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Model of Point-Like Window for
Electromagnetic Helmholtz Resonator
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Abstract. Point-like interaction between internal and external operators as a model
of electromagnetic Helmholtz resonator is suggested. It is based on the theory of
self-adjoint extensions of symmetric operators in Pontryagin space. Formula for the
resonance close to the eigenvalue of the internal operator is obtained.
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1. Introduction

The problem of the Helmholtz resonator, i.e. the resonator with small boundary
window, has long history, starting from the lord Rayleigh work [27]. It was
studied by analytical, asymptotical, variational, numerical methods (see, e.g.,
[5, 12, 17, 18, 20]). The main question is about the real and imaginary parts of
resonances (quasi-bound states) for this open system. Due to the complexity
of the problem, it is useful to construct simple models allowing one to study
the problem analytically. One can construct the model in the framework of the
operator extensions theory (see, e.g., [20, 23]). Such models are widely used in
the theory of Schrödinger operator (see, e.g., [1, 6, 18, 20]). One can mention
also works about singular boundary perturbations (see, e.g., [16]). The idea of
the model for acoustical Helmholtz resonator is as follows. Let Ωin be bounded
domain with smooth boundary in R3, Ωex = R3 \ Ωin. Consider the Laplace
operator −(∆in ⊕∆ex) with the Neumann boundary condition ( ∂u

∂ν

∣∣
∂Ω

= 0) in
L2(Ωin⊕Ωex). Restrict the operator onto the set of smooth functions vanishing
at some point x0 ∈ ∂Ω. The closure of this operator is symmetric non-self-
adjoint operator with deficiency indices (2,2). It has self-adjoint extensions
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which gives us the model in question. Of course, there is fitting problem, i.e. a
question how to choose the proper extension among the whole set of extensions
(see, e.g., [7, 22]). The attempt to construct the corresponding model in L2

space fails (it is necessary to extend the initial state) when one introduces zero-
range interaction for the Laplacian in Rn, n > 3 (see [9, 10, 26]) or constructs
the Helmholtz resonator with point-like opening having the Dirichlet boundary
condition (see [23]). In these papers a space with indefinite metrics is used.
There is also an approach based on using of weighted spaces with definite metrics
(see [2, 15]).

As for the corresponding model for electromagnetic field, there are only few
works concerning to point-like interaction for the Maxwell operator (see [11]).
It is related with some additional difficulties which will be described below.
To construct the δ-interaction model for EM field it is necessary to extend
the initial space. It should be mentioned that in some particular cases the
Maxwell equations can be reduced to the Helmholtz one, i.e. to the Schrödinger
case (see, e.g., [13, 24]). As for the operator extensions descriptions, boundary
triples approach is often used (see [3, 14]).

In the present paper we construct the operator extensions theory model
for the Maxwell operator in the domain of trap type. To introduce point-like
window we use the technique analogous to that applied in [11] to introduce gen-
eralized point interaction. The main result is full description of the operator ex-
tension theory model of the electromagnetic Helmholtz resonator (Theorem 2).
As an application of the model, formula for resonance (quasi-bound state) close
to the eigenvalue of the internal problem is obtained. The suggested model can
be, in particular, useful for computations in shape optimization (see, e.g., [19]
where the analogous approach to shape optimization is fully justified for the
elasticity boundary value problems).

2. Point-like boundary window for the Maxwell operator

The self-adjoint Maxwell operator in the space L2 for arbitrary domain was
correctly described by Birman and Solomyak [4]. Later this approach was suc-
cessfully used in various electromagnetic problems (see, e.g., [8]). We will use
Birman-Solomyak definition. Let Ωin be bounded domain with smooth bound-
ary in R3, Ωex = R3 \ Ωin.

The definition of the self-adjoint Maxwell operator M in,ex in Ωin,ex is as
follows. Let E and B be, correspondingly, the electric and magnetic fields.
These vector fields should satisfy the conditions

∇ · (εE) = 0, ∇ ·B = 0,

γτE = 0, γνB = 0,
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where γτE and γνB are, correspondingly, tangential and normal components of
the corresponding fields at the boundary. Then, the Maxwell operator acts on
six-dimensional vector field as

M in,ex

(
E
B

)
= −i

(
0 ε−1µ−1ε · p

−ε · p 0

)(
E
B

)
.

Here ε(x), µ(x) (electric and magnetic susceptibilities) are smooth, strictly pos-
itive, bounded functions of x (ε, µ ∈ C1(R3), the bounded continuous func-
tions with bounded continuous derivatives), ε is the Levi-Chivita tensor density
(ε123 = 1 and ε is antisymmetric in all indices), p = −i∇ is the momentum
operator. In the present paper we consider the vacuum case and normalize
values of ε and µ to unity. The operator M in,ex defined on smooth functions is
essentially self-adjoint. We denote its closure by the same letter (M in,ex). Let
M = M in ⊕M ex. To construct generalized point interaction for the Maxwell
operator it is necessary to extend the initial state L2 (see [11]). Namely, let
RM(z0) be the resolvent of the operator M , corresponding to regular point
z0 ∈ C. Our underlying Hilbert space is H0 = L2(Ωin ⊕Ωex, dx,C6). Construct
the scale of Hilbert spaces

· · · ⊂ H2 ⊂ H1 ⊂ H0 ⊂ H−1 ⊂ H−2 ⊂ · · · , (1)

where Hk = (RM(z0))kH0, k ∈ N, H−k is the dual of Hk with respect to the
inner product ofH0, H−k = (RM(z0))−kH0. Let us construct our extended space
for a simple case. Taking χh ∈ H−3 \ H−2, h = 1, 2, . . . , 6 we construct a chain
of elements χhk = (RM(z0))3−kχh, k = −2,−1, 0, 1, and consider the following
elements of the pre-Pontryagin space:

F =

(
E
B

)
= F2 +

6∑
h=1

1∑
k=−2

Fhkχhk, F2 ∈ H2, Fhk ∈ C,

the inner product being

[F,G] = (F2, G2) +
6∑

h=1

1∑
k=−2

(Fhk(χhk, G2) +Ghk(F2, χhk))

+
6∑

j,h=1

1∑
k,s=−2

FjkGhs[χjk, χhs],

where

[χjk, χhs] =

{
(χjk, χhs), k + s ≥ 0

g
(jh)
ks , k + s < 0.

Here (·, ·) is the L2-inner product. Tensor g
(jh)
ks may be chosen rather arbitrarily,

but it should satisfy some conditions. The general property of inner product
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leads to the correlation g
(jh)
ks = g

(hj)
sk . Due to the specific way of constructing of

the chain χhk with using of the resolvent RM(z0), one has

g
(jh)
k+1,s − g

(jh)
k,s+1 = (z0 − z0) g

(jh)
ks .

The obtained space P isn’t satisfactory, both physically and mathematically
since it doesn’t contain the whole physical space H0. and the norm topology is
still lacking on P . To remove the mathematical objections, P will be completed
into a Pontryagin space Π. Let

Π =
{

(φ0, b, a) : φ0 ∈ H2, a, b ∈ C12
}

equipped with indefinite inner product:

(φ, φ′) = (φ0, φ
′
0) + a · b′ + b · a′ + a · g · a′,

where g is the Hermitian matrix which was introduced earlier.

Theorem 2.1. P is a pre-Pontryagin space with topological completion Π.

Proof. The embedding of P in Π is given by the following isometric identification
mapping J :

F2 +
6∑

h=1

1∑
k=−2

Fhkχhk →(
F2 +

6∑
h=1

1∑
k=0

Fhkχhk,

[
(χhk, F2) +

1∑
i=0

ahigik

]k=−2,h=6

k=−1,h=1

, [ahi]
i=−2,h=6
i=−1,h=1

)
.

(2)

Then, we restrict the mapping J to the submanifold P ′ of P which consists of

the elements F2 +
6∑

h=1

−1∑
k=−2

Fhkχhk . and obtain that P ′ and, correspondingly, P

is topologically dense in Π because H2 is dense in H0 .

Now it is necessary to extend our self-adjoint operator HM on Π. We shall
do this by constructing of the corresponding resolvent operator RM(z). Consider
the set P ′ which is dense in Π. To define the resolvent on P ′ we use the iteration
of the resolvent identity (using of this trick in analogous problem was suggested
in [21]).

RM(z)−RM(z0) = (z − z0)R2
M(z0) + (z − z0)2RM(z)R2

M(z0)

Of course, one can do so much number of iteration as necessary. This formula
allows one to separate terms with different singularities (due to resolvent action
the order of singularity decreases). Taking into account (2), one obtains

RM(z)
(
F2, [(χhj, F2)]j=−2,h=6

j=−1,h=1 , [ahj]
j=−2,h=6
j=−1,h=1

)
=

(
F̃0,
[
b̃hj

]j=−2,h=6

j=−1,h=1
, [ãhj]

j=−2,h=6
j=−1,h=1

)
(3)
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with

F̃0 = RM(z)F2 +RM(z)χ−1((z − z0)a−2 + a−1), (4)

b̃hj =



−1∑
k=j+1

(z − z0)j+1−k(χhk, F2) + (z − z0)−(j+1)(RM(z)F2, χh,−1)

+ (RM(z)χh,−1, χhj)
−1∑

k=−2

(z − z0)k+1ahk,

(5)

ãhj =

j−1∑
k=−2

(z − z0)j−(k+1)ahk. (6)

This expression is easily closed in the norm topology yielding RM(z) acting
on Π:

RM(z)
(
F0, [bhj]

j=−2,h=6
j=−1,h=1 , [ahj]

j=−2,h=6
j=−1,h=1

)
=

(
F̃0,
[
b̃hj

]j=−2,h=6

j=−1,h=1
, [ãhj]

j=−2,h=6
j=−1,h=1

)
(7)

with F̃0, b̃hj, ãhj are given by Equations (4)–(6) provided that F2, (χhj, F2) are
replaced by F0, bhj respectively. Moreover, it is evident that RM(z) is bounded
on Π since RM(z) is bounded on H0. Hence, RM(z) inherits from RM(z) the
resolvent identity and the relation R

∗
M(z) = RM(z).

Note that the obtained expression shows that there is a nontrivial subspace
N (RM(z)) = span(0, [0, . . . , 0, ah,−2], 0), h = 1, . . . , 6. It means that RM(z)
is not the resolvent of self-adjoint operator in Π. It is to be expected since
RM(z)F does not explicitly depend on (χh,−2, F ). The resolvent of a self-adjoint
extension RA,M(z) can be obtained by Krein resolvent formula:

RA,M(z) = RM(z)−RM(z)χΓ−1(z, A)(RM(z)χ, ·), (8)

with

Γ(z, A) = A−1 + 2−1(z − z0)(RM(z)χ,RM(z0)χ)

+ 2−1(z − z0)(RM(z)χ,RM(z0)χ),

χ = (χh)h=1,...,6.

(9)

Nondegenerate matrix A parameterizes the extension. Thus, we come to the
following theorem.

Theorem 2.2. Let M be an unbounded self-adjoint Maxwell operator in a
Hilbert space H0 and (·, χ) be a functional in H−3 of the scale (1). Then RA,M(z)
defined by (8), (9) (with real non-degenerate matrix A such that Γ(z0, A),
Γ(z0, A) are non-degenerate) is a resolvent of self-adjoint operator HA,M in the
Pontryagin space Π.

Remark 2.3. Operator HA,M coincides with M on the submanifold of H3 on
which functional (·, χ) vanishes.
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3. Discussion

The initial Maxwell operator is simply the orthogonal sum of the corresponding
operators for the internal and the external domains. There is no interaction
between these two parts. The constructed operator describes the interaction
(of course, there are extensions corresponding to absence of interaction, but its
are not interesting). The constructed operator can be represented in the block
form by a natural way. It corresponds to the block matrix

Γ =

(
Γin,in Γin,ex
Γex,in Γex,ex

)
.

The block Γin,ex is responsible for the interaction of the internal and the external
parts. If we choose the simplest extension among those corresponding to exactly
one deficiency element for the internal and exactly one for the external parts,
then Γin,ex contains only one non-zero element, say γ. In this case the Krein’s
resolvent formula lead to the dispersion equation in the form

(γ1 −Din(z))(γ2 −Dex(z))− |γ|2 = 0. (10)

Here γ1, γ2 correspond to diagonal terms of the matrix Γ parameterizing the
extension,

Din,ex(z) = lim
x→0

(Rin,ex
z (x, 0)− (4π|x|)−1), (11)

where Rin
z = (M in − zI)−1, Rex

z = (M ex − zI)−1, and Rin,ex
z (x, 0) is the kernel

of the integral operator Rin,ex
z . Note that γ → ∞ corresponding to absence of

interaction.

To find the resonance (quasi-bound state) of the model operator in a neigh-
borhood of an eigenvalue λn of the internal operator, it is necessary to represent
Din (11) as an eigenfunctions expansion series. Then (10) gives us an approxi-
mation for the resonance z (for the case of weak interaction (γ << 1)) near λn :

z = λn +
|φn(x0)|2(γ1 −Din(z))

|γ|2
+

(γ1 −Din(z))(γ2 −Dex(z))

|γ|2
+ o(|γ|−2).

Here φn is the eigenfunction of the internal operator corresponding to λn, x0 is
the position of the point-like opening. Note that only the third term in the right
hand side has non-trivial imaginary part (due to Dex). From physical point of
view the imaginary part of the resonance is related with the life time of the
corresponding state.



Model of Point-Like Window 161

Acknowledgement. The work was supported by Federal Targeted Program
“Scientific and Educational Human Resources for Innovation-Driven Russia”
(contract 16.740.11.0030, grant 2012-1.2.2-12-000-1001-047), grant 11-08-00267
of Russian Foundation for Basic Researches and by Federal Targeted Pro-
gram “Researches and Development in the Priority Directions Developments
of a Scientific and Technological Complex of Russia 2007–2013” (state contract
07.514.11.4146). The main part of the work was made during my visit to WIAS
(Berlin). I thank Prof. H. Neidhardt for fruitful discussions and WIAS (Berlin)
for hospitality.

References

[1] Albeverio, S., Gesztesy, F., Hoegh-Krohn, R. and Holden, H., Solvable Models
in Quantum Mechanics. 2nd ed., with an appendix by P. Exner. Providence
(RI): AMS Chelsea 2005.

[2] Albeverio, S. and Kurasov, P., Singular Perturbations of Differential Opera-
tors. Solvable Schrödinger Type Operators. London Math. Soc. Lecture Note
Ser. 271. Cambridge: Cambridge Univ. Press 2000.

[3] Behrndt, J., Malamud, M. M., and Neidhardt, H., Scattering matrices and
Weyl functions. Proc. London Math. Soc. 97 (2008), 568 – 598.

[4] Birman, M. S., and Solomyak, M. Z., L2-theory of Maxwell operator in arbi-
trary domain (in Russian). Uspekhi Mat. Nauk 42 (1987)(6), 61 – 76.

[5] Brown, R., Hislop, P. D. and Martinez, A., Eigenvalues and resonances for do-
mains with tubes: Neumann boundary conditions. J. Diff. Equs. 115 (1995)(2),
458 – 476.
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