,\beta}(\bar{\Omega}) \) with \(\phi \leq u \leq \psi \) in \(\Omega \).

3. Proof of the main result

Now, we are ready to give the proof of the main result.

Proof of Theorem 1.1. By (A2), there exists \(\lambda_0 > \lambda_1 \) and \(\delta_0 > 0 \) such that
\begin{equation}
g(x, u) \geq \lambda_0 m(x)u^{p-1}
\end{equation}
for \(x \in \Omega \) and \(u \in (0, \delta_0] \). Choose \(\delta \in (0, 1) \) so that \(\lambda_0 \delta^{p-1} > \lambda_1 \).

For \(\varepsilon > 0 \), let \(z_\varepsilon > 0 \) be the solution of
\[-\Delta_p z_\varepsilon = h_\varepsilon \equiv \begin{cases}
\lambda_1 m(x)(\delta_0 \phi_1)^{p-1} & \text{in } \{ \phi_1 > \varepsilon \} \\
-\phi_1^{-\alpha} & \text{in } \{ \phi_1 < \varepsilon \},
\end{cases} \quad z_\varepsilon = 0 \quad \text{on } \partial \Omega.
\]
Note that the existence of \(z_\varepsilon \) follows from Lemma 2.1 and Remark 2.2. Since
\[-\Delta_p (\delta_0 \phi_1) = h \equiv \lambda_1 m(x)(\delta_0 \phi_1)^{p-1} \quad \text{in } \Omega,
\]
the weak maximum principle [10, Lemma A.2] implies $z_\varepsilon \leq \delta_0 \phi_1 \leq \delta_0$ in Ω.

Next,

$$||h_\varepsilon - h||_1 = \int_{\phi_1 < \varepsilon} |\lambda_1 m(x)(\delta_0 \phi_1)^{p-1} + \phi_1^{-\alpha}| \, dx \leq C_0 \int_{\phi_1 < \varepsilon} \phi_1^{-\alpha} \, dx$$

and since $\int_\Omega \phi_1^{-\alpha} \, dx < \infty$ (see [7, p. 726], it follows that $||h_\varepsilon - h||_1 \to 0$ as $\varepsilon \to 0$. By Lemma 2.3, $|z_\varepsilon - \delta_0 \phi_1|_1 \to 0$ as $\varepsilon \to 0$. Hence $|z_\varepsilon - \delta_0 \phi_1|_1 < \frac{\delta_0(1-\delta)}{k}$, if ε is sufficiently small, where $k > 0$ is such that $\frac{d \phi_1}{\phi_1} \leq k$ in Ω.

By the Mean Value Theorem,

$$|z_\varepsilon(x) - \delta_0 \phi_1(x)| \leq \frac{\delta_0(1-\delta)}{k} d(x) \leq \delta_0(1-\delta)\phi_1(x)$$

for $x \in \Omega$, which implies

$$z_\varepsilon \geq \delta \delta_0 \phi_1 \text{ in } \Omega \tag{19}$$

if ε is sufficiently small, which we assume.

Suppose $\sup_\Omega h < \eta$, where

$$\eta = \min \left\{ \left(\lambda_0 \delta^{p-1} - \lambda_1 \right) m_0 \delta^\alpha (\delta_0 \varepsilon)^{p-1+\alpha}, (\delta \delta_0)^\alpha \right\}.$$ We shall verify that z_ε is a subsolution of (1). Let $\xi \in W^{1,p}_0(\Omega)$ with $\xi \geq 0$.

Then

$$\int_\Omega |\nabla z_\varepsilon|^{p-2} \nabla z_\varepsilon \cdot \nabla \xi \, dx = -\int_\Omega (\Delta_\mu z_\varepsilon) \xi \, dx$$

$$= \lambda_1 \int_{\phi_1 > \varepsilon} m(x)(\delta_0 \phi_1)^{p-1} \xi \, dx - \int_{\phi_1 < \varepsilon} \frac{\xi}{\phi_1^p} \, dx. \tag{20}$$

In the set $\{\phi_1 > \varepsilon\}$, we have

$$(\lambda_0 \delta^{p-1} - \lambda_1) m(x)(\delta_0 \phi_1)^{p-1} \geq (\lambda_0 \delta^{p-1} - \lambda_1) m_0 (\delta_0 \varepsilon)^{p-1} \geq \frac{\eta}{(\delta \delta_0 \varepsilon)^\alpha},$$

which, together with (18), (19), implies

$$g(x, z_\varepsilon) - \frac{h(x)}{z_\varepsilon^\alpha} \geq \lambda_0 m(x) z_\varepsilon^{p-1} - \frac{1}{z_\varepsilon^\alpha} \sup_\Omega h$$

$$\geq \lambda_0 \delta^{p-1} m(x)(\delta_0 \phi_1)^{p-1} - \frac{\eta}{(\delta \delta_0 \varepsilon)^\alpha} \tag{21}$$

in $\{\phi_1 > \varepsilon\}$. On the other hand, since $\eta \leq (\delta \delta_0)^\alpha$,

$$g(x, z_\varepsilon) - \frac{h(x)}{z_\varepsilon^\alpha} \geq -\frac{1}{z_\varepsilon^\alpha} \sup_\Omega h \geq -\frac{\eta}{(\delta \delta_0 \phi_1)^\alpha} \geq -\frac{1}{\phi_1^p} \text{ in } \Omega. \tag{22}$$
Combining (20)–(22), we obtain
\[\int_{\Omega} |\nabla z_{\varepsilon}|^{p-2} \nabla z_{\varepsilon} \cdot \nabla \xi \, dx \leq \int_{\Omega} \left(g(x, z_{\varepsilon}) - \frac{h(x)}{z_{\varepsilon}^\alpha} \right) \xi \, dx, \]
i.e., \(z_{\varepsilon} \) is a subsolution of (1).

Next, in view of (A2) and (A3), there exist constants \(b \in (0, \lambda_1) \) and \(d_0 > 0 \) such that
\[g(x, u) \leq bm(x)u^{p-1} + \frac{d_0}{u^\alpha} \quad \text{for all } u > 0 \text{ and a.e. } x \in \Omega. \]
Choose \(\gamma \in (0, 1) \) and \(\tilde{\lambda}_1, M_0 > 0 \) so that
\[(1 + \gamma)^{p-1} \left(b + \frac{d_0}{m_0 M_0^{p-1+\alpha}} \right) < \tilde{\lambda}_1 < \lambda_1, \]
and
\[\frac{(1 + \gamma)^{p-1}||h||_{\infty}}{m_0 M_0^{p-1+\alpha}} < \lambda_1 - \tilde{\lambda}_1. \]

Let \(\psi_{\varepsilon} \) be the solution of
\[-\Delta_p \psi_{\varepsilon} = \begin{cases} \lambda_1 m(x) \phi_1^{p-1} & \text{in } \{ \phi_1 > \varepsilon \}, \\ \lambda_1 m(x) + \phi_1^{-\alpha} & \text{in } \{ \phi_1 < \varepsilon \}, \end{cases} \quad \psi_{\varepsilon} = 0 \text{ on } \partial \Omega.\]

Then, since \(-\Delta_p \phi_1 = \lambda_1 m(x) \phi_1^{p-1} \) in \(\Omega \), it follows from Lemma 2.3 that \(|\psi_{\varepsilon} - \phi_1|_1 \to 0 \) as \(\varepsilon \to 0 \). Hence, if \(\varepsilon \) is small enough,
\[(1 - \gamma) \phi_1 \leq \psi_{\varepsilon} \leq (1 + \gamma) \phi_1 \quad \text{in } \Omega, \]
which we assume. We shall verify that \(Z_{\varepsilon} = M \psi_{\varepsilon} \) is a supersolution for (1) with \(Z_{\varepsilon} \geq z_{\varepsilon} \) in \(\Omega \) if \(M \) is large enough. Let \(\xi \in W_0^{1,p}(\Omega) \) with \(\xi \geq 0 \). Then we have
\[\int_{\Omega} |\nabla Z_{\varepsilon}|^{p-2} \nabla Z_{\varepsilon} \cdot \nabla \xi \, dx = \lambda_1 \int_{\phi_1 > \varepsilon} m(x)(M \phi_1)^{p-1} \xi \, dx \\ + M^{p-1} \int_{\phi_1 < \varepsilon} (\lambda_1 m(x) + \phi_1^{-\alpha}) \xi \, dx. \]

Suppose \(M > \frac{M_0}{(1-\gamma)\varepsilon} \). Then
\[Z_{\varepsilon} \geq M(1 - \gamma)\varepsilon > M_0 \]
in \(\{ \phi_1 > \varepsilon \} \). Since \(M \phi_1 \geq (1 + \gamma)^{-1}Z_{\varepsilon} \) in \(\Omega \), it follows from (23)-(25) that
\[\frac{||h||_{\infty}}{m(x)(M \phi_1)^{p-1} Z_{\varepsilon}^\alpha} \leq \frac{(1 + \gamma)^{p-1} ||h||_{\infty}}{m(x) Z_{\varepsilon}^{p-1+\alpha}} \leq \frac{(1 + \gamma)^{p-1} ||h||_{\infty}}{m_0 M_0^{p-1+\alpha}} < \lambda_1 - \tilde{\lambda}_1. \]
Hence
\[g(x, Z_\varepsilon) - \frac{h(x)}{Z_\varepsilon^\alpha} \leq g(x, Z_\varepsilon) + \frac{||h||_\infty}{Z_\varepsilon^\alpha} \leq \lambda_1 m(x)(M\phi_1)^{p-1} \]
(29)
in \{\phi_1 > \varepsilon\}. From (23), (24), and (26), we get
\[g(x, Z_\varepsilon) - \frac{h(x)}{Z_\varepsilon^\alpha} \leq b m(x) Z_\varepsilon^{p-1} + d_0 + ||h||_\infty \]
\[\leq b(1 + \gamma)^{p-1} m(x)(M\phi_1)^{p-1} + d_0 + ||h||_\infty \phi_1^{-\alpha} \]
(30)
if \(M \) is large enough so that \(M^{p-1+\alpha} > (d_0 + ||h||_\infty)(1 - \gamma)^{-\alpha} \), which we assume.

Combining (27), (29), and (30), we get
\[\int_\Omega |\nabla Z_\varepsilon|^{p-2} \nabla Z_\varepsilon \cdot \nabla \xi \ dx \geq \int_\Omega \left(g(x, Z_\varepsilon) - \frac{h(x)}{Z_\varepsilon^\alpha} \right) \xi \ dx, \]
i.e., \(Z_\varepsilon \) is a supersolution of (1) with \(Z_\varepsilon \geq z_\varepsilon \) for large \(M \).

Finally, it follows from (A3) and (19) that there exists a constant \(K > 0 \) depending on \(||Z_\varepsilon||_\infty \) such that
\[|g(x, w)| \leq \frac{K}{w^\alpha} \leq \frac{K}{z_\varepsilon^\alpha} \leq \frac{K}{(\delta\delta_0\phi_1)^\alpha} \]
for all \(w \in C(\bar{\Omega}) \) with \(z_\varepsilon \leq w \leq Z_\varepsilon \) in \(\Omega \). The existence of a positive solution for (1) now follows from Lemma 2.4.

Next, suppose that \(h \) is a constant. Then, as in the above, we see that there exists a constant \(h_0 > 0 \) such that (1) has a positive solution for \(h < h_0 \). We claim that (1) has no positive solutions for large \(h \). Indeed, let \(u \) be a positive solution of (1) with \(h > 0 \). Multiplying the equation \(-\Delta_p u = g(x, u) - \frac{h}{w^\alpha} \) in \(\Omega \) by \(u \) and integrating, we obtain, by (23),
\[\int_\Omega |\nabla u|^p \ dx = \int_\Omega g(x, u) u \ dx - h \int_\Omega u^{1-\alpha} \ dx \]
\[\leq b \int_\Omega m(x) u^p \ dx + (d_0 - h) \int_\Omega u^{1-\alpha} \ dx \]
\[\leq b \int_\Omega m(x) u^p \ dx \]
for \(h \geq d_0 \). Since
\[\lambda_1 = \inf_{u \in W_0^{1,p}(\Omega), u \neq 0} \frac{\int_\Omega |\nabla u|^p \ dx}{\int_\Omega m(x) u^p \ dx}, \]
it follows that \((1 - \frac{b}{\lambda}) \int_{\Omega} |\nabla u|^p \, dx \leq 0\), which implies \(u \equiv 0\), a contradiction. Hence the claim is proved.

Define \(h^* = \sup \{h > 0 : (1) \text{ has a positive solution} \}\). Then \(h^* \in (0, \infty)\) and (1) has no positive solutions for \(h > h^*\). Let \(h < h^*\). Then there exists \(\tilde{h} > h\) such that (1) with \(h = \tilde{h}\) has a positive solution \(u_{\tilde{h}}\). Since

\[g(x, u_{\tilde{h}}) - \frac{\tilde{h}}{u_{\tilde{h}}^\alpha} \leq g(x, u_{\tilde{h}}) - \frac{h}{u_{\tilde{h}}^\alpha}, \]

in \(\Omega\), it follows that \(u_{\tilde{h}}\) is a subsolution for (1). As above, we obtain a supersolution \(Z_{\epsilon}\) for (1) with \(Z_{\epsilon} \geq u_{\tilde{h}}\) in \(\Omega\), and the existence of a positive solution to (1) follows. This completes the proof of Theorem 1.1.

\[\square\]

References

Received March 18, 2011; revised July 16, 2012