Commutativity up to a Factor: More Results and the Unbounded Case

Mohammed Hichem Mortad

Abstract

We give more results on the question of commutativity up to a factor for bounded operators and which has been recently of interest to a number of mathematicians. We also give some generalizations to unbounded operators.

Keywords. Hilbert space, commutativity up to a factor, Fuglede-Putnam theorem, normal and self-adjoint operators, bounded and unbounded operators
Mathematics Subject Classification (2000). Primary 47A05, secondary 47A12, 47B65.

1. Introduction

The problem of commutativity up to a factor has been of interest recently to many authors thanks to its direct applications to quantum mechanics. Broadly speaking, in some situations two operators A and B do not commute, i.e., $B A \neq A B$ but instead, they satisfy a relation of the form $B A=\lambda A B$ for some complex number λ different from zero.

Brooke, Busch and Pearson proved in [1] the following theorem:
Theorem 1.1. Let A, B be bounded operators such that $A B \neq 0$ and $A B=$ $\lambda B A, \lambda \in \mathbb{C}^{*}$. Then:

1. if A or B is self-adjoint, then $\lambda \in \mathbb{R}$;
2. if both A and B are self-adjoint, then $\lambda \in\{-1,1\}$;
3. if A and B are self-adjoint and one of them is positive, then $\lambda=1$.

Yang and $\mathrm{Du}[13]$ improved some results in the previous theorem and using the Fuglede-Putnam theorem they arrived at

Theorem 1.2. Let A, B be bounded operators such that $A B=\lambda B A \neq 0$, $\lambda \in \mathbb{C}^{*}$. Then:

[^0]1. if A or B is self-adjoint, then $\lambda \in \mathbb{R}$;
2. if either A or B is self-adjoint and the other is normal, then $\lambda \in\{-1,1\}$;
3. if A and B are both normal, then $|\lambda|=1$.

The natural generalization to Banach algebras was carried out by Schmoeger in [12]. The other natural generalization, i.e., to unbounded operators is, in part, the purpose of this paper. We also note that in the bounded case if A and B are such that $B A=\lambda A B$, then setting $B=I$ (the identity operator) we see that $\lambda=1$ with no extra assumption on A. This observation means that there is hope of doing more and we in effect can do more, i.e., we can still obtain the same conclusions with different and/or weaker hypotheses. The main tools needed to achieve this aim are the following:

Lemma 1.3 (Embry [3]). If H and K are commuting normal operators and $A H=K A$, where 0 is not in $W(A)$, then $H=K$.

Theorem 1.4 (Fuglede-Putnam [4, 8]). If A, N and M are bounded operators such that M and N are normal, then

$$
A N=M A \Longrightarrow A N^{*}=M^{*} A
$$

and if N and M are unbounded, then " $=$ " is replaced by " \subset " in the last displayed equation.

Theorem 1.5 (Mortad [6]). Assume that N, H and K are unbounded operators having the property: $N=H K=K H$ are normal. Also assume that $D(H) \subset$ $D(K)$. Assume further that A is a bounded operator for which $0 \notin W(A)$ and such that $A H \subset K A$. Then $H=K$.

The main results in this present paper are as follows: We improve some results obtained in Theorems $1.1 \& 1.2$. We then generalize them to unbounded operators.

Throughout this paper the numerical range of an operator A defined on a Hilbert space \mathcal{H}, i.e., the set $\{\langle A f, f\rangle: f \in \mathcal{H}\}$, will be denoted by $W(A)$.

Finally, we assume the reader is familiar with notions and results about bounded and unbounded linear operators in a Hilbert space. Some general references are $[2,5,9]$.

2. Improving the bounded case

We begin with the following improvement of some parts of Theorem 1.1.
Proposition 2.1. Assume that A and B are two bounded operators such that $A B \neq 0$ and $A B=\lambda B A, \lambda \in \mathbb{C}^{*}$. If A or B is normal and the other does not have 0 in its numerical range, then $\lambda=1$.

Proof. The proof is based on Lemma 1.3. Since B is normal, λB is normal and it obviously commutes with B. As $0 \notin W(A)$, then Lemma 1.3 gives us $B=\lambda B$ and hence $\lambda=1$. The proof is very similar if one assumes that A is normal and that $0 \notin W(B)$.

We have the following corollary which is yet another improvement of the third assertion of Theorem 1.1.

Corollary 2.2. Let A and B be two bounded operators such that $A B \neq 0$ and $A B=\lambda B A, \lambda \in \mathbb{C}^{*}$. If A or B is normal and the other is strictly positive, then $\lambda=1$.

Proof. Assume that A is strictly positive, i.e., $A>0$, and that B is normal. Hence $0 \notin W(A)$. Since B is normal, the foregoing proposition then applies.

Remark 2.3. The previous corollary allows us to give a new proof of (3) of Theorem 1.2 which goes as follows (it also uses the Fuglede-Putnam theorem): Assume that A and B are normal, then λB is normal. Whence:

$$
A B=\lambda B A \Rightarrow A B=(\lambda B) A \Rightarrow A B^{*}=\bar{\lambda} B^{*} A \Rightarrow A B^{*} B=\bar{\lambda} B^{*} A B=|\lambda|^{2} B^{*} B A .
$$

But $B^{*} B$ is self-adjoint and positive and A is normal, hence the previous corollary applies and we obtain $|\lambda|^{2}=1$ or $|\lambda|=1$.

Proposition 2.4. Assume that A, B and C are bounded operators on a Hilbert space such that $A B=\lambda C A \neq 0$. If B and C are self-adjoint, then $\lambda \in \mathbb{R}$.

Proof. Since B and C are self-adjoint, B and λC are normal and applying the Fuglede-Putnam theorem gives us $A B=\bar{\lambda} C A$. This, combined with $A B=$ $\lambda C A$ yields $\lambda=\bar{\lambda}$, i.e., $\lambda \in \mathbb{R}$.

Remark 2.5. The result does not hold in general if only A is assumed to be self-adjoint. First, the method of proof uses the Fuglede-Putnam theorem and we would need in this case a four-operator version of the this well-known theorem which does not exist (cf. [7]). We may also illustrate this more by the following example:

Example 2.6. Take $\lambda \in \mathbb{C}^{*}$ and consider

$$
A=I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
0 & 0 \\
\lambda & 0
\end{array}\right) \text { and } C=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Then A is self-adjoint and $A B=\lambda C A(\neq 0)$ but λ is arbitrary.

3. The unbounded case

Now we pass to the case where one of the operators is unbounded. We have
Theorem 3.1. Let A be an unbounded operator and let B be a bounded one. Assume that $B A \subset \lambda A B \neq 0$ where $\lambda \in \mathbb{C}$. Then:

1. λ is real if A is self-adjoint;
2. $\lambda=1$ if $0 \notin W(B)$ (the numerical range of B) and if A is normal; hence $\lambda=1$ if B is strictly positive and A is normal;
3. $\lambda \in\{-1,1\}$ if A is normal and B is self-adjoint.

Proof. 1. Since $B A \subset \lambda A B$ and since A is self-adjoint (and hence A and λA are normal), the Fuglede-Putnam theorem yields $B A \subset \bar{\lambda} A B$. Now for $f \in D(A)=D(B A) \subset D(\lambda A B)=D(\bar{\lambda} A B)$, one has

$$
\lambda A B f=\bar{\lambda} A B f
$$

Hence λ is real as $A B \neq 0$.
2. Let us prove the first part of the assertion. Since A is normal, so is λA. Besides $\lambda A A=A \lambda A=\lambda A^{2}$. Since $0 \notin W(B)$, Theorem 1.5 yields $\lambda=1$.

Now we prove the second assertion. We note that B cannot have 0 in its numerical range as B is strictly positive. Since A is self-adjoint, λA is normal and hence Theorem 1.5 gives $A=\lambda A$ which, in its turn, gives $\lambda=1$.
3. One has

$$
B A \subset \lambda A B \Longrightarrow B^{2} A \subset \lambda B A B \subset \lambda^{2} A B^{2}
$$

Since B is self-adjoint, B^{2} is positive and by 2) of this theorem we obtain that $\lambda^{2}=1$. Thus $\lambda=1$ or $\lambda=-1$.

Remark 3.2. The question of whether the result in 3) remains valid for normal B and self-adjoint A is open. Another natural question is whether one can prove that λ lies on the unit circle if A and B are both normal.

Remark 3.3. The relation $A B=\lambda B A, \lambda \notin \mathbb{R}$, has no bounded self-adjoint operators A and B verifying $A B \neq 0$. However, the relation $A B=\lambda B A$, with $|\lambda|=1$, has representations by unbounded self-adjoint operators A and B (see $[10,11]$). Such unbounded operators are the "natural" representations of this relation.

Acknowledgement

The author thanks the referee for his/her comments and suggestions, for the last remark in this paper and for drawing to my attention the references $[10,11]$.

References

[1] Brooke, J. A., Busch, P. and Pearson, D. B., Commutativity up to a factor of bounded operators in complex Hilbert space. R. Soc. Lond. Proc. Ser. A: Math. Phys. Eng. Sci. 458 (2002)(2017), 109 - 118.
[2] Conway, J. B., A Course in Functional Analysis (2nd ed.). New York: Springer 1990.
[3] Embry, M. R., Similarities involving normal operators on Hilbert space. Pacific J. Math. 35 (1970), $331-336$.
[4] Fuglede, B., A Commutativity theorem for normal operators. Proc. Nat. Acad. Sci. U.S.A. 36 (1950), $35-40$.
[5] Gohberg, I., Goldberg, S. and Kaashoek, M. A., Basic Classes of Linear Operators. Basel: Birkhäuser 2003.
[6] Mortad, M. H., Similarities involving unbounded normal operators. Accepted in Tsukuba J. Math.
[7] Mortad, M. H., Yet more versions of the Fuglede-Putnam theorem. Glasg. Math. J. 51 (2009), 473 - 480.
[8] Putnam, C. R., On normal operators in Hilbert space. Amer. J. Math. 73 (1951), 357 - 362.
[9] Rudin, W., Functional Analysis (2nd ed.). New York: McGraw-Hill 1991.
[10] Schmüdgen, K., Integrable operator representations of $\mathbb{R}_{q}^{2}, X_{q, \gamma}$ and $S L_{q}(2, \mathbb{R})$. Commun. Math. Phys. 159 (1994), $217-237$.
[11] Schmüdgen, K., Operator representations of $\mathcal{U}_{q}\left(\mathrm{sl}_{2}(\mathbb{R})\right)$. Lett. Math. Phys. 37 (1996)(2), 211 - 222.
[12] Schmoeger, C., Commutativity up to a factor in Banach Algebras. Demonstratio Math. 38 (2005)(4), 895 - 900.
[13] Yang, J. and Hong-Ke Du, A note on commutativity up to a factor of bounded operators. Proc. Amer. Math. Soc. 132 (2004), $1713-1720$.

Received January 29, 2009; revised December 23, 2009

[^0]: M. H. Mortad: Département de Mathématiques, Université d'Oran (Es-senia), B.P. 1524, El Menouar, Oran 31000, Algeria; mhmortad@gmail.com, mortad@univ-oran.dz.

