A Remark on Hausdorff Measure in Obstacle Problems

Jun Zheng and Peihao Zhao

Abstract

In this paper, we consider the identical zero obstacle problem for the

 second order elliptic equation$$
-\operatorname{div} a(\nabla u)=-1 \quad \text { in } \mathcal{D}^{\prime}(\Omega),
$$

where Ω is an open bounded domain of $\mathbb{R}^{N}, N \geq 2$. We prove that the free boundary has finite ($N-1$)-Hausdorff measure, which extends the previous works by Caffarelli, Lee and Shahgholian for p-Laplacian equations with $p=2, p>2$ respectively and contains the singular case of $1<p<2$.

Keywords. Elliptic equation, obstacle problem, free boundary, Hausdorff measure Mathematics Subject Classification (2010). Primary 35J15, secondary 35J75, 35J87

1. Introduction

In this paper, we consider the identical zero obstacle problem for the second order elliptic equation

$$
\begin{equation*}
-\operatorname{div} a(\nabla u)=-1 \quad \text { in } \Omega, \tag{1}
\end{equation*}
$$

where Ω is an open bounded domain of $\mathbb{R}^{N}, N \geq 2$, and the function $a=a(\eta)$: $\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is continuous differentiable in $\eta \in \mathbb{R}^{N} \backslash\{0\}$. Moreover, assume that

$$
\begin{align*}
\sum_{i, j=1}^{N} \frac{\partial a_{i}}{\partial \eta_{j}}(\eta) \xi_{i} \xi_{j} & \geq \gamma_{0}|\eta|^{p-2}|\xi|^{2}, \tag{2}\\
\left|\frac{\partial a_{i}}{\partial \eta_{j}}(\eta)\right| & \leq \gamma_{1}|\eta|^{p-2} \tag{3}
\end{align*}
$$

J. Zheng, P. Zhao: School of Mathematics and Statistics, Lanzhou University, China; zheng123500@sina.com; zhaoph@lzu.edu.cn
The authors were supported by NSFC 10971088
for some positive constants $\gamma_{0}, \gamma_{1}>0$, all $\eta \in \mathbb{R}^{N} \backslash\{0\}$, and all $\xi \in \mathbb{R}^{N}, i, j=$ $1, \ldots, N$. The structural assumptions on a can be found in $[6,14,16]$ etc.

Given functions g and ψ in the Sobolev Space $W^{1, p}(\Omega), 1<p<\infty$, we define

$$
K_{g, \psi}=\left\{v \in W^{1, p}(\Omega) ; v-g \in W_{0}^{1, p}(\Omega), v \geq \psi, \text { a.e. in } \Omega\right\}
$$

which is nonempty provided $(\psi-g)^{+} \in W_{0}^{1, p}(\Omega)$.
A function u in $K_{g, \psi}$ is a solution to the obstacle problem

$$
\begin{equation*}
-\operatorname{div} a(\nabla u)=f \quad \text { in } \mathcal{D}^{\prime}(\Omega), \tag{4}
\end{equation*}
$$

if

$$
\int_{\Omega} a(\nabla u) \cdot(\nabla v-\nabla u) \mathrm{d} x \geq \int_{\Omega} f(v-u) \mathrm{d} x, \quad \forall v \in K_{g, \psi},
$$

where $f=f(x)$ is a given function in some $L^{q}(\Omega)$.
According to the known results (see [4, 5, 7, 10, 12-15]), any bounded solution u to (4) is $C^{1, \tau}(\Omega)$ for some $\tau \in(0,1)$, when $q>N$. But there is only little information regarding the free boundary. In 1998, Caffarelli proved that the free boundary has locally finite ($N-1$)-dimensional Hausdorff measure for Laplacian equation with identical zero obstacle (see [1]). In 2000, Karp et al. obtained a porosity result of the free boundary for p-obstacle problem $(p>2)$ (see [8]). According to [11], a porous set has Hausdorff dimension not exceeding $N-C \delta^{N}$, where $C=C(N)>0$ is some constant, δ is porosity constant. Then Lee and Shahgholian obtained ($N-1$)-Hausdorff measure for the p-obstacle problem with $p>2$ in 2003 (see [9]). But for $p<2$, there is no any result. We should note that an important work for A-Laplacian obstacle problem has been done by Challal and Lyaghfouri et al. in recent years. In 2009, Challal and Lyaghfouri showed that porosity of free boundary remains valid in A-obstacle problem(see [3]). Then they obtain a ($N-1$)-Hausdorff measure result in 2010 (see [2]). Recently, in [17], the authors also obtained the porosity of free boundary for p-Laplacian type equations associated with the operator

$$
\underline{\mathcal{A} u=-\operatorname{div} a(\nabla u) \quad \text { in } \mathcal{D}^{\prime}(\Omega) .}
$$

In this paper, using an idea of [9] (see also [2]), we establish the ($N-1$)-Hausdorff measure for the elliptic equations associated with the operator $A u=-\operatorname{div} a(\nabla u)$. Our result is a natural extension of the same property for p-obstacle problem obtained in $[1,9]$. It is also an extension for the case $1<p<2$.

To deal with our problem, assume that

$$
\partial \Omega \in C^{1, \alpha}, \quad g \in W^{1, p}(\Omega) \cap C^{1, \alpha}(\partial \Omega) \quad \text { for some } \alpha, 0<\alpha<1 .
$$

We will restrict ourselves to the solution in $K_{g, 0}$. According to [14], there is a unique solution u to (1) and $u \in C^{1, \beta}(\bar{\Omega})$ for some $\beta \in(0,1)$.

However, we should note that for general $f \in L^{\infty}(\Omega)$ and $\psi \in W^{1, p}(\Omega) \cap$ $L^{\infty}(\Omega)$, one can obtain the same result as in this paper.

2. Main result

Let u be the solution to (1). If $\partial\{u>0\} \cap \partial \Omega \neq \emptyset$, due to the regularity of $\partial \Omega$, it is trivial that the free boundary $\partial\{u>0\} \cap \partial \Omega$ has finite $(N-1)$-dimensional Hausdorff measure. So in this paper, we only consider the situation that $\partial\{u>0\} \cap \partial \Omega=\emptyset$. In this case, there exists a ball $B_{R}(y) \subset \Omega$ with $u(y)=0$. In order to describe the results obtained in this paper, we assume that $\Omega=B_{1}$, where $B_{1}=B_{1}(0)$ is the unit ball in \mathbb{R}^{N}, and without loss of generality, we assume that $0 \in \partial\{u>0\}$.

For any $x \in \partial\{u>0\} \subset B_{1}$, since u attains its infimum , $|\nabla u(x)|=0 \leq$ $\delta^{\frac{p}{p-1}}(\delta>0)$, so $x \in\left\{|\nabla u| \leq \delta^{\frac{p}{p-1}}\right\}$. Basing on this, we will establish the volume of the set $\left\{|\nabla u| \leq \delta^{\frac{p}{p-1}}\right\} \cap B_{r}\left(x_{0}\right) \cap\{u>0\}$, for any x_{0} on the free boundary $\partial\{u>0\}$, which, after then, will be used to estimate the $(N-1)$-dimensional Hausdorff measure for the free boundary. To do this, we use the same notations as $[2,3,9,17]$,

$$
O_{\delta}=\left\{x \in B_{1} ;|\nabla u(x)| \leq \delta^{\frac{1}{p-1}}\right\}, \quad \text { and } \quad O_{\delta_{i}}=\left\{x \in B_{1} ;\left|u_{x_{i}}(x)\right| \leq \delta^{\frac{1}{p-1}}\right\}
$$

According to [17], if $x_{0} \in \partial\{u>0\} \cap B_{1-\delta}$ then there exist $y_{0} \in\{u>0\}$ and $c>0(c=c(N, p))$ such that

$$
\begin{equation*}
B_{c \delta}\left(y_{0}\right) \subset B_{\delta}\left(x_{0}\right) \cap O_{\delta} \cap\{u>0\} \tag{5}
\end{equation*}
$$

Denote by \mathcal{L}^{N} the N-dimensional Lebesgue measure and by \mathcal{H}^{N-1} the ($N-1$)-Hausdorff measure. The main result obtained in this paper is the following theorem

Theorem 2.1. Let u be the solution to (1), then for any $x_{0} \in \partial\{u>0\} \cap B_{\frac{1}{2}}$, and $0<r<\frac{1}{4}$, there holds

$$
\mathcal{H}^{N-1}\left(\partial\{u>0\} \cap B_{r}\left(x_{0}\right)\right) \leq C_{0} r^{N-1}
$$

for a nonegative constant $C_{0}=C_{0}\left(p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}\right),\|\nabla u\|_{\infty}:=\|\nabla u\|_{L^{\infty}\left(\bar{B}_{1}\right)}$.

3. Main proofs

We use ideas of $[2,9]$ to give our proofs. First of all, to prove Theorem 2.1, we need to introduce the following approximating equation (see [14])

$$
\begin{equation*}
-\operatorname{div} a\left(\nabla u_{\epsilon}\right)+\vartheta_{\epsilon}\left(u_{\epsilon}\right)=0 \quad \text { in } B_{1}, \quad u_{\epsilon}=g \quad \text { on } \partial B_{1} . \tag{6}
\end{equation*}
$$

Here, for each $\epsilon>0, \vartheta_{\epsilon}: \mathbb{R} \rightarrow[0,1]$ is the nondecreasing Lipschitz function given by

$$
\vartheta_{\epsilon}(t)=0, t<0, \quad \vartheta_{\epsilon}(t)=\frac{t}{\epsilon}, 0<t \leq \epsilon, \quad \text { and } \quad \vartheta_{\epsilon}(t)=1, t>\epsilon .
$$

According to [14], there exists a unique solution u_{ϵ} to (6) which converges to the solution u to (1) in $C^{1, \theta}\left(\bar{B}_{1}\right)$ for some $\theta, 0<\theta<1$. Then we have
Proposition 3.1. $\frac{\left|\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right|^{2}}{\gamma_{1}^{2}} \leq\left[\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\right]^{2}$ in B_{1}.
Proof. Indeed, $\vartheta_{\epsilon}\left(u_{\epsilon}\right)=\operatorname{div} a\left(\nabla u_{\epsilon}\right)=\sum_{i, j=1}^{N} a_{u_{\epsilon x_{j}}}^{i} u_{\epsilon x_{j} x_{i}}$. The assumption (3) gives that

$$
\left|\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right|^{2} \leq\left(\sum_{i=1}^{N} \sum_{j=1}^{N} \gamma_{1}\left|\nabla u_{\epsilon}\right|^{p-2}\left|u_{\epsilon x_{i} x_{j}}\right|\right)^{2}=\gamma_{1}^{2}\left[\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\right]^{2} .
$$

In the following proofs, we consider two cases, $1<p \leq 2$ and $p>2$.
Case I. Firstly, for $1<p \leq 2$, we claim
Proposition 3.2. There is a positive constant $M_{0}=M_{0}\left(p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}\right)$ such that for small ϵ, there holds

$$
\int_{B_{\frac{r}{2}}}\left[\left|\nabla u_{\epsilon}(x)\right|^{p-2}\left|D^{2} u_{\epsilon}(x)\right|\right]^{2} \mathrm{~d} x \leq M_{0} r^{N-2}, \quad \forall 0<r<1 .
$$

Proof. Let $G_{\epsilon}(t)=\left(\epsilon+t^{2}\right)^{\frac{p-2}{2}} t, t \in(-\infty,+\infty)$. Further $\Phi=G\left(u_{\epsilon x_{i}}\right) \varphi^{2}$, where $\varphi \in \mathcal{D}\left(B_{\frac{3 r}{4}}\right)$ satisfying

$$
\left\{\begin{aligned}
0 \leq \varphi \leq 1, & \text { in } B_{\frac{3 r}{4}}, \\
\varphi=1, & \text { in } B_{\frac{r}{2}}, \\
|\nabla \varphi| \leq \frac{4}{r}, & \text { in } B_{\frac{3 r}{4}} .
\end{aligned}\right.
$$

Now differentiating equation (6) with respect to x_{i}, then multiplying it by Φ and taking integrating over $B_{\frac{3 r}{4}}$, we get $\int_{B_{\frac{3 r}{4}}}\left[\left(-\operatorname{div} a\left(\nabla u_{\epsilon}\right)\right)_{x_{i}}+\left(\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right)_{x_{i}}\right] \Phi \mathrm{d} x=0$. Then we have

$$
\begin{equation*}
\int_{B_{\frac{3 r}{4}}} a\left(\nabla u_{\epsilon}\right)_{x_{i}} \cdot \nabla \Phi \mathrm{~d} x=-\int_{B_{\frac{3 r}{4}}^{4}}\left(\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right)_{x_{i}} \Phi \mathrm{~d} x . \tag{7}
\end{equation*}
$$

The left hand of (7) becomes

$$
\begin{align*}
I^{i}= & \int_{B_{\frac{3 r}{4}}} \sum_{k=1}^{N}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}}\right) \Phi_{x_{k}} \mathrm{~d} x \\
= & \sum_{k=1}^{N} \int_{B_{\frac{3 r}{4}}^{4}} \sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}}\left[(p-2) u_{\epsilon x_{i}}^{2}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-4}{2}}+\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}}\right] u_{\epsilon x_{i} x_{k}} \varphi^{2} \mathrm{~d} x \tag{8}\\
& +\sum_{k=1}^{N} \int_{B_{\frac{3 r}{4}}} 2 \sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}} u_{\epsilon x_{i}} \varphi \varphi_{x_{k}} \mathrm{~d} x \\
= & : I_{1}^{i}+I_{2}^{i} .
\end{align*}
$$

By (2) and $1<p \leq 2$, we get

$$
\begin{align*}
I_{1}^{i} & \geq \sum_{k=1}^{N} \int_{B_{\frac{3 r}{4}}} \sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}} u_{\epsilon x_{i} x_{k}}(p-1)\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}} \varphi^{2} \mathrm{~d} x \tag{9}\\
& \geq(p-1) \gamma_{0} \int_{B_{\frac{3 r}{4}}}\left|\nabla u_{\epsilon}\right|^{p-2}\left|\nabla u_{\epsilon x_{i}}\right|^{2}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}} \varphi^{2} \mathrm{~d} x .
\end{align*}
$$

By (3) and Cauchy's inequality with ϵ, we have

$$
\begin{align*}
\left|I_{2}^{i}\right| \leq & \int_{B_{\frac{3 r}{}}} 2 N \gamma_{1}\left|\nabla u_{\epsilon}\right|^{p-2}\left|\nabla u_{\epsilon x_{i}}\right|\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}}\left|u_{\epsilon x_{i}}\right| \varphi|\nabla \varphi| \mathrm{d} x \\
\leq & \frac{\gamma_{0}(p-1)}{2} \int_{B_{\frac{3 r}{4}}}\left|\nabla u_{\epsilon}\right|^{p-2}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}}\left|\nabla u_{\epsilon x_{i}}\right|^{2} \varphi^{2} \mathrm{~d} x \\
& +\frac{2 N^{2} \gamma_{1}^{2}}{(p-1) \gamma_{0}} \int_{B_{\frac{3 r}{4}}}\left|\nabla u_{\epsilon}\right|^{p-2}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}}\left|u_{\epsilon x_{i}}\right|^{2}|\nabla \varphi|^{2} \mathrm{~d} x \\
\leq & \frac{\gamma_{0}(p-1)}{2} \int_{B_{\frac{3 r r}{4}}}\left|\nabla u_{\epsilon}\right|^{p-2}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}}\left|\nabla u_{\epsilon x_{i}}\right|^{2} \varphi^{2} \mathrm{~d} x \tag{10}\\
& +\frac{2 N^{2} \gamma_{1}^{2}}{(p-1) \gamma_{0}} \int_{B_{\frac{3 x r}{4}}}\left|u_{\epsilon x_{i}}\right|^{p-2}\left|u_{\epsilon x_{i}}\right|^{p-2}\left|u_{\epsilon x_{i}}\right|^{2}|\nabla \varphi|^{2} \mathrm{~d} x \\
\leq & \frac{\gamma_{0}(p-1)}{2} \int_{B_{\frac{3 r}{4}}^{4}}\left|\nabla u_{\epsilon}\right|^{p-2}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}}\left|\nabla u_{\epsilon x_{i}}\right|^{2} \varphi^{2} \mathrm{~d} x \\
& +\frac{2 N^{2} \gamma_{1}^{2}}{(p-1) \gamma_{0}} \int_{B_{\frac{3 r}{4}}}\left|\nabla u_{\epsilon}\right|^{2(p-1)}|\nabla \varphi|^{2} \mathrm{~d} x .
\end{align*}
$$

The right hand of (7) becomes

$$
\begin{equation*}
I^{i}=-\int_{B_{\frac{3 r}{4}}} \vartheta_{\epsilon}^{\prime}\left(u_{\epsilon}\right) u_{\epsilon x_{i}}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}} u_{\epsilon x_{i}} \varphi^{2} \mathrm{~d} x \leq 0 . \tag{11}
\end{equation*}
$$

By (7)-(11) and the choice of φ, we have

$$
\int_{B_{\frac{r}{2}}}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}}\left|\nabla u_{\epsilon}\right|^{p-2}\left|\nabla u_{\epsilon x_{i}}\right|^{2} \mathrm{~d} x \leq \frac{64 N^{2} \gamma_{1}^{2}}{\gamma_{0}^{2} r^{2}(p-1)^{2}} \int_{B_{\frac{3 x}{4}}}\left|\nabla u_{\epsilon}\right|^{2(p-1)} \mathrm{d} x .
$$

Since $p<2$, we have

$$
\begin{equation*}
\int_{B_{\frac{r}{2}}}\left(\epsilon+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}}\left|\nabla u_{\epsilon}\right|^{p-2}\left|\nabla u_{\epsilon x_{i}}\right|^{2} \mathrm{~d} x \leq \frac{64 N^{2} \gamma_{1}^{2}}{\gamma_{0}^{2} r^{2}(p-1)^{2}} \int_{B_{\frac{3 r}{4}}}\left|\nabla u_{\epsilon}\right|^{2(p-1)} \mathrm{d} x . \tag{12}
\end{equation*}
$$

Summing up (12) from $i=1$ to N, we get

$$
\begin{equation*}
\int_{B_{\frac{r}{2}}}\left[\left(\epsilon+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u_{\epsilon}\right|\right]^{2} \mathrm{~d} x \frac{64 N^{2} \gamma_{1}^{2}}{\gamma_{0}^{2} r^{2}(p-1)^{2}} \int_{B_{\frac{3 r}{4}}^{4}}\left|\nabla u_{\epsilon}\right|^{2(p-1)} \mathrm{d} x . \tag{13}
\end{equation*}
$$

Since $u_{\epsilon} \rightarrow u$ in $C^{1, \theta}\left(\bar{B}_{1}\right)$, for small ϵ, there exists a positive constant $M^{\prime}=M^{\prime}\left(\|\nabla u\|_{\infty}\right)$ such that $\left|\nabla u_{\epsilon}\right| \leq M^{\prime}$ in $B_{\frac{3}{4}}$, which and (13) imply that $D^{2} u_{\epsilon} \in L^{2}\left(B_{\frac{r}{2}}\right)$. Furthermore, we can deduce that $D^{2} u \in L^{2}\left(B_{\frac{r}{2}}\right)$. Moreover, as $\epsilon \rightarrow 0$,

$$
\begin{aligned}
\int_{B_{\frac{r}{2}}}\{ & {\left.\left[\left(\epsilon+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u_{\epsilon}\right|\right]^{2}-\left(|\nabla u|^{p-2}\left|D^{2} u\right|\right)^{2}\right\} \mathrm{d} x \rightarrow 0 } \\
& \int_{B_{\frac{r}{2}}}\left\{\left[\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\right]^{2}-\left(|\nabla u|^{p-2}\left|D^{2} u\right|\right)^{2}\right\} \mathrm{d} x \rightarrow 0
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\int_{B_{\frac{r}{2}}}\left\{\left[\left(\epsilon+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u_{\epsilon}\right|\right]^{2}-\left(\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\right)^{2}\right\} \mathrm{d} x \rightarrow 0 . \tag{14}
\end{equation*}
$$

So for ϵ small enough, by (13) and (14), we can obtain the desired result.
Now we claim
Lemma 3.3. For any ball $B_{r}\left(x_{0}\right) \subset B_{\frac{1}{2}}$, with $x_{0} \in \partial\{u>0\} \cap B_{\frac{1}{2}}$ and $r<\frac{1}{2}$, there holds

$$
\int_{0}^{1} \mathcal{L}^{N}\left(O_{\delta} \cap B_{r s}\left(x_{0}\right) \cap\{u>0\}\right) d s \leq C_{1} \delta r^{N-1}
$$

where $\delta>0$ is arbitrary, $C_{1}=C_{1}\left(p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}\right)$ is a constant.

Proof. Firstly define $O_{\epsilon}=\left\{\left|\nabla u_{\epsilon}\right| \leq 2 \delta^{\frac{1}{p-1}}\right\}$ and $O_{\epsilon_{i}}=\left\{\left|u_{\epsilon x_{i}}\right| \leq 2 \delta^{\frac{1}{p-1}}\right\}$. Then we have

$$
\begin{equation*}
O_{\delta} \cap B_{\frac{1}{2}} \subset O_{\epsilon} \cap B_{\frac{1}{2}} . \tag{15}
\end{equation*}
$$

Indeed, there exists ϵ_{0} such that for $\epsilon \in\left(0, \epsilon_{0}\right)$ there holds $\left\|\nabla u_{\epsilon}-\nabla u\right\|_{\infty, \bar{B}_{\frac{1}{2}}}<\delta^{\frac{1}{p-1}}$. On the other hand, $\left|\nabla u_{\epsilon}\right| \leq\left|\nabla u_{\epsilon}-\nabla u\right|+|\nabla u| \leq \delta^{\frac{1}{p-1}}+\delta^{\frac{1}{p-1}}=2 \delta^{\frac{1}{p-1}}$.

Now differentiating equation (6) with respect to x_{i} gives

$$
\begin{equation*}
-\operatorname{div}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right)+\vartheta_{\epsilon}^{\prime}\left(u_{\epsilon}\right) u_{\epsilon x_{i}}=0 . \tag{16}
\end{equation*}
$$

Let

$$
F(\eta)= \begin{cases}2 \delta^{\frac{1}{p-1}}\left(\epsilon+4 \delta^{\frac{2}{p-1}}\right)^{\frac{p-2}{2}}, & \eta>2 \delta^{\frac{1}{p-1}}, \\ \left(\epsilon+\eta^{2}\right)^{\frac{p-2}{2}} \eta, & |\eta| \leq 2 \delta^{\frac{1}{p-1}}, \\ -2 \delta^{\frac{1}{p-1}}\left(\epsilon+4 \delta^{\frac{2}{p-1}}\right)^{\frac{p-2}{2}}, & \eta<-2 \delta^{\frac{1}{p-1}} .\end{cases}
$$

Then $F^{\prime}(\eta)=\left[(p-2) \eta^{2}\left(\epsilon+\eta^{2}\right)^{\frac{p-4}{2}}+\left(\epsilon+\eta^{2}\right)^{\frac{p-2}{2}}\right] \chi_{\left\{|\eta|<2 \delta^{\left.\frac{1}{p-1}\right\}}\right.}$. Multiplying (16) by $F\left(u_{\epsilon x_{i}}\right)$ and taking integrating over $B_{r s}\left(x_{0}\right)$, we get

$$
\begin{align*}
& \int_{B_{r s}\left(x_{0}\right)}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right) \cdot \nabla F\left(u_{\epsilon x_{i}}\right) \mathrm{d} x+\int_{B_{r s}\left(x_{0}\right)} \vartheta_{\epsilon}^{\prime}\left(u_{\epsilon}\right) u_{\epsilon x_{i}} F\left(u_{\epsilon x_{i}}\right) \mathrm{d} x \tag{17}\\
& =\int_{\partial B_{r s}\left(x_{0}\right)}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right) F\left(u_{\epsilon x_{i}}\right) \nu \mathrm{d} S,
\end{align*}
$$

where ν is the unit outward normal vector.
On one hand, by (3) and Proposition 3.2, we have

$$
\begin{align*}
& \int_{0}^{1} \int_{\partial B_{r s}\left(x_{0}\right)}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right) F\left(u_{\epsilon x_{i}}\right) \nu \mathrm{d} S \mathrm{~d} s \\
& \leq \int_{B_{r}\left(x_{0}\right)} \sum_{k=1}^{N} \sum_{j=1}^{N}\left|a_{u_{\epsilon x_{j}}}^{k}\right|\left|u_{\epsilon x_{j} x_{i}}\right| F\left(u_{\epsilon x_{i}}\right) \mid \mathrm{d} x \\
& \leq \int_{B_{r}\left(x_{0}\right)} N \gamma_{1}\left|\nabla u_{\epsilon}\right|^{p-2} \sum_{j=1}^{N}\left|u_{\epsilon x_{j} x_{i}}\right|\left|F\left(u_{\epsilon x_{i}}\right)\right| \mathrm{d} x \tag{18}\\
& \leq \int_{B_{r}\left(x_{0}\right)} N \gamma_{1}\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\left|F\left(u_{\epsilon x_{i}}\right)\right| \mathrm{d} x \\
& \leq N \gamma_{1}\left(\int_{B_{r}\left(x_{0}\right)}\left[\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\right]^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{B_{r}\left(x_{0}\right)}\left|F\left(u_{\epsilon x_{i}}\right)\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \\
& \leq C_{2} \delta r^{N-1},
\end{align*}
$$

where C_{2} is a positive constant depending on $p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}$.
On the other hand, by (15) and (2) we have

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right)}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right) \cdot \nabla F\left(u_{\epsilon x_{i}}\right) \mathrm{d} x \\
& =\sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon_{i}}} \sum_{k=1}^{N}\left[\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}} F^{\prime}\left(u_{\epsilon x_{i}}\right) u_{\epsilon x_{i} x_{k}}\right] \mathrm{d} x \\
& \geq(p-1) \sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon_{i}}} \sum_{k=1}^{N}\left[\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}}\left(\epsilon+u_{\epsilon x_{i}}^{2}\right)^{\frac{p-2}{2}} u_{\epsilon x_{i} x_{k}}\right] \mathrm{d} x \\
& \geq(p-1) \sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon_{i}}} \gamma_{0}\left|\nabla u_{\epsilon}\right|^{p-2}\left|\nabla u_{\epsilon x_{i}}\right|^{2}\left(\epsilon+u_{\epsilon x_{i}}^{2}{ }^{\frac{p-2}{2}} \mathrm{~d} x\right. \tag{19}\\
& \geq(p-1) \gamma_{0} \sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon_{i}}}\left(\epsilon+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}}\left|\nabla u_{\epsilon x_{i}}\right|^{2}\left(\epsilon+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}} \mathrm{~d} x \\
& \geq(p-1) \gamma_{0} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon}}\left[\left(\epsilon+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u_{\epsilon}\right|\right]^{2} \mathrm{~d} x \quad\left(\text { by } O_{\epsilon} \subset O_{\epsilon_{i}}\right) \\
& \geq(p-1) \gamma_{0} \int_{B_{r s}\left(x_{0}\right) \cap O_{\delta}}\left[\left(\epsilon+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u_{\epsilon}\right|\right]^{2} \mathrm{~d} x .
\end{align*}
$$

Moreover,

$$
\begin{equation*}
\int_{B_{r s}\left(x_{0}\right)} \vartheta_{\epsilon}^{\prime}\left(u_{\epsilon}\right) u_{\epsilon x_{i}} F\left(u_{\epsilon x_{i}}\right) \mathrm{d} x \geq 0 . \tag{20}
\end{equation*}
$$

For ϵ small enough, by (14), (17)-(20), we get

$$
\int_{0}^{1} \int_{B_{r s}\left(x_{0}\right) \cap O_{\delta}}\left|\nabla u_{\epsilon}\right|^{2(p-2)}\left|D^{2} u_{\epsilon}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leq C_{1} \delta r^{N-1}
$$

where C_{1} is a constant depending on $p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}$. By Proposition 3.1, we get $\int_{0}^{1} \int_{B_{r s}\left(x_{0}\right) \cap O_{\delta}}\left|\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s \leq C_{1} \delta r^{N-1}$ Furthermore, we have

$$
\int_{0}^{1} \int_{B_{r s}\left(x_{0}\right) \cap O_{\delta} \cap\{u \geq \epsilon\}}\left|\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s \leq \int_{0}^{1} \int_{B_{r s}\left(x_{0}\right) \cap O_{\delta}}\left|\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s \leq C_{1} \delta r^{N-1}
$$

According to $\left[14\right.$, Theorem 2], $u_{\epsilon} \geq u$. By the definition of ϑ_{ϵ}, we have

$$
\int_{0}^{1} \int_{B_{r s}\left(x_{0}\right) \cap O_{\delta} \cap\{u \geq \epsilon\}} \mathrm{d} x \mathrm{~d} s \leq C_{1} \delta r^{N-1} .
$$

Now letting $\epsilon \rightarrow 0$ implies that $\int_{0}^{1} \mathcal{L}^{N}\left(B_{r s}\left(x_{0}\right) \cap O_{\delta} \cap\{u>0\}\right) \mathrm{d} s \leq C_{1} \delta r^{N-1}$. This completes the proof of Lemma 3.3.

Case II. Secondly, when $p>2$, as Proposition 3.2, we can prove
Proposition 3.4. There is a positive constant $M_{1}=M_{1}\left(p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}\right)$ such that for small ϵ, there holds

$$
\int_{B_{\frac{r}{2}}}\left[\left|\nabla u_{\epsilon}(x)\right|^{\frac{p-2}{2}}\left|D^{2} u_{\epsilon}(x)\right|\right]^{2} \mathrm{~d} x \leq M_{1} r^{N-2}, \quad \forall 0<r<1 .
$$

Proof. Let $\Phi=u_{\epsilon x_{i}} \varphi^{2}$, where $\varphi \in \mathcal{D}\left(B_{\frac{3 r}{4}}\right)$ satisfying

$$
\left\{\begin{aligned}
0 \leq \varphi \leq 1, & \text { in } B_{\frac{3 r}{4}}, \\
\varphi=1, & \text { in } B_{\frac{r}{2}}, \\
|\nabla \varphi| \leq \frac{4}{r}, & \text { in } B_{\frac{3 r}{4}} .
\end{aligned}\right.
$$

Now differentiating equation (6) with respect to x_{i}, then multiplying it by Φ and integrating over $B_{\frac{3 r}{4}}$, we get $\int_{B_{\frac{3 r}{4}}}\left[\left(-\operatorname{div} a\left(\nabla u_{\epsilon}\right)\right)_{x_{i}}+\left(\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right)_{x_{i}}\right] \Phi \mathrm{d} x=0$. So we have

$$
\begin{equation*}
\int_{B_{\frac{3 r}{4}}} a\left(\nabla u_{\epsilon}\right)_{x_{i}} \cdot \nabla \Phi \mathrm{~d} x=-\int_{B_{\frac{3 r}{4}}}\left(\vartheta_{\epsilon}\left(u_{\epsilon}\right)\right)_{x_{i}} \Phi \mathrm{~d} x . \tag{21}
\end{equation*}
$$

The left hand of (21) becomes

$$
\begin{align*}
I^{i} & =\int_{B_{\frac{3 r}{}}} \sum_{k=1}^{N}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}}\right) \Phi_{x_{k}} \mathrm{~d} x \\
& =\sum_{k=1}^{N} \int_{B_{\frac{3 r}{4}}^{4}} \sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}}\left(u_{\epsilon x_{i} x_{k}} \varphi^{2}+2 u_{\epsilon x_{i}} \varphi \varphi_{x_{k}}\right) \mathrm{d} x \tag{22}\\
& =\sum_{k=1}^{N} \int_{B_{\frac{3 r}{4}}} \sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}} u_{\epsilon x_{i} x_{k}} \varphi^{2} \mathrm{~d} x+2 \sum_{k=1}^{N} \int_{B_{\frac{3 r}{4}}^{4}} \sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}} u_{\epsilon x_{i}} \varphi \varphi_{x_{k}} \mathrm{~d} x \\
& =: I_{1}^{i}+I_{2}^{i} .
\end{align*}
$$

By (2), we have

$$
\begin{equation*}
I_{1}^{i} \geq \int_{B_{\frac{3 r}{4}}} \gamma_{0}\left|\nabla u_{\epsilon}\right|^{p-2}\left|\nabla u_{\epsilon x_{i}}\right|^{2} \varphi^{2} \mathrm{~d} x=\gamma_{0} \int_{B_{\frac{3 r}{4}}}\left[\left|\nabla u_{\epsilon}\right|^{\frac{p-2}{2}}\left|\nabla u_{\epsilon x_{i}}\right| \varphi\right]^{2} \mathrm{~d} x . \tag{23}
\end{equation*}
$$

By (3) and Cauchy's inequality with ϵ, we have

$$
\begin{align*}
\left|I_{2}^{i}\right| & \leq \int_{B_{\frac{3 r}{4}}} \sum_{k=1}^{N} \sum_{j=1}^{N} 2 \gamma_{1}\left|\nabla u_{\epsilon}\right|^{p-2}\left|u_{\epsilon x_{j} x_{i}}\right|\left|\nabla u_{\epsilon}\right| \varphi|\nabla \varphi| \mathrm{d} x \\
& \leq \int_{B_{\frac{3 r}{4}}} 2 N \gamma_{1}\left|\nabla u_{\epsilon}\right|^{p-2}\left|\nabla u_{\epsilon x_{i}}\right|\left|\nabla u_{\epsilon}\right| \varphi|\nabla \varphi| \mathrm{d} x \tag{24}\\
& \leq \frac{\gamma_{0}}{2} \int_{B_{\frac{3 r}{4}}}\left[\left|\nabla u_{\epsilon}\right|^{\frac{p-2}{2}}\left|\nabla u_{\epsilon x_{i}}\right| \varphi\right]^{2} \mathrm{~d} x+\frac{2 N^{2} \gamma_{1}^{2}}{\gamma_{0}} \int_{B_{\frac{3 r}{4}}}\left[\left|\nabla u_{\epsilon}\right|^{\frac{p}{2}}|\nabla \varphi|\right]^{2} \mathrm{~d} x .
\end{align*}
$$

The right hand of (21) becomes

$$
\begin{equation*}
I^{i}=-\int_{B_{\frac{3 r}{4}}} \vartheta_{\epsilon}^{\prime}\left(u_{\epsilon}\right) u_{\epsilon x_{i}} u_{\epsilon x_{i}} \varphi^{2} \mathrm{~d} x \leq 0 \tag{25}
\end{equation*}
$$

By (21)-(25) and the choice of φ, we have

$$
\begin{equation*}
\frac{\gamma_{0}}{2} \int_{B_{\frac{r}{2}}}\left[\left|\nabla u_{\epsilon}\right|^{p-2} 2\left|\nabla u_{\epsilon x_{i}}\right|\right]^{2} \mathrm{~d} x \leq \frac{32 N^{2} \gamma_{1}^{2}}{\gamma_{0} r^{2}} \int_{B_{\frac{3 n}{4}}}\left|\nabla u_{\epsilon}\right|^{p} \mathrm{~d} x . \tag{26}
\end{equation*}
$$

Since $u_{\epsilon} \rightarrow u$ in $C^{1, \theta}\left(\bar{B}_{\frac{3}{4}}\right)$, for small ϵ, there exists a positive constant $M^{\prime}=M^{\prime}\left(\|\nabla u\|_{\infty}\right)$ such that $\left|\nabla u_{\epsilon}\right| \leq M^{\prime}$ in $B_{\frac{3}{4}}$. Summing up (26) from $i=1$ to N, we can obtain the desired result.

Now we claim

Lemma 3.5. For any ball $B_{r}\left(x_{0}\right) \subset B_{\frac{1}{2}}$, with $x_{0} \in \partial\{u>0\} \cap B_{\frac{1}{2}}$ and $r<\frac{1}{2}$, there holds

$$
\int_{0}^{1} \mathcal{L}^{N}\left(O_{\delta} \cap B_{r s}\left(x_{0}\right) \cap\{u>0\}\right) d s \leq C_{1}^{\prime} \delta r^{N-1}
$$

where $\delta>0$ is arbitrary, $C_{1}^{\prime}=C_{1}^{\prime}\left(p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}\right)$ is a constant.
Proof. Let F given by

$$
F(\eta)=\left\{\begin{array}{rr}
2^{p-1} \delta, & \eta>2 \delta^{\frac{1}{p-1}} \\
2^{p-2} \delta^{\frac{p-2}{p-1}} \eta, & |\eta| \leq 2 \delta^{\frac{1}{p-1}} \\
-2^{p-1} \delta, & \eta<-2 \delta^{\frac{1}{p-1}} .
\end{array}\right.
$$

For small ϵ, as Lemma 3.3, we have

$$
\begin{align*}
& \int_{B_{r s}\left(x_{0}\right)}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right) \cdot \nabla F\left(u_{\epsilon x_{i}}\right) \mathrm{d} x+\int_{B_{r s}\left(x_{0}\right)} \vartheta_{\epsilon}^{\prime}\left(u_{\epsilon}\right) u_{\epsilon x_{i}} F\left(u_{\epsilon x_{i}}\right) \mathrm{d} x \\
& =\int_{\partial B_{r s}\left(x_{0}\right)}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right) F\left(u_{\epsilon x_{i}}\right) \nu \mathrm{d} S, \tag{27}
\end{align*}
$$

where ν is the unit outward normal vector.

On one hand, by (3) and Proposition 3.4, we have

$$
\begin{align*}
& \int_{0}^{1} \int_{\partial B_{r s}\left(x_{0}\right)}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right) F\left(u_{\epsilon x_{i}}\right) \nu \mathrm{d} S \mathrm{~d} s \\
& \leq \int_{B_{r}\left(x_{0}\right)} \sum_{k=1}^{N} \sum_{j=1}^{N}\left|a_{u_{\epsilon x_{j}}}^{k}\right|\left|u_{\epsilon x_{j} x_{i}}\right|\left|F\left(u_{\epsilon x_{i}}\right)\right| \mathrm{d} x \\
& \leq \int_{B_{r}\left(x_{0}\right)} N \gamma_{1}\left|\nabla u_{\epsilon}\right|^{p-2} \sum_{j=1}^{N}\left|u_{\epsilon x_{j} x_{i}}\right|\left|F\left(u_{\epsilon x_{i}}\right)\right| \mathrm{d} x \tag{28}\\
& \leq \int_{B_{r}\left(x_{0}\right)} N \gamma_{1}\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\left|F\left(u_{\epsilon x_{i}}\right)\right| \mathrm{d} x \\
& \leq 2^{p-1} \delta N \gamma_{1}\left(\int_{B_{r}\left(x_{0}\right)}\left[\left|\nabla u_{\epsilon}\right|^{\frac{p-2}{2}}\left|D^{2} u_{\epsilon}\right|\right]^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{B_{r}\left(x_{0}\right)}\left|\nabla u_{\epsilon}\right|^{p-2} \mathrm{~d} x\right)^{\frac{1}{2}} \\
& \leq C_{2}^{\prime} \delta r^{N-1},
\end{align*}
$$

where C_{2}^{\prime} is a positive constant depending on $p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}$.
On the other hand, by (2), (16) and the fact that $\left\{\left|\nabla u_{\epsilon}\right|<2 \delta^{\frac{1}{p-1}}\right\} \subset$ $\left\{\left|u_{\epsilon x_{i}}\right|<2 \delta^{\frac{1}{p-1}}\right\}$, we have

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right)}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}} u_{\epsilon x_{j} x_{i}}\right) \cdot \nabla F\left(u_{\epsilon x_{i}}\right) \mathrm{d} x \\
& =\sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon_{i}}} \sum_{k=1}^{N}\left[\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}} F^{\prime}\left(u_{\epsilon x_{i}}\right) u_{\epsilon x_{i} x_{k}}\right] \mathrm{d} x \\
& =\sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon_{i}}} \sum_{k=1}^{N}\left(\sum_{j=1}^{N} a_{u_{\epsilon x_{j}}}^{k} u_{\epsilon x_{j} x_{i}} u_{\epsilon x_{i} x_{k}}\right) 2^{p-2} \delta^{\frac{p-2}{p-1}} \mathrm{~d} x \tag{29}\\
& \geq \sum_{i=1}^{N} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon}} \gamma_{0}\left|\nabla u_{\epsilon}\right|^{p-2}\left|\nabla u_{\epsilon x_{i}}\right|^{2}\left|\nabla u_{\epsilon}\right|^{p-2} \mathrm{~d} x \quad\left(\text { by } O_{\epsilon} \subset O_{\epsilon_{i}}\right) \\
& =\gamma_{0} \int_{B_{r s}\left(x_{0}\right) \cap O_{\epsilon}}\left[\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\right]^{2} \mathrm{~d} x \\
& \geq \gamma_{0} \int_{B_{r s}\left(x_{0}\right) \cap O_{\delta}}\left[\left|\nabla u_{\epsilon}\right|^{p-2}\left|D^{2} u_{\epsilon}\right|\right]^{2} \mathrm{~d} x,
\end{align*}
$$

where $O_{\epsilon_{i}}, O_{\epsilon}, O_{\delta}$ are defined as in Lemma 3.3. Moreover,

$$
\begin{equation*}
\int_{B_{r s}\left(x_{0}\right)} \vartheta_{\epsilon}^{\prime}\left(u_{\epsilon}\right) u_{\epsilon x_{i}} F\left(u_{\epsilon x_{i}}\right) \mathrm{d} x \geq 0 \tag{30}
\end{equation*}
$$

For ϵ small enough, by (14), (27)-(30), we get

$$
\int_{0}^{1} \int_{B_{r s}\left(x_{0}\right) \cap O_{\delta}}\left|\nabla u_{\epsilon}\right|^{2(p-2)}\left|D^{2} u_{\epsilon}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leq C_{1}^{\prime} \delta r^{N-1}
$$

where C_{1}^{\prime} is a constant depending on $p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}$. As in Lemma 3.3, we can deduce that $\int_{0}^{1} \mathcal{L}^{N}\left(B_{r s}\left(x_{0}\right) \cap O_{\delta} \cap\{u>0\}\right) \mathrm{d} s \leq C_{1}^{\prime} \delta r^{N-1}$. This completes the proof of Lemma 3.5.

Due to the above lemmas, we can exactly use the technique as [9] to prove Theorem 2.1 with $1<p<\infty$.

Proof of Theorem 2.1. Under the conditions of Lemma 3.3 (Lemma 3.5), firstly we can conclude there exists a positive constant $C_{3}=C_{3}\left(p, N, \gamma_{0}, \gamma_{1},\|\nabla u\|_{\infty}\right)$ such that

$$
\mathcal{L}^{N}\left(O_{\delta} \cap B_{r}\left(x_{0}\right) \cap\{u>0\}\right) \leq C_{3} \delta r^{N-1} \quad \text { for all } r<\frac{1}{4}
$$

If not, then there exists a ball $B_{r}\left(x_{0}\right)$ with center on the free boundary such that for any $k \in \mathbb{R}, \mathcal{L}^{N}\left(O_{\delta} \cap B_{r}\left(x_{0}\right) \cap\{u>0\}\right) \geq k \delta r^{N-1}$. But by Lemma 3.3 (Lemma 3.5) we have

$$
\begin{aligned}
\max \left\{C_{1}, C_{1}^{\prime}\right\} \delta r^{N-1} & \geq \int_{0}^{1} \mathcal{L}^{N}\left(O_{\delta} \cap B_{2 r s}\left(x_{0}\right) \cap\{u>0\}\right) \mathrm{d} s \\
& \geq \frac{1}{2} \mathcal{L}^{N}\left(O_{\delta} \cap B_{r}\left(x_{0}\right) \cap\{u>0\}\right) \\
& \geq \frac{1}{2} k \delta r^{N-1},
\end{aligned}
$$

which is a contradiction for large k.
Secondly, due to Besicovitch covering theorem, let $\left\{B_{\delta}\left(x^{i}\right)\right\}_{i \in I}$ be finite coverings of $\partial\{u>0\} \cap B_{r}\left(x_{0}\right)$ with $x^{i} \in \partial\{u>0\}$, with at most n overlapping at each point, where n depends only on N. Then, by (5), we have

$$
\begin{aligned}
\sum_{i \in I}(C \delta)^{N} & \leq \sum_{i \in I} \mathcal{L}^{N}\left(O_{\delta} \cap B_{\delta}\left(x^{i}\right) \cap\{u>0\}\right) \\
& \leq n C \mathcal{L}^{N}\left(O_{\delta} \cap B_{r}\left(x_{0}\right) \cap\{u>0\}\right) \\
& \leq C^{\prime} \delta r^{N-1} .
\end{aligned}
$$

where C, C^{\prime} are positive constants. This proves Theorem 2.1.
Acknowledgement. The authors would like to thank the referee for his/her careful reading and valuable suggestions of revising the manuscript, which made this article more readable.

References

[1] Caffarelli, L. A., The obstacle problem revisited. J. Fourier Anal. Appl. 4 (1998)(4-5), $383-402$.
[2] Challal, A., Lyaghfouri, A. and Rodrigues, J. F., On the A-obstacle problem and the Hausdorff measure of its free boundary. Ann. Mat. Pura Appl. 191 (2012)(1), $113-165$.
[3] Challal, S. and Lyaghfouri, A., Porosity of free boundaries in A-obstacle problems. Nonlin. Anal. 70 (2009)(7), 2772 - 2778.
[4] Choe, H. J., A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114 (1991), 383 - 394.
[5] Choe, H. J. and Lewis, J. L., On the obstacle problem for quasilinear elliptic equations of p-Laplacian type. SIAM J. Math. Anal. 22 (1991)(3), $623-638$.
[6] DiBenedetto, E., $C^{1, \alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlin. Anal. 7 (1983), $827-850$.
[7] Fuchs, M., Hölder continuity of the gradient for degenerate variational inequalities. Nonlin. Anal. 15 (1990), 85 - 100.
[8] Karp, L., Kilpeläinen, T., Petrosyan, A. and Shahgholian, H., On the porosity of free boundaries in degenerate variational inequalities. J. Diff. Equ. 164 (2000), $110-117$.
[9] Karp, L. and Shahgholian, H., Hausdorff measure and stability for the p-obstacle problem $(2<p<\infty)$. J. Diff. Equ. 195 (2003), 14 - 24.
[10] Lindqvist, P., Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity. Nonlin. Anal. 12 (1988), 1245 - 1255.
[11] Martio, O. and Vuorinen, M., Whitney cubes, p-capacity, and Minkowski content, Exposition. Math. 5 (1987), $17-40$.
[12] Mu, J., Higher regularity of the solution to the p-Laplacian obstacle problem. J. Diff. Equ. 95 (1992), $370-384$.
[13] Norando, T., $C^{1, \alpha}$ local regularity for a class of quasilinear elliptic variational inequalities. Boll. Un. Mat. Ital. C(6) 5 (1987), 281 - 292.
[14] Rodrigues, J. F., Stability remarks to the obstacle problem for p-Laplacian type equations. Calc. Var. 23 (2005), $51-65$.
[15] Rodrigues, J. F., Sanchón, M. and Urbano, J. M., The obstacle problem for nonlinear elliptic equations with variable growth and L^{1}-data. Monatsh. Math. 154 (2008), $303-322$.
[16] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations. J. Diff. Equ. 51 (1984), 126 - 150.
[17] Zheng, J. and Zhao, P., Porosity of the free boundary in the obstacle problems. J. Shaanxi Normal Univ. 40 (2012), 15 - 17, 22.

Received October 13, 2011; revised February 20, 2012

