Regular Potential Approximation for δ-Perturbation Supported by Curve of the Laplace-Beltrami Operator on the Sphere

D. A. Eremin, D. A. Ivanov and I. Yu. Popov

Abstract

Operator extension theory model for δ-perturbation supported by curve of the Laplace-Beltrami operator on the sphere is described. The sequence of operators with regular potentials converging to the model operator in norm resolvent sense is constructed.

Keywords. Laplace-Beltrami operator, δ-perturbation
Mathematics Subject Classification (2010). Primary 81Q10, secondary 81Q35

1. Introduction

Nanoscience is a new area of research in solid state physics. Modern technology allows to create the structures of submicron sizes which have unique properties: quantum Hall effect [16, 27], Aharonov-Bohm effect in quantum rings [4], quantization of conductance in quantum wires [9], etc. Besides theoretical interest, nanostructures are interesting from the standpoint of their practical use. Clearly that such structures have many advantages over existing electronic devices: compactness, low energy consumption, high-speed performance and others. Moreover, last decades concepts of quantum computer (based, particularly, on nanosrtuctures) are actively developed [10].

Last years curved nanostructures are investigated intensively. Recently methods of creating of curved 2D quantum layers and nano-objects of different forms are developed [28]. A number of physical works is related with physical properties of curved nanostructures, which are closely related with spectral properties of the corresponding Hamiltonian. For example, studies of spherical

[^0]nanostructures have shown that they have interesting spectral [5,29] and optical $[18,24]$ properties. Dependence of the absorption spectrum from optical properties of nanoparticle was discussed in [1]. In [19] theoretical model for description of optical properties of spherical nano-shell was developed.

Interesting way to construct the model of curved nanostructure is to consider the operator in curved space (e.g. Riemannian manifold) [6-8]. The spectra of the Hamiltonians for spaces of different geometries are investigated in [3,13,26]. The theory of self-adjoint operators perturbed by potential supported by a set of zero measure (point, curve, etc.) gives us an efficient instrument to construct models [2,21]. The case of curve is often named a problem of leaky quantum graph $[11,12,17,22]$. For justification of this model it is possible to construct the approximation of the model operator by the corresponding operator with smooth short-range potential. For \mathbb{R}^{2} and \mathbb{R}^{3} the corresponding approximations are constructed in [23,25]. In the present paper we describe the corresponding model operator for the Laplace-Beltrami operator on the 2D sphere imbedded into \mathbb{R}^{3} and construct the approximation of this operator (in norm resolvent sense) by the corresponding operator with short-range potential. We incorporate here the ideas of the proofs from the corresponding approximation problem for point-like perturbation in curved space [14] and for perturbation supported by curve in \mathbb{R}^{2} [23].

Namely, let $R(\lambda), R_{0}(\lambda)$ be the resolvents of perturbed and unperturbed Hamiltonians, respectively, $R_{\varepsilon}(\lambda)$ denotes the resolvent of the Hamiltonian with a short-range potential (detailed description see in Section 3). The aim of this article is to prove the following theorem.

Theorem 1.1. For large enough $|\lambda|(\lambda \neq 0)$ resolvent $R_{\varepsilon}(\lambda)$ converges to resolvent $R(\lambda)$ when $\varepsilon \rightarrow 0$ in the space $B\left(L_{2}\left(\mathbb{R}^{2}\right), H^{1}\left(\mathbb{R}^{2}\right)\right)$.

2. Model description

We consider the 2D unit sphere $S^{2} \subset \mathbb{R}^{3}$. Let Ω be the domain in S^{2} with smooth boundary $\partial \Omega$. For simplicity we consider the domain in semisphere S_{+}^{2} restricted by the plane orthogonal to polar axis. We suppose that its orthogonal projection into the plane is a star-like domain. In standard spherical coordinates $(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$ the Laplace-Beltrami operator has the form

$$
\begin{equation*}
\Delta_{B L}=\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) . \tag{1}
\end{equation*}
$$

Let $L^{i n}$ denotes the operator $\Delta_{B L}$ on Ω, i.e., the closure of the operator acts in accordance with (1) and is defined on the set of smooth functions on Ω. Also we define the operator $L^{e x}$ as the Laplace-Beltrami operator on the
domain $S^{2} \backslash \Omega$. Let $L=L^{i n} \oplus L^{e x}$, i.e., $D(L)=\left\{\left(f_{1}(x), f_{2}(x)\right): f_{1}(x) \in H^{2}(\Omega)\right.$, $\left.f_{2}(x) \in H^{2}\left(S^{2} \backslash \Omega\right)\right\}$ and $L\left(f_{1}(x), f_{2}(x)\right)=\left(L^{i n} f_{1}(x), L^{e x} f_{2}(x)\right)$. Here $H^{2}(\Omega)$ is the corresponding Sobolev space. The operator L is self-adjoint. To construct a model of perturbation of L supported by curve $\partial \Omega$ we use the so-called 'restriction-extension' procedure $[21,22]$.

Namely, let us consider the restriction of L onto the set

$$
D=\left\{\left(f_{1}(x), f_{2}(x)\right) \in C^{\infty}\left(S^{2}\right): f_{1}(x)=f_{2}(x)=0 \quad \forall x \in \partial \Omega\right\} .
$$

To get the domain of its self-adjoint extensions one should choose the elements from $D\left(\tilde{L}^{*}\right)$ which satisfy the following condition:

$$
\left\langle\tilde{L}^{*} f(x) \mid g(x)\right\rangle-\left\langle f(x) \mid \tilde{L}^{*} g(x)\right\rangle=0 .
$$

Here $\langle\cdot \mid \cdot\rangle$ marks the inner product in $L^{2}\left(\Omega^{i n} \oplus \Omega^{e x}\right)$. In more details, if $f(x)=\left(f_{1}(x), f_{2}(x)\right), g(x)=\left(g_{1}(x), g_{2}(x)\right)$, then

$$
\begin{equation*}
\iint_{\Omega}\left(-g_{1} \Delta_{B L} f_{1}+f_{1} \Delta_{B L} g_{1}\right) d S+\iint_{S^{2} \backslash \Omega}\left(-g_{2} \Delta_{B L} f_{2}+f_{2} \Delta_{B L} g_{2}\right) d S=0 . \tag{2}
\end{equation*}
$$

We consider the first of these two integrals. Further, we introduce the standard polar coordinates (r, φ) on the plane \mathbb{R}^{2}, which are related with the spherical coordinates on the sphere by the expressions

$$
r=\sin \theta, \quad \varphi=\phi .
$$

Let Ω^{\prime} denotes the orthogonal projection of Ω.
By replacing the variables in expression (1), one obtains that the LaplaceBeltrami operator in new coordinates has the form

$$
\Delta_{B L}^{\prime}=\left(1-r^{2}\right) \frac{\partial^{2}}{\partial r^{2}}+\frac{1-2 r^{2}}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial}{\partial \varphi^{2}} .
$$

The coefficients of the first fundamental form for the sphere are

$$
E=r^{2}, \quad F=0, \quad G=\frac{1}{1-r^{2}} .
$$

Hence, the first integral from (2) takes the form

$$
\iint_{\Omega}\left(-g_{1} \Delta_{B L} f_{1}+f_{1} \Delta_{B L} g_{1}\right) d S=\iint_{\Omega^{\prime}}\left(-g_{1} \tilde{\Delta}_{B L} f_{1}+f_{1} \tilde{\Delta}_{B L} g_{1}\right) d r d \varphi,
$$

where

$$
\tilde{\Delta}_{B L}=\frac{r}{\sqrt{1-r^{2}}} \Delta_{B L}^{\prime} .
$$

Using integration by parts, we obtain

$$
\begin{aligned}
& \iint_{\Omega^{\prime}}\left(-g_{1} \tilde{\Delta}_{B L} f_{1}+f_{1} \tilde{\Delta}_{B L} g_{1}\right) d r d \varphi \\
& =\int_{0}^{2 \pi} r \sqrt{1-r^{2}}\left(\left.\frac{\partial f}{\partial r}\right|_{e x}-\left.\frac{\partial f}{\partial r}\right|_{i n}+\left.\frac{\partial g}{\partial r}\right|_{e x}-\left.\frac{\partial g}{\partial r}\right|_{i n}\right) d \varphi
\end{aligned}
$$

By conventional way one obtains that self-adjoint extension can be described by boundary conditions on $\partial \Omega^{\prime}=\{(r, \varphi): r=r(\varphi)\}$ for the function from the operator domain and its derivatives:

$$
\begin{equation*}
\left.f\right|_{e x}=\left.f\right|_{i n},\left.\quad \frac{\partial f}{\partial r}\right|_{e x}-\left.\frac{\partial f}{\partial r}\right|_{i n}=\left.\alpha(r(\varphi), \varphi) f\right|_{i n} \tag{3}
\end{equation*}
$$

where α is some real smooth function.

3. Approximation

Let us fix the extension. It means that we fix smooth function $\alpha(x)$ on $\partial \Omega$. Let L^{α} be the extension which is defined by condition (3):
$D\left(L^{\alpha}\right)=\left\{f: f \in H^{1}\left(S^{2}\right), f \in H^{2}\left(\Omega^{i n, e x}\right),\left.f\right|_{e x}=\left.f\right|_{i n},\left.\frac{\partial f}{\partial r}\right|_{e x}-\left.\frac{\partial f}{\partial r}\right|_{i n}=\left.\alpha(r(\varphi), \varphi) f\right|_{i n}\right\}$,
where H^{s} is the Sobolev space.
For simplicity we introduce the coordinates (t, φ), where $t=\frac{r}{1-r}$. Then the unit disc maps onto \mathbb{R}^{2} and Ω^{\prime} maps onto some star-like domain $\tilde{\Omega}$. Let $t=P(\varphi)$ determines $\partial \tilde{\Omega}$. We assume that $P(\varphi)$ is continuously differentiable function and $P(\varphi) \neq 0$ for all φ. Next, we use coordinates (τ, φ), where $\tau=\frac{t}{P(\varphi)}$. Clearly, that the equation of $\partial \tilde{\Omega}$ has the form $\tau=1$ in this coordinates.

Further we introduce short-range potential $A_{\varepsilon}(x)$ as follows. Let $\rho(u)$ be fixed infinitely smooth function such that

$$
\rho(u) \geq 0 \quad \forall u \in \mathbb{R}, \quad \operatorname{supp} \rho \subset[-1,1], \quad \int_{-\infty}^{+\infty} \rho(u) d u=1
$$

Then

$$
A_{\varepsilon}(\tau, \varphi)=\varepsilon^{-1} \rho\left(\frac{\tau-1}{\varepsilon}\right) \alpha(1, \varphi)
$$

As a first step of the proof of Theorem 1.1 we prove the following lemmas.

Lemma 3.1. Let $\varepsilon>0$ and

$$
\begin{align*}
& A=\min _{\varphi \in[0,2 \pi]}\left\{P(\varphi)\left(\left(P^{\prime}(\varphi)\right)^{2}+(P(\varphi))^{2}\right)^{-\frac{1}{2}}\right\}>0 \\
& B=\max _{\varphi \in[0,2 \pi]}\left\{\left(\left(P^{\prime}(\varphi)\right)^{2}+(P(\varphi))^{2}\right)^{\frac{1}{2}}\right\} . \tag{4}
\end{align*}
$$

Then for all $f \in H^{1}\left(\mathbb{R}^{2}\right)$ the following inequalities hold

$$
\|T f\|_{L^{2}\left(\Gamma_{\tau_{0}}\right)}^{2} \leq A^{-1} \varepsilon\|\nabla f\|^{2}+A^{-1} \varepsilon^{-1}\|f\|^{2}
$$

where $\Gamma_{\tau_{0}}$ is the line determined by the equation $\tau=\tau_{0}\left(\Gamma_{1}=\partial \tilde{\Omega}\right), T$ is the operator which maps function from $H^{1}\left(\mathbb{R}^{2}\right)$ to its trace in $L_{2}\left(\Gamma_{\tau_{0}}\right)$.

Proof. First of all, we note that the set of infinitely smooth functions with compact supports is dense in $H^{1}\left(\mathbb{R}^{2}\right)$ and T is bounded operator. Therefore, we need to prove this statement for functions from $H^{1}\left(\mathbb{R}^{2}\right)$. Clearly, that $2|p q| \leq$ $\varepsilon|p|^{2}+\varepsilon^{-1}|q|^{2}$. Thus, for all φ we have

$$
\begin{aligned}
|f(\tau P(\varphi), \varphi)|^{2} & =-2 \operatorname{Re} \int_{\tau P(\varphi)}^{\infty} \frac{\partial f}{\partial r}(r, \varphi) \overline{f(r, \varphi)} d r \\
& \leq \varepsilon \int_{\tau P(\varphi)}^{\infty}\left|\frac{\partial f}{\partial r}(r, \varphi)\right|^{2} d r+\varepsilon^{-1} \int_{\tau P(\varphi)}^{\infty}|f(r, \varphi)|^{2} d r \\
& \leq \varepsilon \int_{\tau P(\varphi)}^{\infty} \frac{r}{\tau P(\varphi)}\left|\frac{\partial f}{\partial r}(r, \varphi)\right|^{2} d r+\varepsilon^{-1} \int_{\tau P(\varphi)}^{\infty} \frac{r}{\tau P(\varphi)}|f(r, \varphi)|^{2} d r
\end{aligned}
$$

Multiplying the both parts of these inequalities by $\tau P(\varphi)$, using the inequality

$$
P(\varphi) \geq A\left(\left(P^{\prime}(\varphi)\right)^{2}+(P(\varphi))^{2}\right)^{\frac{1}{2}}
$$

and integrating over φ, we get

$$
A \int_{\Gamma_{\tau_{0}}}|f(x)|^{2} d S_{x} \leq \varepsilon \int_{\Omega_{\tau_{0}}^{e x}}\left|\frac{\partial f}{\partial r}(x)\right|^{2} d x+\varepsilon^{-1} \int_{\Omega_{\tau_{0}}^{e x}}|f(x)|^{2} d x \leq \varepsilon\|\nabla f\|^{2}+\varepsilon^{-1}\|f\|^{2}
$$

Here $\Omega_{\tau_{0}}^{i n}, \Omega_{\tau_{0}}^{e x}$ denote the domains corresponding to the curve $\tau=\tau_{0}$.
Lemma 3.2. Let $\tau>0$ and f belongs to the Schwartz' class $S\left(\mathbb{R}^{2}\right)$. Then

$$
\|f(\tau, \cdot)\|_{L_{2}\left(\Gamma_{1}\right)} \leq A^{-\frac{1}{2}} \tau^{-\frac{1}{2}}\|f\|_{H_{1}}
$$

Proof. Statement of the lemma is simple consequence of the previous lemma. Namely, if $\varepsilon=1$ then $\tau\|f(\tau, \cdot)\|_{L_{2}\left(\Gamma_{1}\right)}^{2} \leq A^{-1}\|f\|_{H^{1}}^{2}$.

Lemma 3.3. Let $f \in S\left(\mathbb{R}^{2}\right)$. Then

$$
\left\|f(\tau, \cdot)-f\left(\tau^{\prime}, \cdot\right)\right\|_{L_{2}\left(\Gamma_{1}\right)} \leq\left(B\left|\tau-\tau^{\prime}\right|\left(\min \left\{\tau, \tau^{\prime}\right\}\right)^{-1}\right)^{\frac{1}{2}}\|f\|_{H^{1}}
$$

Proof. Clearly, that it is enough to prove this lemma for the case $0<\tau^{\prime}<\tau$. Due to the Schwartz' inequality for all φ we have

$$
\begin{aligned}
\left|f(\tau, \varphi)-f\left(\tau^{\prime}, \varphi\right)\right|^{2} & =\left|\int_{\tau^{\prime} P}^{\tau P} \frac{\partial f}{\partial r}(r, \varphi) d r\right|^{2} \\
& \leq P\left(\tau-\tau^{\prime}\right) \int_{\tau^{\prime} P}^{\tau P}\left|\frac{\partial f}{\partial r}(r, \varphi)\right|^{2} d r \\
& \leq\left(\tau-\tau^{\prime}\right)\left(\tau^{\prime}\right)^{-1} \int_{\tau^{\prime} P}^{\tau P}\left|\frac{\partial f}{\partial r}(r, \varphi)\right|^{2} r d r .
\end{aligned}
$$

Multiplying by $\left(\left(P^{\prime}(\varphi)\right)^{2}+(P(\varphi))^{2}\right)^{-\frac{1}{2}}$, taking into account (4) and integrating over φ, we obtain

$$
\begin{aligned}
\left\|f(\tau, \cdot)-f\left(\tau^{\prime}, \cdot\right)\right\|_{L_{2}\left(\Gamma_{1}\right)}^{2} & \leq B\left(\tau-\tau^{\prime}\right)\left(\tau^{\prime}\right)^{-1} \int_{\tilde{\Omega}_{\tau}^{i n}\left(\tilde{\Omega}_{\tau^{\prime}}^{i n}\right.}\left|\frac{\partial f}{\partial r}(x)\right|^{2} d x \\
& \leq B\left(\tau-\tau^{\prime}\right)\left(\tau^{\prime}\right)^{-1}\|f\|_{H_{1}}
\end{aligned}
$$

Definition 3.4. Define F_{Γ} as the following transformation on $L_{2}\left(\Gamma_{\tau}\right)$

$$
\left(F_{\Gamma_{\tau}} f\right)(\xi)=(2 \pi)^{-1} \int_{\Gamma_{\tau}} e^{-\imath \xi \cdot x} f(x) d S_{x}, \quad \xi \in \mathbb{R}^{2}
$$

Definition 3.5. Define $H^{s}\left(\mathbb{R}^{2}\right)$ as the following space:

$$
H^{s}\left(\mathbb{R}^{2}\right)=\left\{f(x):\left(1+x^{2}\right)^{\frac{s}{2}} f(x) \in L_{2}\left(\mathbb{R}^{2}\right)\right\}
$$

with the norm $\|f\|_{H^{s}\left(\mathbb{R}^{2}\right)}=\left\|\left(1+|\cdot|^{2}\right)^{\frac{s}{2}} f\right\|$.
Lemma 3.6. Let $s>2^{-1}$. Then for any $f \in L_{2}\left(\mathbb{R}^{2}\right)$ there exists a constant $C=C(\tau, s)$ such that

$$
\left\|F_{\Gamma_{\tau}} f\right\|_{H^{-s}\left(\mathbb{R}^{2}\right)} \leq C\|f\|_{L_{2}\left(\Gamma_{\tau}\right)}
$$

The proof can be obtained by simple modifications of the corresponding statement in [20].

Lemma 3.7. Let r and r^{\prime} be positive. Then for any $f \in L_{2}\left(\Gamma_{1}\right)$ one has

$$
\left\|\left(F_{\Gamma} f\right)(r \cdot)-\left(F_{\Gamma} f\right)\left(r^{\prime} \cdot\right)\right\|_{H^{-1}\left(\mathbb{R}^{2}\right)} \leq\left(B\left|r-r^{\prime}\right|\left(\min \left\{r, r^{\prime}\right\}\right)^{-1}\right)^{\frac{1}{2}}\|f\|_{L_{2}\left(\Gamma_{1}\right)}
$$

Proof. Let $f \in S\left(\mathbb{R}^{2}\right), u \in L_{2}\left(\Gamma_{1}\right)$. We consider the integral

$$
\int_{\mathbb{R}^{2}} d \xi f(\xi) \overline{\left(\left(F_{\Gamma} u\right)(r \xi)-\left(F_{\Gamma} u\right)\left(r^{\prime} \xi\right)\right)}=\int_{\Gamma_{1}} d x\left(\left(F^{*} f\right)(r x)-\left(F^{*} f\right)\left(r^{\prime} x\right)\right) \overline{u(x)},
$$

where F^{*} is the inverse Fourier transform. By Schwartz' inequality and Lemma 3.3 we obtain

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{2}} d \xi f(\xi) \overline{\left(\left(F_{\Gamma} u\right)(r \xi)-\left(F_{\Gamma} u\right)\left(r^{\prime} \xi\right)\right)}\right| \\
& \leq\left\|\left(F^{*} f\right)(r \cdot)-\left(F^{*} f\right)\left(r^{\prime} \cdot\right)\right\|_{L_{2}\left(\Gamma_{1}\right)}\|u(x)\|_{L_{2}\left(\Gamma_{1}\right)} \\
& \leq\left(B\left|r-r^{\prime}\right|\left(\min \left\{r, r^{\prime}\right\}\right)^{-1}\right)^{\frac{1}{2}}\left\|F^{*} f\right\|_{H^{1}}\|u\|_{L_{2}\left(\Gamma_{1}\right)} \\
& \leq\left(B\left|r-r^{\prime}\right|\left(\min \left\{r, r^{\prime}\right\}\right)^{-1}\right)^{\frac{1}{2}}\left\|\left(1+|\cdot|^{2}\right) f(\cdot)\right\| \cdot\|u\|_{L_{2}(\Gamma 1)} \\
& \leq\left(B\left|r-r^{\prime}\right|\left(\min \left\{r, r^{\prime}\right\}\right)^{-1}\right)^{\frac{1}{2}}\|f\|_{H^{1}\left(\mathbb{R}^{2}\right)}\|u\|_{L_{2}\left(\Gamma_{1}\right)} .
\end{aligned}
$$

The statement of the lemma is a consequence of this inequality because $S\left(\mathbb{R}^{2}\right)$ is dense in $H^{1}\left(\mathbb{R}^{2}\right)$.

The Green function $G_{L B}(x, y ; k)$ of the operator $-\Delta_{L B}$ is well known [15]:

$$
\begin{equation*}
G_{L B}(x, y ; k)=\frac{1}{\cos \left(\frac{\pi}{2} \sqrt{\frac{1}{4}+k}\right)} \mathcal{P}_{-\frac{1}{2}+\sqrt{\frac{1}{4}+k}}(-\cos \rho(x, y)), \quad x, y \in \mathbb{R}^{2} \tag{5}
\end{equation*}
$$

where $\mathcal{P}_{\nu}(x)$ is the Legendre function, k is the square root of the spectral parameter $\lambda, \rho(x, y)$ is the geodesic distance between x and y. We can rewrite the expression for the function (5) using the variables (t, φ) as

$$
\begin{aligned}
\widehat{G}_{L B}\left(t_{1}, \varphi_{1}, t_{2}, \varphi_{2} ; k\right)= & \frac{t_{2}}{\left(t_{2}+1\right)^{2} \sqrt{2 t_{2}+1}} \cdot \frac{1}{\cos \left(\frac{\pi}{2} \sqrt{\frac{1}{4}+k}\right)} \\
& \times \mathcal{P}_{-\frac{1}{2}+\sqrt{\frac{1}{4}+k}}\left(-\frac{\sqrt{\left(2 t_{1}+1\right)\left(2 t_{2}+1\right)}+t_{1} t_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)}{\left(t_{1}+1\right)\left(t_{2}+1\right)}\right)
\end{aligned}
$$

Definition 3.8. Define M as the following operator from $L_{2}\left(\Gamma_{1}\right)$ to $H^{1}\left(\mathbb{R}^{2}\right)$:

$$
M f(x)=\int_{\Gamma_{1}} \widehat{G}_{L B}(x, y ; k) \alpha(y) f(y) d S_{y}, \quad x \in \mathbb{R}^{2}
$$

If $\operatorname{Im} k>0$, then M is bounded operator.

Lemma 3.9. Let ε, s, λ be such that $0<\varepsilon<2^{-1}, 2^{-1}<s<1, \lambda \in \mathbb{C} \backslash[0,+\infty)$. Then there exists a constant $C_{1}=C_{1}(s)$ (which does not depend on ε and λ) such that

$$
\left\|R_{0}(\lambda) A_{\varepsilon}\right\|_{B\left(H^{1}\left(\mathbb{R}^{2}\right)\right)} \leq C_{1}\left(\sup _{\xi \in \mathbb{R}^{2}}\left(\left(1+|\xi|^{2}\right)^{1+s}|V(\xi, \lambda)|^{2}\right)\right)^{\frac{1}{2}}
$$

where $V(\xi, \lambda)$ is bounded function.
Proof. For any $u \in S\left(\mathbb{R}^{2}\right)$ we have

$$
\begin{aligned}
\left(F R_{0}(\lambda) A_{\varepsilon} u\right)(\xi) & =(2 \pi)^{-1} \int_{\mathbb{R}^{2}} d x e^{-\imath \xi x} \int_{\mathbb{R}^{2}} d y \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) \alpha(1, \varphi) u(y) \widehat{G}_{L B}(x, y ; k) \\
& =(2 \pi)^{-1} \int_{\mathbb{R}^{2}} d y e^{-\imath \xi y} \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) \alpha(1, \varphi) u(y) V(\xi, \lambda),
\end{aligned}
$$

where $V(\xi, \lambda)=e^{\imath \xi y} \int_{\mathbb{R}^{2}} d x e^{-\neg \xi x} \widehat{G}_{L B}(x, y ; k)$.
Here, the branch of the square root $\sqrt{\lambda}=k$ is chosen in such a way that $\operatorname{Im} k \geq 0$. Thus, we have

$$
\begin{aligned}
& \left\|R_{0}(\lambda) A_{\varepsilon} u\right\|_{H^{1}\left(\mathbb{R}^{2}\right)}^{2} \\
& =\int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)\left|\int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{\tau}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) V(\xi, \lambda)\left(F_{\Gamma}(\beta(1, \cdot) u(\tau, \cdot))\right)(\tau \xi)\right|^{2}
\end{aligned}
$$

where $\beta(1, \varphi)=\alpha(1, \varphi) P^{2}(\varphi)\left(\left(P^{\prime}(\varphi)\right)^{2}+(P(\varphi))^{2}\right)^{-\frac{1}{2}}$. Schwartz' inequality and Fubini's theorem lead to the following inequality

$$
\begin{align*}
\left\|R_{0}(\lambda) A_{\varepsilon} u\right\|_{H^{1}\left(\mathbb{R}^{2}\right)}^{2} \leq & \int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)|V(\xi, \lambda)|^{2} \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{\tau^{2}}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) \\
& \times \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right)\left|\left(F_{\Gamma}(\beta(1, \cdot) u(\tau, \cdot))\right)(\tau \xi)\right|^{2} \\
\leq & \sup _{\xi \in \mathbb{R}^{2}}\left(\left(1+|\xi|^{2}\right)^{1+s}|V(\xi, \lambda)|^{2}\right)(1+\varepsilon)^{2} \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) \tag{6}\\
& \times \int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left(F_{\Gamma}(\beta(1, \cdot) u(\tau, \cdot))\right)(\tau \xi)\right|^{2}
\end{align*}
$$

By replacing of the variables $\eta=\tau \xi$, one obtains

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left(F_{\Gamma}(\beta(1, \cdot) u(\tau, \cdot))\right)(\tau \xi)\right|^{2} \\
& =\int_{\mathbb{R}^{2}} d \eta\left(1+\tau^{-2}|\eta|^{2}\right)^{-s} \tau^{-2}\left|\left(F_{\Gamma}(\beta(1, \cdot) u(\tau, \cdot))\right)(\eta)\right|^{2} .
\end{aligned}
$$

Using the evident inequality $\left(1+\tau^{-2}|\eta|^{2}\right)^{-s} \leq \max \left\{\tau^{2 s}, 1\right\}\left(1+|\eta|^{2}\right)^{-s}$ (for $s>0$ and $\tau>0$), one obtains by Lemmas 3.2 and 3.6

$$
\begin{align*}
& \int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left(F_{\Gamma}(\beta(1, \cdot) u(\tau, \cdot))\right)(\tau \xi)\right|^{2} \\
& \leq \tau^{-2} \max \left\{\tau^{2 s}, 1\right\}\left\|F_{\Gamma}(\beta(1, \cdot) u(\tau, \cdot))\right\|_{H^{-s}\left(\mathbb{R}^{2}\right)}^{2} \tag{7}\\
& \leq \tau^{-2} \max \left\{\tau^{2 s}, 1\right\} C^{2}\|\beta(1, \cdot) u(\tau, \cdot)\|_{L_{\Gamma}}^{2} \\
& \leq A^{-1} \tau^{-3} \max \left\{\tau^{2 s}, 1\right\} C^{2}\left(\max _{x \in \Gamma}|\beta(x)|\right)^{2}\|u\|_{H_{1}}^{2},
\end{align*}
$$

where C is given in Lemma 3.6. Since $0<\varepsilon \leq 2^{-1}$, one obtains

$$
\begin{aligned}
\left\|R_{0}(\lambda) A_{\varepsilon} u\right\|_{H^{1}\left(\mathbb{R}^{2}\right)}^{2} \leq & \sup _{\xi \in \mathbb{R}^{2}}\left(\left(1+|\xi|^{2}\right)^{1+s}|V(\xi, \lambda)|^{2}\right) C^{2}\left(\max _{x \in \Gamma}|\beta(x)|\right)^{2} \\
& \times\|u\|_{H^{1}}^{2}\left(1+\varepsilon^{2}\right) \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) \frac{1}{A} \frac{1}{\tau^{4}} \max \left\{\tau^{2 s}, 1\right\} \\
\leq & C_{1}^{2}(s) \sup _{\xi \in \mathbb{R}^{2}}\left(\left(1+|\xi|^{2}\right)^{1+s}|V(\xi, \lambda)|^{2}\right)\|u\|_{H^{1}}^{2} .
\end{aligned}
$$

where $C_{1}(s)$ does not depend on $\varepsilon\left(0<\varepsilon \leq 2^{-1}\right)$. This inequality leads to the statement of the lemma, because $R_{0}(\lambda)$ is bounded operator from $L_{2}\left(\mathbb{R}^{2}\right)$ to $H^{1}\left(\mathbb{R}^{2}\right)$ and $S\left(\mathbb{R}^{2}\right)$ is dense in $H^{1}\left(\mathbb{R}^{2}\right)$.

Lemma 3.10. Let ε, s, λ be such that $0<\varepsilon \leq 2^{-1}, 2^{-1}<s<1, \lambda \in \mathbb{C} \backslash[0, \infty)$. Then there exist a constant $C_{2}=C_{2}(s, \lambda)$ (which does not depend on ε) such that

$$
\left\|R_{0}(\lambda) A_{\varepsilon}+M T\right\|_{B\left(H^{1}\left(\mathbb{R}^{2}\right)\right)} \leq C_{2} \varepsilon^{\frac{1}{2}}
$$

Proof. As in the proof of the previous lemma, we obtain for any function u from the Schwartz class

$$
(F M T u)(\xi)=-V(\xi, \lambda)\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\xi)
$$

Thus, we have

$$
\begin{aligned}
(& \left.F\left(R_{0}(\lambda) A_{\varepsilon}+M T\right) u\right)(\xi) \\
= & V(\xi, \lambda) \int_{1-\varepsilon}^{1+\varepsilon} d \tau(\tau-1) \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right)\left(F_{\Gamma}(\beta(1, \cdot) u(\tau, \cdot))\right)(\tau \xi) \\
& +V(\xi, \lambda) \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right)\left(F_{\Gamma}(\beta(1, \cdot)(u(\tau, \cdot)-u(1, \cdot)))\right)(\tau \xi) \\
& +V(\xi, \lambda) \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right)\left(\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\tau \xi)-\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\xi)\right) \\
= & J_{0}(\xi)+J_{1}(\xi)+J_{2}(\xi) .
\end{aligned}
$$

It is necessary to estimate $H^{1}\left(\mathbb{R}^{2}\right)$ norms of J_{0}, J_{1} and J_{2}. By the way which we have used to derive (6), we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)\left|J_{0}(x)\right|^{2} \leq \varepsilon^{2} b_{0}\|u\|_{H^{1}}^{2} \tag{8}
\end{equation*}
$$

where b_{0} does not depend on $\varepsilon\left(0<\varepsilon \leq 2^{-1}\right)$.

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)\left|J_{1}(\xi)\right|^{2} \leq & \sup _{\xi \in \mathbb{R}^{2}}\left(\left(1+|\xi|^{2}\right)^{1+s}|V(\xi, \lambda)|^{2}\right) \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) \\
& \times \int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left(F_{\Gamma}(\beta(1, \cdot)(u(\tau, \cdot)-u(1, \cdot)))\right)(\tau \xi)\right|^{2}
\end{aligned}
$$

The correlation (7) and Lemma 3.3 give us

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left(F_{\Gamma}(\beta(1, \cdot)(u(\tau, \cdot)-u(1, \cdot)))\right)(\tau \xi)\right|^{2} \\
& \leq \tau^{-2} \max \left\{\tau^{2 s}, 1\right\} C^{2}\|\beta(1, \cdot)(u(\tau, \cdot)-u(1, \cdot))\|_{L_{2}(\Gamma)}^{2} \\
& \leq \tau^{-2} \max \left\{\tau^{2 s}, 1\right\} C^{2}\left(\max _{x \in \Gamma}|\beta(x)|\right)^{2}|\tau-1| B(\min \{\tau, 1\})^{-1}\|u\|_{H^{1}}^{2} \\
& \leq \varepsilon B(1+\varepsilon)^{2 s} \frac{1}{(1-\varepsilon)^{4}} \frac{1}{A} C^{2}\left(\max _{x \in \Gamma}|\beta(x)|\right)^{2}\|u\|_{H^{1}}^{2},
\end{aligned}
$$

because $\tau \in[1-\varepsilon, 1+\varepsilon]$. Hence, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)\left|J_{1}(\xi)\right|^{2} \leq \varepsilon b_{1}\|u\|_{H^{1}}^{2} \tag{9}
\end{equation*}
$$

where b_{1} does not depend on $\varepsilon\left(0<\varepsilon \leq 2^{-1}\right)$.
To estimate the norm of J_{2}, we take into account that

$$
\left|J_{2}(\xi)\right|^{2} \leq|V(\xi, \lambda)|^{2}
$$

$$
\times \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right)\left|\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\tau \xi)-\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\xi)\right|^{2} .
$$

Using Fubini's theorem, one comes to the following inequality:

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)\left|J_{2}(\xi)\right|^{2} \\
& \leq \sup _{\xi \in \mathbb{R}^{2}}\left(\left(1+|\xi|^{2}\right)^{2}|V(\xi, \lambda)|^{2}\right) \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) \\
& \quad \times \int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)^{-1}\left|\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\tau \xi)-\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\xi)\right|^{2} \\
& \leq \sup _{\xi \in \mathbb{R}^{2}}\left(\left(1+|\xi|^{2}\right)^{2}|V(\xi, \lambda)|^{2}\right) \int_{1-\varepsilon}^{1+\varepsilon} d \tau \frac{1}{\varepsilon} \rho\left(\frac{\tau-1}{\varepsilon}\right) \\
& \quad \times\left\|\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\tau \cdot)-\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\cdot)\right\|_{H^{-1}\left(\mathbb{R}^{2}\right)}^{2} .
\end{aligned}
$$

It follows from Lemmas 3.2 and 3.7 that

$$
\begin{aligned}
& \left\|\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\tau \cdot)-\left(F_{\Gamma}(\beta(1, \cdot) u(1, \cdot))\right)(\cdot)\right\|_{H^{-1}\left(\mathbb{R}^{2}\right)}^{2} \\
& \leq|\tau-1| B(\min \{\tau, 1\})^{-1}\|\beta(1, \cdot) u(1, \cdot)\|_{L_{2}(\Gamma)}^{2} \\
& \leq A^{-1}\left(\max _{x \in \Gamma}|\beta(x)|\right)^{2}|\tau-1| B(\min \{\tau, 1\})^{-1}\|u\|_{H^{1}}^{2} \\
& \leq \varepsilon(1-\varepsilon)^{-1} A^{-1}\left(\max _{x \in \Gamma}|\beta(x)|\right)^{2} B\|u\|_{H^{1}}^{2}
\end{aligned}
$$

for $\tau \in[1-\varepsilon, 1+\varepsilon]$. Therefore, we get

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} d \xi\left(1+|\xi|^{2}\right)\left|J_{2}(\xi)\right|^{2} \leq \varepsilon b_{2}\|u\|_{H^{1}}^{2} \tag{10}
\end{equation*}
$$

where b_{2} does not depend on $\varepsilon\left(0<\varepsilon \leq 2^{-1}\right)$. Combining (8), (9) and (10) and taking into account that $M T$ is bounded operator in $H^{1}\left(\mathbb{R}^{2}\right)$ and that $S\left(\mathbb{R}^{2}\right)$ is dense in $H^{1}\left(\mathbb{R}^{2}\right)$, one comes to the statement of the lemma.

Now we can prove Theorem 1.1.
Proof of Theorem 1.1. By the closed graph theorem $R_{\varepsilon}(\lambda)$ and $R(\lambda)$ are bounded operators from $L^{2}\left(\mathbb{R}^{2}\right)$ to $H^{2}\left(\mathbb{R}^{2}\right)$ and $H^{1}\left(\mathbb{R}^{2}\right)$, respectively. The two resolvent identities hold:

$$
R_{0}(\lambda)-R_{\varepsilon}(\lambda)=R_{0}(\lambda) A_{\varepsilon} R_{\varepsilon}(\lambda), \quad R(\lambda)-R_{0}(\lambda)=M T R(\lambda)
$$

Hence $R_{\varepsilon}(\lambda)-R(\lambda)=-R_{0}(\lambda) A_{\varepsilon}\left(R_{\varepsilon}(\lambda)\right)-\left(R_{0}(\lambda) A_{\varepsilon}+M T\right) R(\lambda)$.
Let the regular value $\lambda(\lambda \in \mathbb{C} \backslash[0, \infty))$ be sufficiently far form the origin and such that

$$
C_{1}\left(\sup _{\xi \in \mathbb{R}^{2}}\left(1+|\xi|^{2}\right)^{1+s}|V(\xi, \lambda)|^{2}\right)^{\frac{1}{2}}<\frac{1}{2}
$$

This is possible because $\frac{1}{2}<s<1$. Then, for any $u \in L_{2}\left(\mathbb{R}^{2}\right)$ we get by Lemmas 3.9 and 3.10

$$
\begin{aligned}
& \left\|R_{\varepsilon}(\lambda) u-R(\lambda) u\right\|_{H^{1}} \\
& \leq\left\|R_{0}(\lambda) A_{\varepsilon}\left(R_{\varepsilon}(\lambda) u-R(\lambda) u\right)\right\|_{H^{1}}+\left\|\left(R_{0}(\lambda) A_{\varepsilon}+M T\right) R(\lambda) u\right\|_{H^{1}} \\
& \leq 2^{-1}\left\|R_{\varepsilon}(\lambda) u-R(\lambda) u\right\|_{H^{1}}+\varepsilon^{\frac{1}{2}} C_{2}\|R(\lambda) u\|_{H^{1}} .
\end{aligned}
$$

Consequently,

$$
\left\|R_{\varepsilon}(\lambda) u-R(\lambda) u\right\|_{H^{1}} \leq 2 \varepsilon^{\frac{1}{2}} C_{2}\|R(\lambda) u\|_{H^{1}} \leq 2 \varepsilon^{\frac{1}{2}} C_{2}\|R(\lambda)\|_{B\left(L^{2}\left(\mathbb{R}^{2}\right), H^{1}\left(\mathbb{R}^{2}\right)\right)}\|u\|
$$

This inequality gives us the required result.

Acknowledgement. The work was partially supported by Federal Targeted Program "Scientific and Educational Human Resources for Innovation-Driven Russia" (contracts P689 NK-526P, 14.740.11.0879, and 16.740.11.0030), grant 11-08-00267 of Russian Foundation for Basic Researches.

References

[1] Albe, V., Jouanin, C. and Bertho, D., Confinement and shape effects on the optical spectra of small CdSe nanocrystals. Phys. Rev. B 58 (1998), $4713-4720$.
[2] Albeverio, S., Gesztesy, F., Hoegh-Krohn, R. and Holden, H., Solvable Models in Quantum Mechanics. Berlin: Springer 1988.
[3] Albeverio, S., Geyler, V. A., Grishanov, E. N. and Ivanov, D. A., Point perturbations in constant curvature spaces. Int. J. Theor. Phys. 49 (2010), $728-758$.
[4] Aharonov, Y. and Bohm, D., Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115 (1959), $485-491$.
[5] Brüning, J., Geyler, V. A., Margulis, V. A. and Pyataev, M. A., Ballistic conductance of a quantum sphere. J. Phys. A 35 (2002), $4239-4247$.
[6] Brüning, J., Geyler, V. A. and Pankrashkin, K. V., Continuity and asymptotic behavior of integral kernels related to Schrödinger operators on manifolds. Math. Notes 78 (2005), $285-288$.
[7] Brüning, J., Geyler, V. A. and Pankrashkin, K. V., On-diagonal singularities of the Green functions for Schrödinger operators. J. Math. Phys. 46 (2005), 113508.1-113508.16.
[8] Brüning, J., Geyler, V. A. and Pankrashkin, K. V., Continuity properties of integral kernels associated with Schrödinger operators on manifolds. Ann. Henri Poincare 8 (2007), 781 - 816.
[9] Büttiker, M., Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57 (1986), 1761 - 1764.
[10] Compañó, R., Trends in nanoelectronics. Nanotechnology 12 (2001), $85-88$.
[11] Exner, P. and Ichinose, T., Geometrically induced spectrum in curved leaky wires. J. Phys. A 34 (2001), 1439 - 1450.
[12] Exner, P., Leaky quantum graphs. In: Analysis on Graphs and its Applications. (Eds.: P. Exner et al.). Proc. Sympos. Pure Math. 77. Providence (RI): A.M.S. 2008, pp. 523-564.
[13] Fakhri, H. and Shariati, M., Landau levels on the hyperbolic plane. J. Phys. A 37 (2004), L539 - L545.
[14] Geyler, V. A., Ivanov, D. A. and Popov, I. Yu., Approximation of a point perturbation on a Riemannian manifold. Theor. Math. Phys. 158 (2009), $40-47$.
[15] Grosche, Ch. and Steiner, F., Handbook of Feynman Path Integrals. Berlin: Springer 1998.
[16] von Klitzing, K., Dorda, G. and Pepper, M., New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 5 (1980), 494-497.
[17] Lobanov, I. S., Lotoreichik, V. Yu. and Popov, I. Yu., Lower bound on the spectrum of the two-dimensional Schrödinger operator with a δ-perturbation on a curve. Theor. Math. Phys. 162 (2010), 332 - 340.
[18] Martinos, S. S., Optical absorption spectra for silver spherical particles. Phys. Rev. B. 39 (1989), 1363 - 1364.
[19] Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen (in German). Ann. Phys. (Leipzig) 25 (1908), $377-445$.
[20] Mochizuki, K., Scattering Theory for the Wave Equation. Tokio: Kinokuniya 1984.
[21] Pavlov, B. S., Theory of extensions and explicitly solvable models (in Russian). Uspekhi Mat. Nauk 42 (1987), $99-131$.
[22] Popov, I. Yu., The extension theory and the opening in semitransparent surface. J. Math. Phys. 33 (1992), $1685-1689$.
[23] Popov, I. Yu., The operator extension theory, semitransparent surface and short range potential. Math. Proc. Cambridge Phil. Soc. 118 (1995), $555-563$.
[24] Ruppin, R., Optical absorption by a small sphere above a substrate with inclusion of nonlocal effects. Phys. Rev. B 45 (1992), 11209 - 11215.
[25] Shimada, S., The approximation of the Schrödinger operators with penetrable wall potentials in terms of short range Hamiltonians. J. Math. Kyoto Univ. 32 (1992), 583 - 592.
[26] Svetlov, A. V., Criterion of discreteness of the spectra of the Laplace-Beltrami operators on quasimodel manifolds. Siberian Math. J. 43 (2002), 1362 - 1371.
[27] Tsui, D., Störmer, H. and Gossard, A., Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48 (1982), 1559 - 1562.
[28] Vorob'ev, A. B., Friedland, K.-J., Kostial, H., Hey, R., Jahn, U., Wiebicke, E., Yukecheva, Ju. S. and Prinz, V. Ya., Giant asymmetry of the longitudinal magnetoresistance in high-mobility two-dimensional electron gas on a cylindrical surface. Phys. Rev. $B 75$ (2007), 205309.1-205309.6.
[29] Xia, J. B. and Li, J., Electronic structure of quantum spheres with wurtzite structure. Phys. Rev. B 60 (1999), 11540 - 11544.

Received June 25, 2010; revised August 10, 2010

[^0]: D. A. Eremin, D. A. Ivanov: Department of Mathematics, Mordovian State University, Russia; ereminda@mail.ru, ivdmal@mail.ru
 I. Yu. Popov: Department of Higher Mathematics, St. Petersburg State University of Information Technologies, Mechanics and Optics, Russia; popov@mail.ifmo.ru

