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Regular Potential Approximation for

δ-Perturbation Supported by Curve of the

Laplace-Beltrami Operator on the Sphere

D. A. Eremin, D. A. Ivanov and I. Yu. Popov

Abstract. Operator extension theory model for δ-perturbation supported by curve of
the Laplace-Beltrami operator on the sphere is described. The sequence of operators
with regular potentials converging to the model operator in norm resolvent sense is
constructed.
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1. Introduction

Nanoscience is a new area of research in solid state physics. Modern technology
allows to create the structures of submicron sizes which have unique proper-
ties: quantum Hall effect [16, 27], Aharonov-Bohm effect in quantum rings [4],
quantization of conductance in quantum wires [9], etc. Besides theoretical in-
terest, nanostructures are interesting from the standpoint of their practical use.
Clearly that such structures have many advantages over existing electronic de-
vices: compactness, low energy consumption, high-speed performance and oth-
ers. Moreover, last decades concepts of quantum computer (based, particularly,
on nanosrtuctures) are actively developed [10].

Last years curved nanostructures are investigated intensively. Recently
methods of creating of curved 2D quantum layers and nano-objects of different
forms are developed [28]. A number of physical works is related with physi-
cal properties of curved nanostructures, which are closely related with spectral
properties of the corresponding Hamiltonian. For example, studies of spherical
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nanostructures have shown that they have interesting spectral [5, 29] and op-
tical [18, 24] properties. Dependence of the absorption spectrum from optical
properties of nanoparticle was discussed in [1]. In [19] theoretical model for
description of optical properties of spherical nano-shell was developed.

Interesting way to construct the model of curved nanostructure is to con-
sider the operator in curved space (e.g. Riemannian manifold) [6–8]. The spec-
tra of the Hamiltonians for spaces of different geometries are investigated in
[3,13,26]. The theory of self-adjoint operators perturbed by potential supported
by a set of zero measure (point, curve, etc.) gives us an efficient instrument to
construct models [2, 21]. The case of curve is often named a problem of leaky
quantum graph [11, 12, 17, 22]. For justification of this model it is possible to
construct the approximation of the model operator by the corresponding op-
erator with smooth short-range potential. For R

2 and R
3 the corresponding

approximations are constructed in [23, 25]. In the present paper we describe
the corresponding model operator for the Laplace-Beltrami operator on the 2D
sphere imbedded into R

3 and construct the approximation of this operator (in
norm resolvent sense) by the corresponding operator with short-range poten-
tial. We incorporate here the ideas of the proofs from the corresponding ap-
proximation problem for point-like perturbation in curved space [14] and for
perturbation supported by curve in R

2 [23].
Namely, let R(λ), R0(λ) be the resolvents of perturbed and unperturbed

Hamiltonians, respectively, Rε(λ) denotes the resolvent of the Hamiltonian with
a short-range potential (detailed description see in Section 3). The aim of this
article is to prove the following theorem.

Theorem 1.1. For large enough |λ| (λ 6= 0) resolvent Rε(λ) converges to re-

solvent R(λ) when ε → 0 in the space B
(
L2(R

2), H1(R2)
)
.

2. Model description

We consider the 2D unit sphere S2 ⊂ R
3. Let Ω be the domain in S2 with

smooth boundary ∂Ω. For simplicity we consider the domain in semisphere S2
+

restricted by the plane orthogonal to polar axis. We suppose that its orthogonal
projection into the plane is a star-like domain. In standard spherical coordinates
(cosφ sin θ, sinφ sin θ, cos θ) the Laplace-Beltrami operator has the form

∆BL =

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (1)

Let Lin denotes the operator ∆BL on Ω, i.e., the closure of the operator
acts in accordance with (1) and is defined on the set of smooth functions on
Ω. Also we define the operator Lex as the Laplace-Beltrami operator on the
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domain S2\Ω. Let L= Lin⊕Lex, i.e., D(L) = {(f1(x), f2(x)) : f1(x) ∈H2(Ω),
f2(x) ∈ H2(S2 \Ω)} and L(f1(x), f2(x)) =

(
Linf1(x), L

exf2(x)
)
. Here H2(Ω)

is the corresponding Sobolev space. The operator L is self-adjoint. To con-
struct a model of perturbation of L supported by curve ∂Ω we use the so-called
’restriction-extension’ procedure [21, 22].

Namely, let us consider the restriction of L onto the set

D = {(f1(x), f2(x)) ∈ C∞(S2) : f1(x) = f2(x) = 0 ∀x ∈ ∂Ω}.

To get the domain of its self-adjoint extensions one should choose the ele-
ments from D(L̃∗) which satisfy the following condition:

〈L̃∗f(x)|g(x)〉 − 〈f(x)|L̃∗g(x)〉 = 0.

Here 〈·|·〉 marks the inner product in L2(Ωin ⊕ Ωex). In more details, if
f(x) = (f1(x), f2(x)), g(x) = (g1(x), g2(x)), then

∫∫

Ω

(−g1∆BLf1 + f1∆BLg1) dS +

∫∫

S2\Ω

(−g2∆BLf2 + f2∆BLg2) dS = 0. (2)

We consider the first of these two integrals. Further, we introduce the
standard polar coordinates (r, ϕ) on the plane R

2, which are related with the
spherical coordinates on the sphere by the expressions

r = sin θ, ϕ = φ.

Let Ω′ denotes the orthogonal projection of Ω.
By replacing the variables in expression (1), one obtains that the Laplace-

Beltrami operator in new coordinates has the form

∆′
BL = (1− r2)

∂2

∂r2
+

1− 2r2

r

∂

∂r
+

1

r2
∂

∂ϕ2
.

The coefficients of the first fundamental form for the sphere are

E = r2, F = 0, G =
1

1− r2
.

Hence, the first integral from (2) takes the form

∫∫

Ω

(−g1∆BLf1 + f1∆BLg1) dS =

∫∫

Ω′

(−g1∆̃BLf1 + f1∆̃BLg1) drdϕ,

where

∆̃BL =
r√

1− r2
∆′

BL.
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Using integration by parts, we obtain

∫∫

Ω′

(−g1∆̃BLf1 + f1∆̃BLg1) drdϕ

=

∫ 2π

0

r
√
1− r2

(
∂f

∂r

∣∣∣
ex
− ∂f

∂r

∣∣∣
in
+

∂g

∂r

∣∣∣
ex
− ∂g

∂r

∣∣∣
in

)
dϕ.

By conventional way one obtains that self-adjoint extension can be described
by boundary conditions on ∂Ω′ = {(r, ϕ) : r = r(ϕ)} for the function from the
operator domain and its derivatives:

f |ex = f |in,
∂f

∂r

∣∣∣
ex
− ∂f

∂r

∣∣∣
in
= α(r(ϕ), ϕ)f |in, (3)

where α is some real smooth function.

3. Approximation

Let us fix the extension. It means that we fix smooth function α(x) on ∂Ω. Let
Lα be the extension which is defined by condition (3):

D(Lα)=

{
f: f ∈H1(S2), f ∈H2(Ωin,ex), f |ex=f |in,

∂f

∂r

∣∣∣
ex
−∂f

∂r

∣∣∣
in
=α(r(ϕ), ϕ)f |in

}
,

where Hs is the Sobolev space.

For simplicity we introduce the coordinates (t, ϕ), where t = r
1−r

. Then the

unit disc maps onto R2 and Ω′ maps onto some star-like domain Ω̃. Let t = P (ϕ)

determines ∂Ω̃. We assume that P (ϕ) is continuously differentiable function and

P (ϕ) 6= 0 for all ϕ. Next, we use coordinates (τ, ϕ), where τ = t
P (ϕ)

. Clearly,

that the equation of ∂Ω̃ has the form τ = 1 in this coordinates.

Further we introduce short-range potential Aε(x) as follows. Let ρ(u) be
fixed infinitely smooth function such that

ρ(u) ≥ 0 ∀u ∈ R, suppρ ⊂ [−1, 1],

∫ +∞

−∞

ρ(u) du = 1.

Then

Aε(τ, ϕ) = ε−1ρ

(
τ − 1

ε

)
α(1, ϕ).

As a first step of the proof of Theorem 1.1 we prove the following lemmas.
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Lemma 3.1. Let ε > 0 and

A = minϕ∈[0,2π]

{
P (ϕ)

(
(P ′(ϕ))2 + (P (ϕ))2

)− 1

2

}
> 0,

B = maxϕ∈[0,2π]

{(
(P ′(ϕ))2 + (P (ϕ))2

) 1

2

}
.

(4)

Then for all f ∈ H1(R2) the following inequalities hold

‖Tf‖2L2(Γτ0
) ≤ A−1ε‖∇f‖2 + A−1ε−1‖f‖2,

where Γτ0 is the line determined by the equation τ = τ0 (Γ1 = ∂Ω̃), T is the

operator which maps function from H1(R2) to its trace in L2(Γτ0).

Proof. First of all, we note that the set of infinitely smooth functions with
compact supports is dense in H1(R2) and T is bounded operator. Therefore,
we need to prove this statement for functions fromH1(R2). Clearly, that 2|pq| ≤
ε|p|2 + ε−1|q|2. Thus, for all ϕ we have

|f(τP (ϕ), ϕ)|2 = −2Re

∫ ∞

τP (ϕ)

∂f

∂r
(r, ϕ)f(r, ϕ) dr

≤ ε

∫ ∞

τP (ϕ)

∣∣∣∂f
∂r

(r, ϕ)
∣∣∣
2

dr + ε−1

∫ ∞

τP (ϕ)

∣∣∣f(r, ϕ)
∣∣∣
2

dr

≤ ε

∫ ∞

τP (ϕ)

r

τP (ϕ)

∣∣∣∂f
∂r

(r, ϕ)
∣∣∣
2

dr + ε−1

∫ ∞

τP (ϕ)

r

τP (ϕ)

∣∣∣f(r, ϕ)
∣∣∣
2

dr.

Multiplying the both parts of these inequalities by τP (ϕ), using the in-
equality

P (ϕ) ≥ A
(
(P ′(ϕ))2 + (P (ϕ))2

) 1

2

and integrating over ϕ, we get

A

∫

Γτ0

∣∣∣f(x)
∣∣∣
2

dSx ≤ ε

∫

Ωex
τ0

∣∣∣∂f
∂r

(x)
∣∣∣
2

dx+ ε−1

∫

Ωex
τ0

∣∣∣f(x)
∣∣∣
2

dx ≤ ε||∇f ||2+ ε−1||f ||2.

Here Ωin
τ0
, Ωex

τ0
denote the domains corresponding to the curve τ = τ0.

Lemma 3.2. Let τ > 0 and f belongs to the Schwartz’ class S(R2). Then

||f(τ, ·)||L2(Γ1) ≤ A− 1

2 τ−
1

2 ||f ||H1
.

Proof. Statement of the lemma is simple consequence of the previous lemma.
Namely, if ε = 1 then τ ||f(τ, ·)||2L2(Γ1)

≤ A−1||f ||2
H1 .
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Lemma 3.3. Let f ∈ S(R2). Then

||f(τ, ·)− f(τ ′, ·)||L2(Γ1) ≤
(
B|τ − τ ′|(min{τ, τ ′})−1

) 1

2 ||f ||H1 .

Proof. Clearly, that it is enough to prove this lemma for the case 0 < τ ′ < τ .
Due to the Schwartz’ inequality for all ϕ we have

|f(τ, ϕ)− f(τ ′, ϕ)|2 =
∣∣∣
∫ τP

τ ′P

∂f

∂r
(r, ϕ) dr

∣∣∣
2

≤ P (τ − τ ′)

∫ τP

τ ′P

∣∣∣∂f
∂r

(r, ϕ)
∣∣∣
2

dr

≤ (τ − τ ′)(τ ′)−1

∫ τP

τ ′P

∣∣∣∂f
∂r

(r, ϕ)
∣∣∣
2

r dr.

Multiplying by
(
(P ′(ϕ))2 + (P (ϕ))2

)− 1

2 , taking into account (4) and inte-
grating over ϕ, we obtain

||f(τ, ·)− f(τ ′, ·)||2L2(Γ1)
≤ B(τ − τ ′)(τ ′)−1

∫

Ω̃in
τ \Ω̃in

τ ′

∣∣∣∂f
∂r

(x)
∣∣∣
2

dx

≤ B(τ − τ ′)(τ ′)−1||f ||H1
.

Definition 3.4. Define FΓ as the following transformation on L2(Γτ )

(FΓτ
f)(ξ) = (2π)−1

∫

Γτ

e−ıξ·xf(x) dSx, ξ ∈ R
2.

Definition 3.5. Define Hs(R2) as the following space:

Hs(R2) =
{
f(x) : (1 + x2)

s

2f(x) ∈ L2(R
2)
}

with the norm ‖f‖Hs(R2) =
∥∥(1 + | · |2) s

2f
∥∥ .

Lemma 3.6. Let s > 2−1. Then for any f ∈ L2(R
2) there exists a constant

C = C(τ, s) such that

‖FΓτ
f‖H−s(R2) ≤ C‖f‖L2(Γτ )

The proof can be obtained by simple modifications of the corresponding
statement in [20].

Lemma 3.7. Let r and r′ be positive. Then for any f ∈ L2(Γ1) one has

‖(FΓf)(r·)− (FΓf)(r
′·)‖H−1(R2) ≤

(
B|r − r′|(min{r, r′})−1

) 1

2‖f‖L2(Γ1).
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Proof. Let f ∈ S(R2), u ∈ L2(Γ1). We consider the integral

∫

R2

dξf(ξ)
(
(FΓu)(rξ)− (FΓu)(r′ξ)

)
=

∫

Γ1

dx
(
(F ∗f)(rx)− (F ∗f)(r′x)

)
u(x),

where F ∗ is the inverse Fourier transform. By Schwartz’ inequality and Lem-
ma 3.3 we obtain

∣∣∣∣∣

∫

R2

dξf(ξ)
(
(FΓu)(rξ)− (FΓu)(r′ξ)

)
∣∣∣∣∣

≤ ‖(F ∗f)(r·)− (F ∗f)(r′·)‖L2(Γ1)‖u(x)‖L2(Γ1)

≤
(
B|r − r′|(min{r, r′})−1

) 1

2‖F ∗f‖H1‖u‖L2(Γ1)

≤
(
B|r − r′|(min{r, r′})−1

) 1

2‖(1 + |·|2)f(·)‖ · ‖u‖L2(Γ1)

≤
(
B|r − r′|(min{r, r′})−1

) 1

2‖f‖H1(R2)‖u‖L2(Γ1).

The statement of the lemma is a consequence of this inequality because S(R2)
is dense in H1(R2).

The Green function GLB(x, y; k) of the operator −∆LB is well known [15]:

GLB(x, y; k) =
1

cos
(

π
2

√
1
4
+ k
)P

− 1

2
+
√

1

4
+k

(− cos ρ(x, y)) , x, y ∈ R
2, (5)

where Pν(x) is the Legendre function, k is the square root of the spectral pa-
rameter λ, ρ(x, y) is the geodesic distance between x and y. We can rewrite the
expression for the function (5) using the variables (t, ϕ) as

ĜLB(t1, ϕ1, t2, ϕ2; k) =
t2

(t2 + 1)2
√
2t2 + 1

· 1

cos
(

π
2

√
1
4
+ k
)

× P
− 1

2
+
√

1

4
+k

(
−
√
(2t1+1)(2t2+1)+t1t2 cos(ϕ1−ϕ2)

(t1+1)(t2+1)

)
.

Definition 3.8. Define M as the following operator from L2(Γ1) to H1(R2):

Mf(x) =

∫

Γ1

ĜLB(x, y; k)α(y)f(y) dSy, x ∈ R
2.

If Im k > 0, then M is bounded operator.
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Lemma 3.9. Let ε, s, λ be such that 0 < ε < 2−1, 2−1 < s < 1, λ ∈ C\[0,+∞).
Then there exists a constant C1 = C1(s) (which does not depend on ε and λ)
such that

‖R0(λ)Aε‖B(H1(R2)) ≤ C1

(
sup
ξ∈R2

(
(1 + |ξ|2)1+s|V (ξ, λ)|2

)
) 1

2

,

where V (ξ, λ) is bounded function.

Proof. For any u ∈ S(R2) we have

(FR0(λ)Aεu)(ξ)=(2π)−1

∫

R2

dx e−ıξx

∫

R2

dy
1

ε
ρ

(
τ−1

ε

)
α(1, ϕ)u(y)ĜLB(x, y; k)

=(2π)−1

∫

R2

dy e−ıξy 1

ε
ρ

(
τ−1

ε

)
α(1, ϕ)u(y)V (ξ, λ),

where V (ξ, λ) = eıξy
∫
R2 dxe

−ıξxĜLB(x, y; k).

Here, the branch of the square root
√
λ = k is chosen in such a way that

Im k ≥ 0. Thus, we have

‖R0(λ)Aεu‖2H1(R2)

=

∫

R2

dξ(1 + |ξ|2)
∣∣∣∣
∫ 1+ε

1−ε

dτ
τ

ε
ρ

(
τ−1

ε

)
V (ξ, λ)

(
FΓ(β(1, ·)u(τ, ·))

)
(τξ)

∣∣∣∣
2

,

where β(1, ϕ) = α(1, ϕ)P 2(ϕ)
(
(P ′(ϕ))2+(P (ϕ))2

)− 1

2 . Schwartz’ inequality and
Fubini’s theorem lead to the following inequality

‖R0(λ)Aεu‖2H1(R2)≤
∫

R2

dξ(1 + |ξ|2)|V (ξ, λ)|2
∫ 1+ε

1−ε

dτ
τ 2

ε
ρ

(
τ−1

ε

)

×
∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

) ∣∣(FΓ(β(1, ·)u(τ, ·))
)
(τξ)

∣∣2

≤ sup
ξ∈R2

(
(1 + |ξ|2)1+s|V (ξ, λ)|2

)
(1 + ε)2

∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

)

×
∫

R2

dξ(1 + |ξ|2)−s
∣∣(FΓ(β(1, ·)u(τ, ·))

)
(τξ)

∣∣2 .

(6)

By replacing of the variables η = τξ, one obtains
∫

R2

dξ(1 + |ξ|2)−s
∣∣(FΓ(β(1, ·)u(τ, ·))

)
(τξ)

∣∣2

=

∫

R2

dη(1 + τ−2|η|2)−sτ−2
∣∣(FΓ(β(1, ·)u(τ, ·))

)
(η)
∣∣2 .
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Using the evident inequality (1+τ−2|η|2)−s ≤ max{τ 2s, 1}(1+ |η|2)−s (for s > 0
and τ > 0), one obtains by Lemmas 3.2 and 3.6

∫

R2

dξ(1 + |ξ|2)−s
∣∣(FΓ(β(1, ·)u(τ, ·))

)
(τξ)

∣∣2

≤ τ−2 max{τ 2s, 1}‖FΓ(β(1, ·)u(τ, ·))‖2H−s(R2)

≤ τ−2 max{τ 2s, 1}C2‖β(1, ·)u(τ, ·)‖2LΓ

≤ A−1τ−3 max{τ 2s, 1}C2(max
x∈Γ

|β(x)|)2‖u‖2H1
,

(7)

where C is given in Lemma 3.6. Since 0 < ε ≤ 2−1, one obtains

‖R0(λ)Aεu‖2H1(R2) ≤ sup
ξ∈R2

(
(1 + |ξ|2)1+s|V (ξ, λ)|2

)
C2
(
max
x∈Γ

|β(x)|
)2

× ‖u‖2H1(1 + ε2)

∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

)
1

A

1

τ 4
max{τ 2s, 1}

≤ C2
1(s) sup

ξ∈R2

(
(1 + |ξ|2)1+s|V (ξ, λ)|2

)
‖u‖2H1 .

where C1(s) does not depend on ε (0 < ε ≤ 2−1). This inequality leads to the
statement of the lemma, because R0(λ) is bounded operator from L2(R

2) to
H1(R2) and S(R2) is dense in H1(R2).

Lemma 3.10. Let ε, s, λ be such that 0 < ε ≤ 2−1, 2−1 < s < 1, λ ∈ C\[0,∞).
Then there exist a constant C2 = C2(s, λ) (which does not depend on ε) such

that

‖R0(λ)Aε +MT‖B(H1(R2)) ≤ C2ε
1

2 .

Proof. As in the proof of the previous lemma, we obtain for any function u from
the Schwartz class

(FMTu)(ξ) = −V (ξ, λ)
(
FΓ(β(1, ·)u(1, ·))

)
(ξ).

Thus, we have

(
F (R0(λ)Aε +MT )u

)
(ξ)

=V (ξ, λ)

∫ 1+ε

1−ε

dτ(τ − 1)
1

ε
ρ

(
τ−1

ε

)(
FΓ(β(1, ·)u(τ, ·))

)
(τξ)

+V (ξ, λ)

∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

)(
FΓ(β(1, ·)(u(τ, ·)− u(1, ·)))

)
(τξ)

+V (ξ, λ)

∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

)((
FΓ(β(1, ·)u(1, ·))

)
(τξ)−

(
FΓ(β(1, ·)u(1, ·))

)
(ξ)
)

=J0(ξ) + J1(ξ) + J2(ξ).
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It is necessary to estimate H1(R2) norms of J0, J1 and J2. By the way which
we have used to derive (6), we obtain

∫

R2

dξ(1 + |ξ|2)|J0(x)|2 ≤ ε2b0‖u‖2H1 . (8)

where b0 does not depend on ε (0 < ε ≤ 2−1).
∫

R2

dξ(1 + |ξ|2)|J1(ξ)|2≤ sup
ξ∈R2

(
(1 + |ξ|2)1+s|V (ξ, λ)|2

)∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

)

×
∫

R2

dξ(1 + |ξ|2)−s
∣∣(FΓ(β(1, ·)(u(τ, ·)−u(1, ·)))

)
(τξ)

∣∣2

The correlation (7) and Lemma 3.3 give us
∫

R2

dξ(1 + |ξ|2)−s
∣∣(FΓ(β(1, ·)(u(τ, ·)− u(1, ·)))

)
(τξ)

∣∣2

≤ τ−2 max{τ 2s, 1}C2‖β(1, ·)(u(τ, ·)− u(1, ·))‖2L2(Γ)

≤ τ−2 max{τ 2s, 1}C2

(
max
x∈Γ

|β(x)|
)2

|τ − 1|B (min{τ, 1})−1 ‖u‖2H1

≤ εB(1 + ε)2s
1

(1− ε)4
1

A
C2
(
max
x∈Γ

|β(x)|
)2‖u‖2H1 ,

because τ ∈ [1− ε, 1 + ε]. Hence, we obtain
∫

R2

dξ(1 + |ξ|2)|J1(ξ)|2 ≤ εb1‖u‖2H1 . (9)

where b1 does not depend on ε (0 < ε ≤ 2−1).
To estimate the norm of J2, we take into account that

|J2(ξ)|2≤ |V (ξ, λ)|2

×
∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

) ∣∣(FΓ(β(1, ·)u(1, ·))
)
(τξ)−

(
FΓ(β(1, ·)u(1, ·))

)
(ξ)
∣∣2.

Using Fubini’s theorem, one comes to the following inequality:
∫

R2

dξ(1 + |ξ|2)|J2(ξ)|2

≤ sup
ξ∈R2

(
(1 + |ξ|2)2|V (ξ, λ)|2

) ∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

)

×
∫

R2

dξ(1 + |ξ|2)−1
∣∣(FΓ(β(1, ·)u(1, ·))

)
(τξ)−

(
FΓ(β(1, ·)u(1, ·))

)
(ξ)
∣∣2

≤ sup
ξ∈R2

(
(1 + |ξ|2)2|V (ξ, λ)|2

) ∫ 1+ε

1−ε

dτ
1

ε
ρ

(
τ−1

ε

)

× ‖
(
FΓ(β(1, ·)u(1, ·))

)
(τ ·)−

(
FΓ(β(1, ·)u(1, ·))

)
(·)‖2H−1(R2).
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It follows from Lemmas 3.2 and 3.7 that

‖
(
FΓ(β(1, ·)u(1, ·))

)
(τ ·)−

(
FΓ(β(1, ·)u(1, ·))

)
(·)‖2H−1(R2)

≤ |τ − 1|B(min{τ, 1})−1‖β(1, ·)u(1, ·)‖2L2(Γ)

≤ A−1(max
x∈Γ

|β(x)|)2|τ − 1|B(min{τ, 1})−1‖u‖2H1

≤ ε(1− ε)−1A−1(max
x∈Γ

|β(x)|)2B‖u‖2H1 ,

for τ ∈ [1− ε, 1 + ε]. Therefore, we get

∫

R2

dξ(1 + |ξ|2)|J2(ξ)|2 ≤ εb2‖u‖2H1 , (10)

where b2 does not depend on ε (0 < ε ≤ 2−1). Combining (8), (9) and (10) and
taking into account that MT is bounded operator in H1(R2) and that S(R2) is
dense in H1(R2), one comes to the statement of the lemma.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. By the closed graph theoremRε(λ) andR(λ) are bounded
operators from L2(R2) to H2(R2) and H1(R2), respectively. The two resolvent
identities hold:

R0(λ)−Rε(λ) = R0(λ)AεRε(λ), R(λ)−R0(λ) = MTR(λ).

Hence Rε(λ)−R(λ) = −R0(λ)Aε(Rε(λ))− (R0(λ)Aε +MT )R(λ).
Let the regular value λ (λ ∈ C\[0,∞)) be sufficiently far form the origin

and such that

C1

(
sup
ξ∈R2

(1 + |ξ|2)1+s|V (ξ, λ)|2
)1

2

<
1

2
.

This is possible because 1
2
< s < 1. Then, for any u ∈ L2(R

2) we get by Lemmas
3.9 and 3.10

‖Rε(λ)u−R(λ)u‖H1

≤ ‖R0(λ)Aε(Rε(λ)u−R(λ)u)‖H1 + ‖(R0(λ)Aε +MT )R(λ)u‖H1

≤ 2−1‖Rε(λ)u−R(λ)u‖H1 + ε
1

2C2‖R(λ)u‖H1 .

Consequently,

‖Rε(λ)u−R(λ)u‖H1 ≤ 2ε
1

2C2‖R(λ)u‖H1 ≤ 2ε
1

2C2‖R(λ)‖B(L2(R2),H1(R2))‖u‖.

This inequality gives us the required result.
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