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An Inhomogeneous, L2-Critical,
Nonlinear Schrödinger Equation
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Abstract. An inhomogeneous nonlinear Schrödinger equation is considered, which is
invariant under L2-scaling. The sharp condition for global existence of H1-solutions
is established, involving the L2-norm of the ground state of the stationary equation.
Strong instability of standing waves is proved by constructing self-similar solutions
blowing up in finite time.
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1. Introduction

The purpose of this note is to point out the case of an inhomogeneous nonlinear
Schrödinger equation having L2-scaling invariance. Namely, we consider the
Cauchy problem

i∂tφ+ ∆φ+ |x|−b|φ|2σφ = 0, φ(0, ·) = φ0 ∈ H1(RN) (NLS)

with σ = 2−b
N

, in any dimension N ≥ 1. Here and henceforth, H1(RN) denotes
the Sobolev space of complex-valued functions H1(RN ,C), with its usual norm.
We suppose that 0 < b < min{2, N}. The case b = 0 is the classical (focus-
ing) nonlinear Schrödinger equation with L2-critical nonlinearity. In the above
setting, it turns out that (NLS) is also invariant under the L2-scaling

φ→ φλ(t, x) := λ
N
2 φ(λ2t, λx)

φ0 → (φ0)λ(x) := λ
N
2 φ0(λx)

for λ > 0. (1)

We came across this inhomogeneous critical nonlinearity for (NLS) while
studying stability of standing waves for some classes of nonlinear Schrödinger
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equations, where (NLS) arises both as a model and a limiting case, see [5,6,8].
In particular, the Cauchy problem (NLS) is studied there, and it is found that,
for 0 < b < min{2, N}, it is well-posed in H1(RN),

• locally if 0 < σ < 2̃ :=

{
2−b
N−2 if N ≥ 3

∞ if N ∈ {1, 2};
• globally for small initial conditions if 0 < σ < 2̃;

• globally for any initial condition in H1(RN) if 0 < σ < 2−b
N
.

Theorem 2.5 below answers the natural question: in the limit case σ = 2−b
N

,
how small should the initial condition be to have global existence? We consider
here strong solutions φ = φ(t, x) ∈ C0

tH
1
x([0, T ) × RN) for some T > 0, and

the notion of well-posedness as defined in [3]. Our notation for the space-time
function spaces comes from [15]. We may simply denote by φ(t) ∈ H1(RN)
the function x→ φ(t, x). The solution is called global (in time) if we can take
T =∞. If it is not the case, the blow-up alternative states that ‖φ(t)‖H1 →∞
as t ↑ T . Moreover, we have conservation of the L2-norm along the flow,

‖φ(t)‖L2
x

= ‖φ0‖L2
x
, t ∈ [0, T ),

and of the energy,

E(φ(t)) :=

∫
RN
|∇φ(t)|2 dx− 1

σ+1

∫
RN
|x|−b|φ(t)|2σ+2 dx = E(φ0), t∈ [0, T ). (2)

Also, the L2-norm of φ(t) is invariant under the transformation (1), i.e.,

‖φ(t)‖L2
x

= ‖φλ(t)‖L2
x
, t ∈ [0, T ).

This is why it is called the L2-scaling.
A standing wave for (NLS) is a (global) solution of the form ϕω(t, x) =

eiω
2tuω(x) for some ω ∈ R, with uω ∈ H1(RN) satisfying the stationary equation

∆u− ω2u+ |x|−b|u|2σu = 0. (Eω)

In [5,6,8], we were concerned with bifurcation and orbital stability of stand-
ing waves for nonlinear Schrödinger equations with inhomogeneous nonlineari-
ties of the form V (x)|φ|2σφ with V (x) ∼ |x|−b at infinity or around the origin.
These equations have important applications in nonlinear optics (see [6]). The
limiting problem (NLS) turned out to play a central role in our analysis. For
this model case, a global branch of positive solutions of (Eω) is simply given by
the mapping u ∈ C1((0,∞), H1(RN)),

ω 7→ uω(x) = u(ω)(x) := ω
2−b
2σ u1(ωx), (3)
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where u1 is the unique positive radial solution (ground state) of (Eω) with
ω = 1. The existence of the ground state is proved in [5, 8] by variational
methods in dimension N ≥ 2, and in [6] for N = 1. Uniqueness is a delicate
problem, handled in dimension N ≥ 3 by a theorem of Yanagida [19] (see [5]),
in dimension N = 2 by a shooting argument [7], and in dimension N = 1 by the
method of horizontal separation of graphs of Peletier and Serrin [12], as used
in [16]. These existence and uniqueness results hold for 0 < b < min{2, N} and
0 < σ < 2̃.

Using the general theory of orbital stability of Grillakis, Shatah and
Strauss [10], we obtained in [5, 6, 8] various stability/instability results for gen-
eral nonlinearities V (x)|φ|2σφ by studying the monotonicity of the L2-norm of
the standing waves, as a function of ω > 0. It turned out that σ = 2−b

N
is a

threshold for stability in the regimes we considered. For this value of σ, we
could not determine if the standing waves are stable or not, even in the model
case V (x) = |x|−b. In fact, if σ = 2−b

N
, we have ‖uω‖L2 = ‖u1‖L2 along the curve

of solutions (3), for uω is then an L2-scaling of u1. In Section 3, we prove a
strong instability result for standing waves of (NLS), without requiring that uω
be the ground state of (Eω).

Section 2 is devoted to a sharp global existence result in the spirit of Wein-
stein [17]. For σ = 2−b

N
we prove that the solutions of (NLS) are global in time

provided ‖φ0‖L2 < ‖ψ‖L2 , where ψ is the ground state of (E1). This is done
by computing the best constant for an interpolation inequality. The sharpness
of the result is proved in Section 3 where we construct self-similar solutions
blowing up in finite time, in particular with the critical mass ‖ψ‖L2 .

Related results for inhomogeneous nonlinear Schrödinger equations can be
found in the literature, see for instance [1, 4, 11, 14]. However, no one seems
to have noticed the possibility of L2-scaling invariance. The results established
here use basic ideas going back to [17,18]. The classical L2-critical case (b = 0)
has been studied extensively, and in particular the properties of the blow-up
solutions are well-known (see [13] for a survey). The case b 6= 0 certainly
deserves further investigation.

Notation. In Section 2 we work in the Sobolev space of real-valued functions
H := H1(RN ,R). We use the shorthand notation ‖ · ‖p := ‖ · ‖Lp for the usual
Lebesgue norms throughout.

2. Critical mass and global existence

We start by solving the minimization problem

inf
u∈H\{0}

J(u) (4)
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where J : H \ {0} → R is the Weinstein functional defined by

J(u) = JN,b(u) =
‖∇u‖22‖u‖2σ2

I(u)
for σ =

2− b
N

, (5)

with

I(u) =

∫
RN
|x|−b|u|2σ+2 dx. (6)

Lemma 2.1. For N ≥ 1, 0 < b < min{2, N} and 0 < σ < 2̃, the functional I :
H → R defined in (6) is of class C1(H,R) and is weakly sequentially continuous.
In particular, it follows that J ∈ C1(H \ {0},R).

Proof. See [8, Section 2.1] and [5, Section 1.1] for N ≥ 2, [6, Section 2] for
N = 1.

Proposition 2.2. Let N ≥ 1, 0 < b < min{2, N} and σ = 2−b
N

. There exists a
positive radial function ψ ∈ H such that:

(i) ψ is a minimizer for (4), that is, JN,b(ψ) = infu∈H\{0} JN,b(u);

(ii) ψ is the unique ground state of (E√σ). Furthermore, the minimum value

is JN,b(ψ) =
‖ψ‖2σ2
σ+1

=
‖ψ‖

4−2b
N

2
2−b
N

+1
.

Proof. We follow Weinstein [17]. Let {un} ⊂ H \ {0} be a minimizing sequence
for (4):

J(un)→ m := inf J ≥ 0 as n→∞.
Clearly, we can choose un ≥ 0. Moreover, by Schwarz symmetrization (see
[8, p. 146]) we can suppose that un is radial and radially non-increasing for all n.
It follows from the structure of J = JN,b that J is invariant under the scaling
u→ uλ,µ(x) := λu(µx), λ, µ > 0. (This is not the case for σ 6= 2−b

N
.) This allows

us to choose un such that ‖∇un‖2 = ‖un‖2 = 1 for all n. Hence there exists
u∗ ∈ H such that, up to a subsequence, un ⇀ u∗ weakly in H. Furthermore, u∗

is non-negative, spherically symmetric, radially non-increasing, with

‖∇u∗‖2 ≤ 1 and ‖u∗‖2 ≤ 1. (7)

Now by Lemma 2.1 and (7) we have

m = lim J(un) = lim
1

I(un)
=

1

I(u∗)
≥ J(u∗) (8)

so that, in fact, J(u∗) = m and ‖∇u∗‖2 = ‖u∗‖2 = 1. In particular, un → u∗

strongly in H. (Note that (8) prevents u∗ = 0.) This concludes the proof of (i).
To show that ψ can be chosen so as to satisfy (E√σ), we first remark that u∗

is a solution of the Euler-Lagrange equation corresponding to (4), which reads

∆u∗ − σu∗ +m(σ + 1)|x|−b(u∗)2σ+1 = 0.
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Setting u∗ = [m(σ + 1)]−
σ
2ψ, it follows that ψ is a solution of (E√σ). Further-

more, ψ is positive and radial, so it is the unique ground state of (E√σ).

As an immediate consequence we have

Corollary 2.3. CN,b :=
2−b
N

+1

‖ψ‖
4−2b
N

2

is the best constant for the inequality∫
RN
|x|−b|u|

4−2b
N

+2 dx ≤ C‖∇u‖22‖u‖
4−2b
N

2 , u ∈ H. (9)

Remark 2.4. Note that (9) is a special case of the interpolation inequalities
obtained in [2].

We now turn to the global existence result.

Theorem 2.5. Set σ = 2−b
N

and let ψ be the ground state of (E1). If

‖φ0‖2 < ‖ψ‖2,

the solution of (NLS) is global and bounded in H1.

Proof. Local existence of solutions to (NLS) is ensured by results in [3] (see
[8, Appendix K] for precise statements and references). So the maximal solution
φ(t, x) of (NLS) with initial condition φ0 is defined on a time interval [0, T ) with
T ∈ (0,∞]. Moreover, we have the conservation laws

E(φ(t)) = E(φ0) and ‖φ(t)‖2 = ‖φ0‖2 for all t ∈ [0, T ),

where E is defined in (2). It is well-known since [9] that the boundedness of
‖∇φ(t)‖2 is then sufficient to conclude global existence. Using the constants of
motion, we have

‖∇φ(t)‖22 = E(φ(t)) +
1

σ + 1

∫
RN
|x|−b|φ(t)|2σ+2 dx

≤ E(φ0) +
C

σ + 1
‖∇φ(t)‖22‖φ0‖2σ2 ,

where C = CN,b > 0 is the constant given by Corollary 2.3. Hence,(
1− CN,b

2−b
N

+ 1
‖φ0‖

4−2b
N

2

)
‖∇φ(t)‖22 ≤ E(φ0). (10)

Using the formula for CN,b, it follows from (10) that the solution is global if
‖φ0‖2 < ‖ψ‖2 where ψ is the ground state of (E√σ). But for σ = 2−b

N
, (E√σ) is

transformed into (E1) by the scaling

ψ → ψλ−1(x) = λ−
N
2 ψ(λ−1x) with λ =

√
σ.

Since this transformation leaves the L2-norm unchanged, we can indeed choose
ψ to be the ground state of (E1). The proof is complete.
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Remark 2.6. We call ‖ψ‖2 the critical mass for (NLS). As we show below, the
condition for global existence given by Theorem 2.5 is sharp in the sense that
we can find solutions with critical mass which blow up in finite time.

3. Instability of standing waves

It is a lenghty but straightforward calculation to show that (NLS) is invari-
ant under the pseudo-conformal transformation, as defined in [3, Section 6.7].
Namely, for any a ∈ R, if φ(s, y) ∈ C0

sH
1
y ([0, S) × RN) is a solution to (NLS)

(with the obvious modification of the variables), then the function φa(t, x) ∈
C0
tH

1
x([0, T )× RN) defined by

φa(t, x) = (1− at)−
N
2 e−i

a|x|2
4(1−at)φ

(
t

1− at
,

x

1− at

)
, (11)

T =

{
∞ if aS ≤ −1
S

1+aS
if aS > −1,

is also a solution. The fact that (NLS) with σ = 2−b
N

behaves nicely under (11)
when b > 0 is closely related to the L2-scaling invariance of the equation. In
fact, the pseudo-conformal transformation conserves the L2-norm:

‖φa(t)‖2 ≡ ‖φ(s)‖2.

We shall now use this transformation to show that all standing waves for
(NLS) with σ = 2−b

N
are strongly unstable in the following sense. We only

consider the case ω = 1 for simplicity of notation.

Theorem 3.1. Let u ∈ H be a nontrivial solution of (E1). For any δ > 0 there
exists a solution ϕ ∈ C0

tH
1
x([0, T )× RN) of (NLS) such that ‖ϕ(0)− u‖H1 < δ

and ‖ϕ(t)‖H1 →∞ as t ↑ T .

Proof. Let a > 0 to be tuned later. We apply the transformation (11) to the
standing wave φ(t, x) = eitu(x), defining ϕ ∈ C0

tH
1
x([0, a−1) × RN) by (S = ∞

for φ):

ϕ(t, x) = (1− at)−
N
2 e−i

a|x|2
4(1−at) ei

t
1−atu

(
x

1− at

)
. (12)

It is easy to check that (1 − at)‖∇ϕ(t)‖2 → ‖∇u‖2 as t ↑ a−1 and so ϕ blows

up at finite time T := a−1. Furthermore, ϕ(0, x) = e−i
a|x|2

4 u(x) and we have:

‖ϕ(0)− u‖22 =

∫
RN
|e−i

a|x|2
4 − 1|2u(x)2 dx (13)

and ‖∇ϕ(0)−∇u‖22 =

∫
RN
|e−i

a|x|2
4 − 1|2|∇u(x)|2 +

a2

4
|x|2u(x)2 dx. (14)
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It is standard to show that u decays exponentially and it follows by dominated
convergence that both (13) and (14) go to zero as a→ 0. Hence, for any δ > 0,
there is aδ > 0 such that ‖ϕ(0)−u‖H1 < δ whenever 0 < a < aδ. This concludes
the proof.

Remark 3.2. (i) We know precisely the blow-up rate of ϕ,

‖ϕ(t)‖H1 ∼ (1− at)−1 and ‖ϕ(t)‖∞ ∼ (1− at)−
N
2 as t ↑ a−1.

(ii) The type of solutions constructed in (12) are often called ‘self-similar’

in the literature. In fact, the modulus |ϕ(t, x)| = (1 − at)−
N
2

∣∣u ( x
1−at

)∣∣
presents a self-similar profile in the usual sense: at any time t, there is

a scaling parameter λ(t) > 0 such that |u(x)| = λ(t)
N
2 |ϕ(t, λ(t)x)|. Thus

|ϕ(t)| retains the shape of |u| while blowing up.

Corollary 3.3. There exists a solution of (NLS) with critical mass that blows
up in finite time.

Proof. Take ϕ defined by (12) with u = ψ, the ground state of (E1).

Remark 3.4. Note that (12) yields blow-up solutions with self-similar profiles
corresponding to any solution of (E1). In particular, it follows from Theorem 2.5
that ψ is the solution of (E1) with minimal L2-norm; the corresponding result
is well-known in the case b = 0.
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