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Abstract. In this paper we focus on a nonlinear wave equation, we show that the
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on the global existence of solution and large time behavior.
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1. Introduction

In this essay, we consider the following initial-boundary-value problem,










utt − ∆u + g(ut) + |ut|
m−1ut = u|u|p−1, (x, t) ∈ Ω × (0, T )

u(x, t) = 0, (x, t) ∈ Γ × (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(1)

where p > 1, m ≥ 1, and Ω ⊆ Rn with smooth boundary. The function g

satisfies the following properties:






g : R → R is a C1 function, nondecreasing, and g(0) = 0
sg(s) > 0, for all s 6= 0
∃ k0, k1, such that k0s ≤ |g(s)| ≤ k1|s|, for all s ∈ R.

(2)

For (1), a special case with g(ut) = aut, (a > 0) was considered in [4], where
it is shown that the energy of the solution decays exponentially for m > 2.

Some similar equations were studied recently in [3, 5–7, 9]. In particular,
in [7], Zhou established blow-up result and time decay rate for the following
equation:

utt + a|u|m−1 − φ∆u = b|u|p−1u − µu, x ∈ Rn, t > 0.
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In [2], it is proved that the solution to (1) exists globally as long as ‖∇u0‖L2 is
small. The main purpose of this paper is to establish global nonexistence result
and decay rate for (1) by using the argument and method in [7].

In Section 2, we recall some preliminary results about equation (1). In Sec-
tion 3, we establish global nonexistence criteria, and we discuss global existence
and large time behavior in Section 4.

2. Preliminary

First, let us recall the following local existence theorem:

Theorem 2.1 (Theorem 2.1 from [2]). Assume that m ≥ 1 and when p > 1,
as n = 1, 2; when 1 < p ≤ n

n−2
, as n ≥ 3. Let (u0, u1) ∈ H1

0 (Ω) × L2(Ω) be
given, then the first equation of (1) has a unique solution u ∈ C([0, T ); H1

0 (Ω)),
ut ∈ C([0, T ); L2(Ω)) ∩ Lm(Ω × [0, T )), for some T small enough.

Remark 2.2. We can use Galerkin’s method to prove the result (see [1]).

The supremum of all T ’s for which the solution exists on Ω× [0, T ) is called
the lifespan of the solution to (1). The lifespan is denoted by T ∗, if T ∗ = ∞,
we say the solution is global, while it is nonglobal if T ∗ < ∞. We say that the
solution blows up in finite time.

Lemma 2.3. Let p > 1, as n = 1, 2; 1 < p ≤ n
n−2

, as n ≥ 3. Then there exists
a positive constant C > 1 depending only on Ω (C denotes a generic positive
constant, which may be different from line to line), such that

‖u‖s
Lp+1 ≤ C

(

‖∇u‖2
L2 + ‖u‖p+1

Lp+1

)

, (3)

with 2 ≤ s ≤ p + 1, for any u ∈ H1
0 (Ω), if u is a solution constructed as in

Theorem 2.1, then

‖u‖s
Lp+1 ≤ C

(

|H(t)| + ‖ut‖
2
L2 + ‖∇u‖2

L2 + ‖u‖p+1
Lp+1

)

, (4)

with 2 ≤ s ≤ p + 1 on [0, T ) where H(t) = −E(t).

Proof. Suppose ‖u‖Lp+1 ≤ 1, by Sobolev embedding ‖u‖Lp+1 ≤ C‖∇u‖L2 , then
‖u‖s

Lp+1 ≤ ‖u‖2
Lp+1 ≤ C2‖∇u‖2

L2 . When ‖u‖Lp+1 > 1, then ‖u‖s
Lp+1 ≤ ‖u‖p+1

Lp+1 .
So (3) and (4) follows from the definition of the energy corresponding to the
solution.

If we let l(t) = 1
2
‖u(., t)‖2

L2 , where u is a solution of problem (1). We can
get the derivative of l(t) with respect to time

l′(t) =

∫

Rn

uut dx, (5)
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which is well defined and one can get

l′′(t) = ‖ut‖
2
L2 − ‖∇u‖2

L2 + ‖u‖p+1
Lp+1 − (u, ut|ut|

m−1)L2 −

∫

Rn

ug(ut) dx, (6)

almost everywhere in [0, T ).

Now we define the energy E(t) for (1)

E(t) =
1

2
(‖ut(t)‖

2
L2 + ‖∇u(t)‖2

L2) −
1

p + 1
‖u(t)‖p+1

Lp+1 . (7)

Using condition (2), one can compute directly that

d

dt
E(t) = −

∫

Ω

(

‖ut‖
m+1 + utg(ut)

)

dx ≤ 0. (8)

Inequality (8) tells us that the energy for the system is nonincreasing. We use
E(0) to denote the initial energy.

3. Global nonexistence

The first global nonexistence result for linear damping case, we can establish
finite time blow up with nonpositive initial energy.

Theorem 3.1. Suppose p > 1, as n = 1, 2; 1 < p ≤ n
n−2

, when n ≥ 3. If

E(0) ≤ 0,
∫

Rn u0u1 dx ≥ 0, then the corresponding solution blows up in finite
time.

Before going to the proof, we write down the following technique lemma.

Lemma 3.2. Suppose that Ψ(t) is a twice continuously differential satisfying

{

Ψ′′(t) + γΨ′(t) ≥ C0(t + L)βΨ1+α(t), t > 0, C0 > 0, α > 0.
Ψ(0) > 0, Ψ′(0) ≥ 0.

where C0, L > 0, −1 < β ≤ 0 are constants. Then Ψ(t) blows up in finite time.
Moreover the blow up time can be estimated explicitly.

Remark 3.3. The proof of this lemma is easy, for simplicity, we omit it here.
One can see [8] for a similar proof.
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Proof of Theorem 3.1. Now we consider Ψ(t) = 1
2

∫

Rn u2(x, t) dx, one has
Ψ′(t) =

∫

Rn uut dx. From (5) and (6) we have

Ψ′′(t) =

∫

Rn

|ut|
2 dx +

∫

Rn

uutt dx

= ‖ut‖
2
L2 − ‖∇u‖2

L2 −

∫

Rn

ug(ut) dx + ‖u‖p+1
Lp+1 −

∫

Rn

uut dx

= −2E(t) + 2‖ut‖
2
L2 +

p − 1

p + 1
‖u‖p+1

Lp+1 − Ψ′(t) −

∫

Rn

ug(ut) dx

≥ −2E(0) +
p − 1

p + 1
‖u‖p+1

Lp+1 − Ψ′(t) − CΨ′(t) (by condition (2))

≥ −C1Ψ
′(t) +

p − 1

p + 1
‖u‖p+1

Lp+1 ,

where C1 = C + 1. By Hölder’s inequality, we obtain

∫

RN

|u|2 dx ≤

(
∫

RN

|u|p+1

)
2

p+1
(
∫

B(t+r)

1 dx

)
p−1
p+1

,

where r satisfies supp(u0, u1) ⊂ B(r), B(t + r) represents the ball with radius
t + r. Therefore we have

Ψ′′(t) ≥ −C1Ψ
′(t) +

p − 1

p + 1
· 2

p+1
2 R

1−p

2
N (t + r)

(1−p)N
2 Ψ(t)

1+p

2 ,

where RN denotes the volume of the unit sphere in RN . Set C = p−1
p+1

·2
p+1
2 R

1−p

2
N ,

it is obviously that

Ψ(t) > 0, for all t ≥ 0; Ψ′(0) =

∫

Rn

u0u1 ≥ 0.

Then by Lemma 3.2, Ψ(t) blows up in finite time. The proof is complete.

The second blow up result is

Theorem 3.4. Suppose m > 1 and 1 < p ≤ n
n−2

, as n ≥ 2 or p > 1, as n = 2.
For p ≤ m, the solution for (1) blows up in finite time if the initial energy is
negative.

Proof. By the definition H(t) = −E(t), we have

0 < H(0) ≤ H(t) ≤
1

p + 1
‖u‖p+1

Lp+1 . (9)
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We use the method of that in [7] and define M(t) = H1−α(t) + θ
∫

Rn uut dx, for

0 < α < p−1
2(p+1)

and θ can be determined later. We can compute

M ′(t) = (1 − α)H−α(t)H ′(t) + θ‖ut‖
2
L2 + θ‖u‖p+1

Lp+1 − θ‖∇u‖2
L2

− θ

∫

Rn

ug(ut) dx − θ

∫

Rn

u|ut|
m−1ut dx.

By Young’s inequality, we have

∫

Rn

u|ut|
m−1ut dx ≤

δm+1

m + 1
‖u‖m+1

Lm+1 +
m

m + 1
δ−

m+1
m ‖ut‖

m+1
Lm+1 . (10)

According to (10), it follows that

M ′(t) ≥ (1 − α)H−αH ′(t) −
θδm+1

m + 1
‖u‖m+1

Lm+1 −
θm

m + 1
δ−

m+1
m ‖ut‖

m+1
Lm+1

+ θ‖ut‖
2
L2 + θ‖u‖p+1

Lp+1 − θ‖∇u‖2
L2 − θ

∫

Rn

ug(ut) dx − θ

∫

Rn

u|ut|
m−1ut dx

≥

(

(1 − α)H−α − θ
m

m + 1
δ−

m+1
m

)

H ′(t) + θ‖ut‖
2
L2

+ θ‖u‖p+1
Lp+1 − θ‖∇u‖2

L2 − θ

∫

Rn

ug(ut) dx −
θδm+1

m + 1
‖u‖m+1

Lm+1 .

If we let δ−
m+1

m = KH−α, i.e., δm+1 = K−mHαm, K > 0 to be determined later.
By (9) we obtain

Hαm‖u‖m+1
Lm+1 ≤ C

(

1

p + 1

)αm

‖u‖
m+1+αm(p+1)

Lp+1 . (11)

Therefore, from (11), the following inequalities hold true:

M ′(t) ≥

(

(1 − α) −
θm

m + 1
K

)

H−αH ′(t) + θ(p + 1)H(t) +
θ(p − 1)

2
‖∇u‖2

L2

+
θ(p + 3)

2
‖ut‖

2
L2 − Cθ

∫

Rn

uut dx −
θ(δm+1)

m + 1
‖u‖m+1

Lm+1

≥

(

(1 − α) −
θm

m + 1
K

)

H−αH ′(t) + θ(p + 1)H(t) +
θ(p − 1)

2
‖∇u‖2

L2

+
θ(p + 3)

2
‖ut‖

2
L2 − C

θδ2

2
‖u‖2

L2 − C
θ

2δ2
‖ut‖

2
L2

− θC1K
−m
(

H(t) + ‖∇u‖2
L2 + ‖ut‖

2
L2 + ‖u‖p+1

Lp+1

)
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and hence

M ′(t) ≥

(

(1 − α) −
θm

m + 1
K

)

H−αH ′(t) + θ

(

p + 7

4
− C

δ−2

2
− C1K

−m

)

‖ut‖
2
L2

+ θ

(

p − 1

4
− C1K

−m

)

‖∇u‖2
L2 + θ

(

p + 3

2
− C1K

−m

)

H(t)

+ θ

(

p − 1

2(p + 1)
− C

δ2

2
− C1K

−m

)

‖u‖p+1
Lp+1 .

Letting K large enough, there exists a constant C2 > 0 and p−1
2(p+1)

−Cδ2

2
−C1K

−m

≥ C2, where C1 = C
(p+1)αm(m+1)

. Then we choose θ so small that

1 − α −
θm

m + 1
K ≥ 0, and M(0) = H1−α(0) + θ

∫

Rn

u0u1 dx > 0, (12)

therefore, M ′(t) ≥ θC2

(

H(t) + ‖∇u‖2
L2 + ‖ut‖

2
L2 + ‖u‖p+1

Lp+1

)

.

On the other hand, by Young’s inequality with s = 2
1−2α

≤ p + 1, we get

∣

∣

∣

∣

∫

Rn

uut dx

∣

∣

∣

∣

1
1−α

≤ ‖u‖
1

1−α

L2 ‖ut‖
1

1−α

L2

≤ C‖u‖
1

1−α

Lp+1‖ut‖
1

1−α

L2

≤ C
(

‖u‖s
Lp+1 + ‖ut‖

2
L2

)

≤ C
(

H(t) + ‖∇u‖2
L2 + ‖ut‖

2
L2 + ‖u‖p+1

Lp+1

)

,

then

M
1

1−α (t) =

(

H1−α(t) + θ

∫

Rn

uut dx

)
1

1−α

≤ 2
1

1−α

(

H(t) +

∣

∣

∣

∣

∫

Rn

uut dx

∣

∣

∣

∣

1
1−α

)

≤ C
(

H(t) + ‖∇u‖2
L2 + ‖ut‖

2
L2 + ‖u‖p+1

Lp+1

)

.

So it follows that M ′(t) ≥ C0M
1

1−α (t), where C0 is a constant depending on C,
C2 and θ. For (12), M(t) goes to infinity as t tends to 1−α

C0α
M

α
α−1 (0).

4. Global existence and large time behavior

In order to establish the decay rate for a solution with positive initial energy,
let us recall the lemma first:
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Lemma 4.1 (Lemma 5.2 from [7]). Let φ(t) be a nonincreasing and nonnegative
function defined on [0, T ], T > 1, satisfying φ1+r(t) ≤ k0(φ(t) − φ(t + 1)), for
all t ∈ [0, T ], k0 > 1 and r ≥ 0. Then we have for each t ∈ [0, T ],

{

φ(t) ≤ φ(0)e−k(t−1)+ , r = 0,

φ(t) ≤ (φ(0)−r + k0r(t − 1))−
1
r , r > 0,

where (t − 1)+ = max(t − 1, 0) and k = ln
(

k0

k0−1

)

.

The main theorem in this section reads:

Theorem 4.2. Assume that m ≥ 1 and p > 1, as n = 1, 2; 1 < p ≤ n
n−2

,

as n ≥ 3. Suppose that ‖∇u0‖
2
L2 < λ0 and E(0) < E0, where λ0 = k0

−2(p+1)
p−1 ,

E0 =
(

1
2
− 1

p+1

)

λ0, here k0 is the constant of the Sobolev embedding ‖u‖Lp+1 ≤

k0‖∇u‖L2 , for u ∈ H1
0 (Ω). Then the solution is global and the energy of prob-

lem (1) decays as










E(t) ≤ E(0)e−k(t−1)+ , t ≥ 0, for m = 1

E(t) ≤

(

E(0)
m−1

2 +
(m − 1)C

2
(t − 1)+

)

−
2

m−1

, t ≥ 0, for m > 1.
(13)

Remark 4.3. In [7], an argument to show the solution for problem (1) exists
globally and decays under some condition. Theorem 4.2 also shows that the
solution exists globally under some similar conditions, and the method used
here is simpler than that in [2].

Proof. First, by the decreasing of energy E(t). We have E(t) ≤ E(0) <

E0 =
(

1
2
− 1

p+1

)

λ0. We claim that

‖∇u(t)‖2
L2 < λ0, and ‖∇u(t)‖2

L2 + ‖ut‖
2
L2 ≤

2(p + 1)

p − 1
E(t) ≤

2(p + 1)

p − 1
E(0),

for all t ≥ 0.
By the definition of E(t) and Sobolev embedding, we can conclude that

E(t) ≥
1

2
‖∇u(t)‖2

L2 −
1

p + 1
‖u(t)‖p+1

Lp+1 ≥
1

2
‖∇u(t)‖2

L2 −
k

p+1
0

p + 1
‖∇u(t)‖p+1

L2 .

Now if we let f(ξ) = 1
2
ξ −

k
p+1
0

p+1
ξ

p+1
2 , then E(t) ≥ f(ξ) = 1

2
ξ −

k
p+1
0

p+1
ξ

p+1
2 , with

ξ = ‖∇u(t)‖2
L2 . It is easily to verify that the function f(ξ) have the follow-

ing properties:










f(ξ) is strictly increasing on [0, λ0)

f(ξ) takes its maximum value E0 ≡
(

1
2
− 1

p+1

)

λ0 at λ0

f(ξ) is strictly decreasing on (λ0, +∞).

(14)
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Since E0 > E(0) ≥ E(t) ≥ f(‖∇u(t)‖2
L2), for all t ≥ 0. By virtue of (14), there

is no time t∗, such that ‖∇u(t∗)‖2
L2 = λ0. By the continuity of ‖∇u(t)‖2

L2-norm,
we have

‖∇u(t)‖2
L2 < λ0, for all t ≥ 0. (15)

From (15) and Sobolev embedding, we have

1

p + 1
‖u(t)‖p+1

Lp+1 ≤
k

p+1
0

p + 1
[‖∇u(t)‖2

L2 ]
p−1
2 ≤

1

p + 1
‖∇u(t)‖2

L2 .

Moreover

E(t) ≥
1

2
‖ut‖

2
L2 +

(

1

2
−

1

p + 1

)

‖∇u(t)‖2
L2 ≥

p − 1

2(p + 1)

(

‖∇u(t)‖2
L2 + ‖ut‖

2
L2

)

.

By continuation argument, we get that the local solution constructed by The-
orem 2.1 exists globally.

Then we pay attention to large time behavior. By Sobolev embedding and
the initial condition, we have

‖u(·, t)‖p+1
Lp+1 ≤ k

p+1
0 ‖∇u(t)‖p+1

L2 < k
p+1
0 (λ0)

p−1
2 ‖∇u(t)‖2

L2 < θ‖∇u(t)‖2
L2 ,

for all t ≥ 0, where we define 0 ≤ θ < 1 as θ = k
p+1
0 (λ0)

p−1
2 . Therefore, if we

let I(t) = ‖∇u(t)‖2
L2 − ‖u(t)‖p+1

Lp+1 , then due to Sobolev embedding inequality,
it follows that I(t) > (1 − θ)‖∇u(t)‖2

L2 , for all t ≥ 0. Now we set

Fm+1(t) =

∫ t+1

t

‖ut(, s)‖
m+1
Lm+1ds +

∫ t+1

t

∫

Ω

utg(ut) dxds = E(t) − E(t + 1),

and

Gm+1(t) = Fm+1(t) −

∫ t+1

t

∫

Ω

utg(ut) dxds =

∫ t+1

t

‖ut(, s)‖
m+1
Lm+1ds < Fm+1(t).

Integrating I(t) on [t1, t2], we have

∫ t2

t1

I(s)ds =

∫ t2

t1

(

‖∇u(t)‖2
L2 − ‖u(t)‖p+1

Lp+1

)

ds

=

∫ t2

t1

(

2E(s) − ‖ut‖
2
L2 +

1

p + 1
‖u(t)‖p+1

Lp+1 − ‖u(t)‖p+1
Lp+1

)

ds

=

∫ t2

t1

2E(s)ds −

∫ t2

t1

‖ut‖
2
L2 −

p − 1

p + 1

∫ t2

t1

‖u(t)‖p+1
Lp+1

≤

∫ t2

t1

2E(s)ds + CG2(t) (C is a generic constant)

≤ C

[
∫ t2

t1

E(s)ds + F 2(t)

]

.
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Due to (7), the following inequalities hold

∫ t2

t1

E(s)ds =
1

2

∫ t2

t1

‖ut‖
2
L2ds +

1

2

∫ t2

t1

‖∇u‖2
L2ds −

1

p + 1

∫ t2

t1

‖u(t)‖p+1
Lp+1ds

=
1

2

∫ t2

t1

‖ut‖
2
L2ds +

1

2

∫ t2

t1

‖∇u‖2
L2ds +

1

p + 1

∫ t2

t1

‖∇u‖2
L2ds

−
1

p + 1

∫ t2

t1

‖∇u‖2
L2ds −

1

p + 1

∫ t2

t1

‖u(t)‖p+1
Lp+1ds

=
1

2

∫ t2

t1

‖ut‖
2
L2ds +

(

1

2
−

1

p + 1

)
∫ t2

t1

‖∇u‖2
L2ds +

1

p + 1

∫ t2

t1

I(s)ds

≤ CG2(t) +

(

1

p + 1
+

p − 1

2(p + 1)(1 − θ)

)
∫ t2

t1

I(s)ds

≤ CG2(t) + C

∫ t2

t1

I(s)ds

So
∫ t2

t1
E(s)ds ≤ CG2(t) < CF 2(t). On the other hand, from the nonincreasing

property of E(t), one has
∫ t2

t1
E(s)ds ≥ 1

2
E(t2). Therefore,

E(t) = E(t2) +

∫ t2

t

‖ut‖
m+1
Lm+1ds +

∫ t2

t

∫

Ω

utg(ut)ds

≤ E(t2) +

∫ t2

t

‖ut‖
m+1
Lm+1ds + C

∫ t2

t

‖ut‖
2
L2ds

≤ 2

∫ t2

t1

E(s)ds +

∫ t2

t

‖ut‖
m+1
Lm+1ds + C

∫ t2

t

‖ut‖
2
L2ds

≤ C
(

G2(t) + Gm+1(t) + G2(t)
)

≤ C
(

F 2(t) + Fm+1(t)
)

.

(16)

If m = 1, (16) gives

E(t) ≤ CF 2(t) = C (E(t) − E(t + 1)) , (17)

then the first inequality in (13) follows from (17) and Lemma 4.1.
If m > 1, since Fm+1(t) = E(t) − E(t + 1) ≤ E(0), inequality (16) gives

E(t) ≤ C
(

F 2(t) + Fm+1(t)
)

≤ C
(

1 + E(0)
m−1
m+1

)

F 2(t) ≤ CF 2(t),

which implies

E
m+1

2 (t) ≤ CFm+1(t) ≤ C (E(t) − E(t + 1)) . (18)

Then the second inequality in (13) following from (18) and Lemma 4.1. This
finishes the proof.
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