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Regularity Criteria in Terms of the Pressure

for the Navier-Stokes Equations

in the Critical Morrey-Campanato Space

Yong Zhou and Sadek Gala

Abstract. In this paper, we establish a Serrin-type regularity criterion in terms of
the pressure for Leray weak solutions to the Navier–Stokes equation in R

3. It is
proved that the solution is regular if the associate pressure satifies

p ∈ L
2

2−r

(

(0, T );Ṁ2, 3
r
(R3)

)

or ∇p ∈ L
2

3−r

(

(0, T );Ṁ2, 3
r
(R3)

)

for 0 < r < 1, where Ṁ2, 3
r

(

R
3
)

is the critical Morrey–Campanto space. Regularity

criteria for the 3D MHD equations are also given.
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1. Introduction

Consider the Navier–Stokes equations in R
3:











∂tu + u · ∇u − ∆u + ∇p = 0, (x, t) ∈ R
3 × (0, T )

div u = 0, (x, t) ∈ R
3 × (0, T )

u(x, 0) = u0(x), x ∈ R
3,

(1)

where u = u(x, t) ∈ R
3: the velocity field, and p = p(x, t) ∈ R: the scalar

pressure are unknowns. For simplicity, we assume that the external force has a
scalar potential and is included into the pressure gradient.
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It is well known that for u0 ∈ L2(R3) problem (1) possesses at least one
weak solution, see [10]. Its uniqueness is an open problem. Moreover, if u0 ∈
W 1,2(R3), then at least on a short time interval, u ∈ L2(0, T ∗; W 2,2(R3)) ∩
L∞(0, T ∗; W 1,2(R3)). The fundamental open question is whether T ∗ can be
arbitrarily large or whether there is finite time blow up, i.e., whether there is
T ∗ < ∞ such that lim supτ→T ∗ ‖∇u(τ)‖L2 = +∞. In the general situation,
to ensure the smoothness, we may consider certain minimal smoothness which
excludes the possibility of the blow up., i.e., which ensures u ∈ C∞((0,∞)×R

3).
The first such a criterion is usually referred as the Prodi-Serrin condition (see
[13,15] and for s = 3 [3]) saying that if the weak solution u additionally belongs
to Lt(0, T ; Ls(R3)), 2

t
+ 3

s
= 1, s ∈ [3,∞], then the solution is as regular

as the data allow and unique in the class of all weak solutions satisfying the
energy inequality. Further criteria, including several components of velocity
field or the gradient of velocity, pressure or other quantities can be found, e.g.,
in [1, 4, 12,17–19,21,25].

In Lp framework, a final Serrin-type regularity criterion in terms of the
pressure was obtained by Berselli and Galdi [2] (a much simpler proof was
given by the Zhou [21] recently). In terms of the gradient of pressure, Zhou
also established a final version Serrin-type regularity criterion in [21]. For
arbitrary dimensional case, we refer to [16, 22]. It is shown that if the pres-
sure p ∈ Lα ((0, T ) ; Lγ(R3)) with 2

α
+ 3

γ
< 2, 1 < α ≤ ∞, 3

2
< γ < ∞ or

∇p ∈ Lα ((0, T ); Lq(R3)) with 2
α

+ 3
q
≤ 3, then the corresponding weak solution

actually is strong. Very recently, Fan, Jiang and Ni [4] extended regularity cri-
teria in terms of the pressure to a multiplier space (see Definition 2.1) and a
homogeneous Morrey–Campanato space (see Definition 2.2).

The purpose of this work is to establish a Serrin-type regularity criterion
in terms of the pressure or gradient of the pressure in the the critical Morrey–
Campanato space by an equivalence between a multiplier space and a homoge-
neous Morrey–Campanato space.

We will prove

Theorem 1.1. Let u0 ∈ L2(R3)∩Lq (R3) for some q ≥ 4, and ∇·u0 = 0 in the

sense of distributions. Assume that u ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1) is a weak

solution of the Navier–Stokes equations (1) with an associated pressure p. If the

pressure p satisfies

p ∈ L
2

2−r

(

(0, T ),
.

M2, 3
r
(R3)

)

with r ∈ (0, 1),

then u(t, x) is a strong solution in (0, T ].

and the following regularity theorem in terms of the gradient of pressure:
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Theorem 1.2. Let u0 ∈ L2(R3)∩Lq (R3) for some q ≥ 4, and ∇·u0 = 0 in the

sense of distributions. Suppose that u(x, t) is a Leray-Hopf solution of (1). If

∇p ∈ L
2

3−r

(

(0, T ),
.

M2, 3
r
(R3)

)

for 0 < r < 1,

then u(t, x) is a regular solution in the sense that u ∈ C∞ ([0, T ] × R
3).

Remark 1.3. By a strong solution we mean a weak solution of the Navier–
Stokes equation such that u ∈ L∞ ((0, T ) ; H1) ∩ L2 ((0, T ) ; H2). It is well-
known that strong solutions are regular (we say classical) and unique in the
class of weak solutions.

2. Morrey-Campanato spaces

In this section, we will recall the definition and some properties of the space we
are going to use. This kind of spaces play an important role in studying the
regularity of solutions to partial differential equations (see [9] and references
therein).

First, we give the definition of Ẋr, which was used in [4, 27].

Definition 2.1. For 0 ≤ r < 3
2
, the space Ẋr is defined as the space of f(x) ∈

L2
loc(R

3) such that
‖f‖Ẋr

= sup
‖g‖

Ḣr≤1

‖fg‖L2 < ∞,

where we denote by Ḣr(R3) the completion of the space D(R3) with respect to

the norm ‖u‖Ḣr =
∥

∥ (−∆)
r
2 u

∥

∥

L2 .

Now we recall the definition of the Morrey–Campanato spaces:

Definition 2.2. For 1 < p ≤ q ≤ ∞, the Morrey–Campanato space
·

Mp,q is
defined by

Ṁp,q =
{

f ∈ L
p
loc(R

3) : ‖f‖Ṁp,q
= sup

x∈R3

sup
R>0

R
3

q
− 3

p

∥

∥f(y)1B(x,R)(y)
∥

∥

Lp(dy)
< ∞

}

.

One can find that Ṁp,q (R3) is a Banach space under the norm ‖·‖Ṁp,q
.

Furthermore, it is easy to check the following:

‖f(λ ·)‖Ṁp,q
=

1

λ
3

q

‖f(·)‖Ṁp,q
, λ > 0.

Hence, for (u, p) solves the Navier–Stokes equations, we have

‖uλ‖
L

2
1−r ((0,T );Ṁ

2, 3r
(R3))

= ‖u‖
L

2
1−r ((0,T );Ṁ

2, 3r
(R3))

,
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and

‖pλ‖
L

2
2−r (0,T );Ṁ

2, 3r
(R3))

= ‖p‖
L

2
2−r ((0,T );Ṁ

2, 3r
(R3))

,

with uλ (x, t) = λu (λx, λ2t) and pλ (x, t) = λ2p (λx, λ2t) for λ > 0. Here, the
point is that if (u, p) solves the MHD model, then so does (uλ, pλ) for all λ > 0.
This is so called scaling dimension zero property.

Then, we have the following comparison between the Lorentz spaces and
the Morrey–Campanato spaces: for p ≥ 2,

L
3

r (R3) ⊂ L
3

r
,∞(R3) ⊂

.

Mp, 3
r
(R3).

The relation L
3

r
,∞(R3) ⊂

.

Mp, 3
r
(R3) is shown in the following:

‖f‖ .

M
p, 3r

≤ sup
E

|E|
r
3
− 1

2

(
∫

E

|f(y)|p dy

)
1

p (

f ∈ L
3

r
,∞(R3)

)

=

(

sup
E

|E|
pr

3
−1

∫

E

|f(y)|p dy

)
1

p

∼=

(

sup
R>0

R
∣

∣

{

x ∈ R
3 : |f(y)|p > R

} ∣

∣

pr

3

)
1

p

= sup
R>0

R
∣

∣

{

x ∈ R
p : |f(y)| > R

}∣

∣

r
3

∼= ‖f‖
L

3
r ,∞ .

The following lemma [9] gives an equivalence between Ṁ2, 3
r

and a multiplier
space.

Lemma 2.3. For 0 ≤ r < 3
2
, the space

.

Zr is defined as the space of f(x) ∈
L2

loc(R
3) such that

‖f‖ .

Zr
= sup

‖g‖ .
B

r
2,1

≤1

‖fg‖L2 < ∞.

Then f ∈ Ṁ2, 3
r

if and only if f ∈
.

Zr with equivalence of norms.

Additionally, for 2 < p ≤ 3
r

and 0 ≤ r < 3
2
, we have the following inclusion

relations ( [9]):

.

Mp, 3
r
(R3) ⊂

.

Xr(R
3) ⊂

.

M2, 3
r
(R3) =

.

Zr(R
3).

The relation
.

Xr(R
3)⊂

.

M2, 3
r
(R3) is shown as follows. Let f ∈

.

Xr(R
3), 0<R≤ 1,
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x0 ∈ R
3 and φ ∈ C∞

0 (R3), φ ≡ 1 on B(x0

R
, 1). We have

Rr− d
2

(
∫

|x−x0|≤R

|f(x)|2 dx

)
1

2

= Rr

(
∫

|y−x0
R |≤1

|f(Ry)|2 dy

)
1

2

≤ Rr

(
∫

y∈R3

|f(Ry)φ(y)|2 dy

)
1

2

≤ Rr ‖f(R.)‖ .

Xr
‖φ‖Hr

≤ ‖f‖ .

Xr
‖φ‖Hr

≤ C ‖f‖ .

Xr
.

Another easy result is a direct application of Proposition 5.1 in [28]:

Lemma 2.4. For r ∈
(

0, 3
2

)

, the following embeddings hold:

1. Ḃ
3

p
−r

p,∞ (R3) ⊂ Ṁ2, 3
r
(R3), provided p < 3

r
;

2. Ḃ0
3

r
,2
(R3) ⊂ Ṁ2, 3

r
(R3) .

Remark 2.5. Since L
3

r (R3)⊂
.

Xr(R
3) ⊂

.

M2, 3
r
(R3), Theorem 1.1 and 1.2 are

improvements of Zhou’s result [21] and those in [4, (1.9), (1.11) and (1.13) in
Theorem 1.5]. Thanks to Lemma 2.4, we also extend regularity in homogeneous
Besov spaces.

Remark 2.6. One can find that the space
.

M2, 3
r

is a quite large one. Moreover,

by using space
.

M2, 3
r
, one could find or exclude some type of singularity. We

refer to [27] for detailed discussion.

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we recall the well-known pressure-velocity rela-
tion in R

3, given by

p =
3

∑

i,j=1

RiRj (uiuj) ,

where (Ri)
3
i=1 are the Riesz transforms in R

3. Then the Calderón-Zygmund
inequality implies

‖p‖Lα ≤ ‖u‖2
L2α , 1 < α < ∞. (2)

We also recall the following result due to Giga [5] (see also [8]) that will
be used in the proof of Theorem 1.1 and 1.2. Here, BC denotes the class of
bounded and continuous functions.
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Lemma 3.1.

(i) Suppose that u0 ∈ Lα (R3), for α ≥ 3 and ∇.u0 = 0. Then, there exists

T0 > 0 and a unique solution of (1) on [0, T0) such that

{

u ∈ BC
(

[0, T0); L
α(R3)

)

∩ Lr
(

[0, T0); L
s(R3)

)

,

t
1

r u ∈ BC
(

[0, T0); L
s(R3)

)

,
(3)

where 2
r

+ 3
s

= 3
q
, s > 3.

(ii) Moreover, let (0, T ∗) be the maximal interval such that u solves (1) in

C ((0, T ∗); Lα(R3)), α > 3. Then for any t ∈ (0, T ∗)

‖u(t)‖Lα ≥
C

(T ∗ − t)
α−3

2α

,

with the constant C independent of T ∗ and α.

(iii) Let u be a strong solution satisfying

u ∈ Lα
(

(0, T ); Lβ(R3)
)

for
2

α
+

3

β
= 1 and β > 3.

Then u belongs to C∞
(

R
3 × (0, T )

)

.

The proof of Theorem 1.1 consists in first obtaining a continuation principle
for strong solutions and then in applying it to weak solutions. By using the
results of the previous Lemma 3.1, the weak solution u is smooth in some time
interval (0, T ∗), T ∗ ≤ T . In particular, (u, p) ∈ C∞ (R3 × (0, T ∗)) and u is in
the class (3). Thus, for any T > 0 we suppose that u is a smooth solution to
(1) on R

3× (0, T ) and will establish a priori bounds that will allow us to extend
u for all time. Hence, it suffices to establish the following a priori estimate

sup
0≤t≤T

‖u(t)‖4
L4 ≤ ‖a‖4

L4 exp

(

C

∫ t

0

‖p‖
2

2−r

Ṁ
2, 3r

ds

)

where C is independent of T .

Multiplying both sides of (1) by 4u |u|2 and integrating over (0, t)×R
3, after

suitable integration by parts, we obtain (see e.g. [21])

‖u(·, t)‖4
L4 + 4

∫ t

0

‖|∇u| |u|‖2
L2 ds + 2

∫ t

0

∥

∥∇|u|2
∥

∥

2

L2 ds

≤ 4

∫ t

0

∫

R3

|p| |u|
∣

∣∇|u|2
∣

∣ dx ds + ‖u0‖
4
L4 ,
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for t ∈ (0, T ). Let w = |u|2. Then Cauchy’s inequality implies that

‖u(·, t)‖4
L4 + 4 ‖|∇u| |u|‖2

L2,2 + 2 ‖∇w‖2
L2,2

≤ 4

∫ t

0

∫

Rd

|p| |w|
1

2 |∇w| dx ds + ‖u0‖
4
L4

≤ 2

[
∫ t

0

∫

Rd

|∇w|2 dx ds +

∫ t

0

∫

Rd

|p|2 |w| dxds

]

+ ‖u0‖
4
L4 .

(4)

Let us estimate the integral I =
∫ t

0

∫

Rd |p|
2 |w| dxds on the right hand side of (4).

By Hölder’s and Young’s inequalities, we have

I ≤

∫ t

0

‖pw‖L2 ‖p‖L2 ds

≤

∫ t

0

(

‖p‖Ṁ
2, 3r

‖w‖Ḃr
2,1

)

∥

∥|u|2
∥

∥

L2 ds

≤ C

∫ t

0

‖p‖Ṁ
2, 3r

‖w‖1−r

L2 ‖∇w‖r

L2 ‖w‖L2 ds

≤ C

∫ t

0

‖p‖Ṁ
2, 3r

‖w‖2−r

L2 ‖∇w‖r

L2 ds

≤ C

∫ t

0

(

‖p‖Ṁ
2, 3r

‖w‖2−r

L2

)

‖∇w‖r

L2 ds

≤
1

2

∫ t

0

‖∇w‖2
L2 ds + C

∫ t

0

‖p‖
2

2−r

Ṁ
2, 3r

‖w‖2
L2 ds,

where we used the following inequality proved in [11]:

‖w‖Ḃr
2,1

≤ C ‖w‖1−r

L2 ‖∇w‖r

L2

and (2). Since ‖|∇u| |u|‖2
L2 = 1

4

∥

∥∇|u|2
∥

∥

2

L2 = 1
4
‖∇w‖2

L2 , then by (4) and the
above equality, we derive

‖u(·, t)‖4
L4 ≤ C

∫ t

0

‖p‖
2

2−r

Ṁ
2, 3r

‖w‖2
L2 ds + ‖u0‖

4
L4 . (5)

Due to Gronwall’ s inequality, it follows from (5) that

sup
0≤t≤T

‖u(·, t)‖4
L4 ≤ ‖a‖4

L4 exp

(

C

∫ T

0

‖p‖
2

2−r

Ṁ
2, 3r

ds

)

.

This completes the proof of Theorem 1.1.
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4. Proof of Theorem 1.2

Taking ∇div on both sides of the first equation in (1) for smooth (u, p), one can
obtain

−∆ (∇p) =
3

∑

i,j=1

∂i∂j (∇(uiuj)) .

Therefore the Calderon-Zygmund inequality

‖∇p‖Lq ≤ C ‖|u| |∇u|‖Lq (6)

holds for any 1 < q < ∞. This relation (6) between ∇p and derivatives of the
velocity was derived firstly in [21] and will play a very important role in the
following proof.

Multiplying both sides of the first equation of (1) by 4u |u|2, suitable inte-
gration by parts yields

d

dt
‖u(·, t)‖4

L4 + 4

∫

R3

|∇u|2 |u|2 dx + 2

∫

R3

∣

∣∇|u|2
∣

∣

2
dx ≤ 2

∫

R3

|∇p| |u|3 dx (7)

for t ∈ (0, T ). Let us estimate the integral I =
∫

R3 |∇p| |u|3 dx on the right
hand side of (7):

I ≤ ‖|∇p| · |u|‖L2

∥

∥|u|2
∥

∥

L2

= ‖|∇p| · |u|‖L2 ‖u‖
2
L4

≤ ‖∇p‖
1

2

L2

∥

∥|∇p| · |u|2
∥

∥

1

2

L2 ‖u‖
2
L4

≤ C ‖|u| · |∇u|‖
1

2

L2 ‖∇p‖
1

2
.

M
2, 3r

∥

∥|u|2
∥

∥

1

2
.

B
r

2,1

‖u‖2
L4

≤ C ‖|u| · ∇|u|‖
1

2

L2 ‖∇p‖
1

2
.

M
2, 3r

∥

∥|u|2
∥

∥

1−r
2

L2

∥

∥∇|u|2
∥

∥

r
2

L2 ‖u‖
2
L4

≤ C ‖|u| · |∇u|‖
1+r
2

L2 ‖∇p‖
1

2
.

M
2, 3r

‖u‖3−r

L4

≤ C
(

‖|u| · |∇u|‖2
L2

)

1+r
4

(

‖∇p‖
2

3−r
.

M
2, 3r

‖u‖4
L4

)
3−r
4

≤ ‖|u| · |∇u|‖2
L2 + C ‖∇p‖

2

3−r
.

M
2, 3r

‖u‖4
L4 ,

where we used (6) for q = 2 and ‖u‖Ḃr
2,1

≤ C ‖u‖1−r

L2 ‖∇u‖r

L2 . Then by (7) and

the above inequality, we derive

d

dt
‖u(·, t)‖4

L4 + 2

∫

R3

|∇u|2 |u|2 dx + 2

∫

R3

∣

∣∇|u|2
∣

∣

2
dx ≤ C ‖∇p‖

2

3−r

Ṁ
2, 3r

‖u‖4
L4 . (8)
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Due to Gronwall’ s inequality, it follows from (8) that

sup
0≤t≤T

‖u(t)‖4
L4 ≤ ‖u0‖

4
L4 exp

(

C

∫ T

0

‖∇p‖
2

3−r

Ṁ
2, 3r

ds

)

.

This completes the proof of Theorem 1.2.

5. Regularity criteria for the MHD equations

In this paper, we will also consider the following 3D incompressible viscous
MHD equations:























∂tu − µ∆u + u · ∇u + ∇p +
1

2
∇|b|2 − b · ∇b = 0

∂tb − ν∆b + u · ∇b − b · ∇u = 0

∇ · u = ∇ · b = 0

u (x, 0) = u0 (x) , b (x, 0) = b0 (x) ,

(9)

where u = u(x, t) ∈ R
3 is the velocity field, b ∈ R

3 is the magnetic field,
p = p(x, t) is the scalar pressure, µ > 0 is the kinematic viscosity and ν > 0
is the resistivity, while u0 and b0 are given initial velocity and initial magnetic
field with ∇ · u0 = ∇ · b0 = 0 in the sense of distribution. For simplicity, we
assume that the external force has a scalar potential and is included into the
pressure gradient. In what follows, we assume µ = ν = 1 for convenience.

It is well-known [14] that the problem (9) is local well-posed for any given
initial datum u0, b0 ∈ Hs(R3), s ≥ 3. But whether this unique local solu-
tion can exist globally is an outstanding challenge problem. Some fundamental
Serrin-type regularity criteria in term of the velocity only were shown in [7,20]
independently. In [24] direction of the vorticity field ω = ∇× u was discussed
(see also [7]).

In particular, in [23] regularity is guaranteed under Serrin-type conditions
both for the pressure and the magnetic filed. It is reasonable in the following
sense: p in the first equation of (9) can guarantee the regularity of u, but the
smoothness of b can be kept under some condition of itself due to the second
equation. Recently, Zhou and Fan [26] did a breakthrough and established
regularity criteria in Lp space only in terms of the pressure.

Here, we can extend regularity criteria for the MHD equations to the critical
Morrey–Campanato space.

Theorem 5.1. Let T > 0 and (u0, b0) ∈ Hs (R3) with s ≥ 3 and ∇ · u0 =
∇ · b0 = 0. If the pressure p associated with the corresponding smooth solution

(u, b) satisfies one of the following conditions:

p ∈ L
2

2−r

(

0, T ;
.

M2, 3
r
(R3)

)

or ∇p ∈ L
2

3−r

(

0, T ;
.

M2, 3
r
(R3)

)

with 0 < r < 1, then (u, b) can be extended smoothly beyond t = T .
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There are two main ingredients in the proof. First, we rewrite (9) as (firstly
given in [6])











∂tw
+ + w− · ∇w+ = ∆w+ −∇p

∂tw
− + w+ · ∇w− = ∆w− −∇p

∇ · w+ = ∇ · w− = 0,

(10)

with w± := u±b. It is sufficient to establish regularity for w± := u±b instead of
for u and b. Then, we can combine the arguments in [26] and that in Section 4.
For concision, we omit the detailed proof.
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[3] Escauriaza, L., Seregin, G. and Šverák, V., Backward uniqueness for parabolic
equations. Arch. Ration. Mech. Anal. 169 (2003)(2), 147 – 157.

[4] Fan J., Jiang, S. and Ni, G., On regularity criteria for the n-dimensional
Navier–Stokes equations in terms of the pressure. J. Diff. Equ. 244 (2008)(11),
2963 – 2979.

[5] Giga, Y., Solutions for semilinear parabolic equations in Lp and regularity of
weak solutions of the Navier–Stokes system. J. Diff. Equ. 62 (1986), 186 – 212.

[6] He, C. and Wang, Y., Remark on the regularity for weak solutions to the
magnetohydrodynamic equations. Math. Methods Appl. Sci. 31 (2008)(14),
1667 – 1684.

[7] He, C. and Xin, Z., On the regularity of weak solutions to the magnetohydro-
dynamic equations. J. Diff. Equ. 213 (2005), 235 – 254.

[8] Kato, T., Strong Lp-solutions of the Navier–Stokes equation in R
m, with ap-

plications to weak solutions. Math. Z. 187 (1984), 471 – 480.
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