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Remarks on C1,γ-Regularity of Weak Solutions

to Elliptic Systems with BMO Gradients
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Abstract. The interior C1,γ-regularity for a weak solution with BMO-gradient of a
nonlinear nonautonomous second order elliptic systems is investigated.
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1. Introduction

In this paper we give conditions guaranteeing that the BMO first derivatives of
weak solutions to a nonlinear elliptic system

−Dαa
α
i (x,Du) = −Dαf

α
i (x) on Ω ⊂ R

n, i = 1, . . . , N (1)

belong to C0,γ
loc (Ω,RnN).1

The system (1) has been extensively studied. S. Campanato in [2,3] proved
that (under suitable assumptions) Du ∈ L2,λ

loc (Ω,R
nN) with λ < n, and u ∈

C
0,γ
loc (Ω,RN) for some γ < 1 if n = 3, 4. If Ω has a smooth boundary and

aα
i are differentiable and have controllable growth, then there is a positive ǫ

such that u ∈ W
2,2+ǫ
loc (Ω,RnN) which implies that Du is Hölder continuous on

Ω for n = 2 (see [8, 12, 13]). For this reason we will concentrate on the case
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1Throughout the whole text we use the summation convention over repeated indices.
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n > 2. From a series of counterexamples starting from the famous De Giorgi
work (see [7]) it is well known that Du need not be continuous or even bounded
(see [9, 11, 14, 17, 18]) for n > 2. Higher smoothness of coefficients does not
improve the smoothness of a solution, as there are examples (see [15]) where
the coefficients are real analytic while Du is bounded and discontinuous. On
the other hand, it follows immediately from so called direct proof of partial

regularity (see [6,8]) that if modulus of continuity of
∂aα

i

∂p
j
β

is small enough, then

Du is Hölder continuous. For this reason we concentrate on conditions that do
not require smallness of the L∞ norm of the modulus of continuity and they
imply that solutions with BMO gradients are C1,γ

loc (Ω,RN). The condition that
Du is in BMO cannot be verified in general (see [18]). On the other hand, for
some classes of elliptic systems this assertion is proved in [4–6]. Our result has
a local character and the work on the global variant is in progress.

By a weak solution to (1) we understand u ∈ W 1,2(Ω,RN) such that
∫

Ω

aα
i (x,Du(x))Dαϕ

i(x) dx =

∫

Ω

fα
i (x)Dαϕ

i(x) dx, ∀ϕ ∈W
1,2
0 (Ω,RN).

Here Ω ⊂ R
n is an open set and, as we are interested in the interior regularity,

we do not assume that u solves a boundary value problem nor any smoothness
of ∂Ω.

On the coefficients we suppose

(i) (Smoothness) aα
i (x, p) are differentiable functions in x and p with contin-

uous derivatives. Without loss of generality we suppose that aα
i (x, 0) = 0.

(ii) (Growth) For all (x, p) ∈ Ω × R
nN denote A

αβ
ij (x, p) =

∂aα
i

∂p
j
β

(x, p) and

suppose

|aα
i (x, p)| ,

∣

∣

∣

∣

∂aα
i

∂xs

(x, p)

∣

∣

∣

∣

≤M(1 + |p|), and
∣

∣

∣
A

αβ
ij (x, p)

∣

∣

∣
≤M,

where M > 0.

(iii) (Ellipticity) There exists ν > 0 such that for every x ∈ Ω and p, ξ ∈ R
nN

ν|ξ|2 ≤ A
αβ
ij (x, p)ξi

αξ
j
β .

(iv) (Oscillation of coefficients) There is a real function ω absolutely continuous
on [0,∞), which is bounded, nondecreasing, ω(0) = 0 and such that for
all x ∈ Ω and p, q ∈ R

nN

∣

∣

∣
A

αβ
ij (x, p) − A

αβ
ij (x, q)

∣

∣

∣
≤ ω (|p− q|) .

We set ω∞ = limt→∞ ω(t) ≤ 2M .

(v) fα
i ∈W 1,2(Ω),

∂fα
i

∂xβ
∈ L2,δ−2(Ω) for δ = n+ 2γ, γ ∈ (0, 1), α, β = 1, . . . , n,

i = 1, . . . , N .
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It is well known (see [8, p. 169]) that for uniformly continuous Aαβ
ij there

exists a real function ω satisfying (iv) and, viceversa, (iv) implies uniform con-
tinuity of Aαβ

ij .

In what follows we will understand by pointwise derivative ω′ of ω the right
derivative which is finite on (0,∞). For p ∈ (1,∞), 1

p
+ 1

p′
= 1 denote

Jp =

∫

∞

0

d
dt

(ω2p′)(t)

t
dt, Sp = sup

t∈(0,∞)

d

dt
(ω2p′)(t) and Pp = min{Jp, Sp}.

Now we formulate the result.

Theorem 1.1. Let u be a weak solution to (1) such that Du ∈ BMO(Ω,RnN)
and coefficients aα

i satisfy the hypotheses (i), (ii), (iii), (iv) with the constants

M , ν, a modulus of continuity ω and a right hand side f satisfying (v). Assume

that there is a p ∈
(

1, n
n−2

]

such that Pp <∞. Then the inequality

(

P 2
p ‖Du‖BMO(Ω,RnN )

)
1

2p′ ≤ ν2C (2)

implies that Du ∈ C
0,γ
loc (Ω,RnN).

Remark. Here

C =
κ

1

2p′

n

12c⋆(λ, n)C
(

p, n, M
ν

)

(8L)
n+2

n+2−µ

,

µ ∈ (n + 2γ, n + 2), L is given in Lemma 2.4, C(p, n, M
ν

) is given in (10) and
c⋆(λ, n) is the embedding constant between BMO and L2,λ spaces.

2. Preliminaries and notations

Let n,N ∈ N, n ≥ 3. We will consider an open set Ω ⊂ R
n with points

x = (x1, . . . , xn), n ≥ 3. For a vector-valued function u : Ω → R
N , u(x) =

(

u1(x), . . . , uN(x)
)

, N ≥ 1, put Du = (D1u, . . . , Dnu), Dα = ∂
∂xα

. If x ∈ R
n

and r is a positive real number, we set B(x, r) = {y ∈ R
n : |y − x| < r}.

Denote by ux,r = (κn r
n)−1

∫

B(x,r)
u(y) dy the mean value of the function u ∈

L1(B(x, r),RN) over the set B(x, r) (κn being the volume of unit ball in R
n).

Moreover, we set φ(x, r) =
∫

B(x,r)
|Du(y) − (Du)x,r|

2 dy.

Beside the usually used space C∞

0 (Ω,RN), the Hölder space C0,α(Ω,RN) and
Sobolev spaces W k,p(Ω,RN), W k,p

0 (Ω,RN) we use Morrey spaces Lq,λ(Ω,RN),
Campanato spaces Lq,λ(Ω,RN) and the space of functions with bounded mean
oscillations BMO(Ω,RN)(see, e.g., [10]). By the function space Xloc(Ω,R

N)
we understand the space of all functions which belong to X(Ω̃,RN) for any
bounded subdomain Ω̃ with smooth boundary which is compactly embedded
in Ω.

For definitions and more details see [1, 8, 10,13]. In particular, we will use:
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Proposition 2.1. For a bounded domain Ω ⊂ R
n with a Lipschitz boundary we

have the following

(a) For q ∈ (1,∞), 0 < λ < µ < ∞ we have Lq,µ(Ω,RN) ⊂ Lq,λ(Ω,RN) and

Lq,µ(Ω,RN) ⊂ Lq,λ(Ω,RN);

(b) Lq,λ(Ω,RN) is isomorphic to C
0, λ−n

q (Ω,RN), for n < λ ≤ n+ q;

(c) Lq,n(Ω,RN) is isomorphic to L∞(Ω,RN), Lq,n(Ω,RN) is isomorphic to

BMO(Ω,RN);

(d) Lq,λ(Ω,RN) is isomorphic to Lq,λ(Ω,RN), for 0 < λ < n.

By means of Nirenberg’s difference quotients method we obtain

Lemma 2.2. Let u be a weak solution to (1) and coefficients aα
i satisfy the

hypotheses (i), (ii), (iii), (iv) with the constants M , ν and a right hand side

f ∈ W 1,2(Ω,RnN). Then u ∈ W
2,2
loc (Ω,RN), and for any x ∈ Ω and R ∈

(0, 1
2
dist(x, ∂Ω)) it holds

∫

B(x,R)

|D2u|2 dx ≤ C

(

M

ν

) (

1

R2

∫

B(x,2R)

|Du− (Du)x,2R|
2
dx

+Rn +

∫

B(x,2R)

|Du|2 dx+

∫

B(x,2R)

|Df |2 dx

)

.

(3)

In what follows we will use an algebraic lemma due to S. Campanato. We
start with recalling it.

Lemma 2.3 (see [8], Chapter III., Lemma 2.1). Let α, d be positive numbers,

A > 0, β ∈ [0, α). Then there exist ǫ0, C positive so that for any nonnegative,

nondecreasing function φ defined on [0, d] and satisfying the inequality

φ(σ) ≤
(

A
( σ

R

)α

+K
)

φ(R) +BRβ, ∀σ,R : 0 < σ < R ≤ d, (4)

with K ∈ (0, ǫ0] and B ∈ [0,∞) it holds

φ(σ) ≤ Cσβ
(

d−βφ(d) +B
)

, ∀ σ : 0 < σ ≤ d.

For the statement of following Lemma see, e.g., [2, 8, 13].

Lemma 2.4. Consider a system of the type (1) with aα
i (x, p) = A

αβ
ij p

j
β, A

αβ
ij ∈ R

(i.e., a linear system with constant coefficients) satisfying (iii). Then there exists

a constant L = L(n, M
ν

) ≥ 1 such that for every weak solution v ∈W 1,2(Ω,RN),
for every x ∈ Ω and 0 < σ ≤ R ≤ dist(x, ∂Ω) the following estimate holds:

∫

B(x,σ)

|Dv(y) − (Dv)x,σ|
2
dy ≤ L

( σ

R

)n+2
∫

B(x,R)

|Dv(y) − (Dv)x,R|
2
dy .



Remarks on C1,γ-Regularity 61

Lemma 2.5 ( [19, p. 37]). Let ψ : [0,∞] → [0,∞] be non decreasing function

which is absolutely continuous on every closed interval of finite length, ψ(0) = 0.
If w ≥ 0 is measurable, E(t) = {y ∈ R

n : w(y) > t} and µ is the n-dimensional

Lebesgue measure, then

∫

Rn

ψ ◦ w dy =

∫

∞

0

µ (E(t))ψ′(t) dt.

Remark. In case of ψ non decreasing and bounded, the assumption of absolute
continuity of ψ on every closed interval of finite length is equivalent to the
absolute continuity of ψ on [0,∞).

3. Proof of the main result

Proof of Theorem 1.1. Let x0 be any fixed point of Ω. We prove that Du ∈ L2,δ

on a neighborhood of x0. Let R ≤ 1
2
dist(x0, ∂Ω). Where no confusion can result,

we will use the notation B(R), φ(R) and (Du)R instead of B(x0, R), φ(x0, R)
and (Du)x0,R.

Denote Aαβ
ij,0 = A

αβ
ij (x0, (Du)R),

Ã
αβ
ij (x) =

∫ 1

0

A
αβ
ij (x0, (Du)R + t (Du(x) − (Du)R)) dt.

Hence aα
i (x0, Du(x))−a

α
i (x0, (Du)R) = Ã

αβ
ij (x)

(

Dβu
j(x) − (Dβu

j)
R

)

. Thus we
can rewrite the system (1) as

−Dα

(

A
αβ
ij,0Dβu

j
)

= −Dα

(

(

A
αβ
ij,0 − Ã

αβ
ij

) (

Dβu
j −

(

Dβu
j
)

R

)

)

−Dα

(

aα
i (x0, Du) − aα

i (x,Du)
)

−Dα

(

fα
i (x) − (fα

i )R

)

.

Split u as v + w where v is the solution of the Dirichlet problem

−Dα

(

A
αβ
ij,0Dβv

j
)

= 0 in B(R), v − u ∈W
1,2
0

(

B(R),RN
)

,

and w ∈W
1,2
0 (B(R),RN) is the weak solution of the system

−Dα

(

A
αβ
ij,0Dβw

j
)

= −Dα

(

(

A
αβ
ij,0 − Ã

αβ
ij

) (

Dβu
j −

(

Dβu
j
)

R

)

)

−Dα

(

aα
i (x0, Du) − aα

i (x,Du)
)

−Dα

(

fα
i (x) − (fα

i )R

)

.

(5)

For every 0 < σ ≤ R from Lemma 2.4 it follows
∫

B(σ)

|Dv − (Dv)σ|
2
dx ≤ L

( σ

R

)n+2
∫

B(R)

|Dv − (Dv)R|
2
dx .
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hence
∫

B(σ)

|Du− (Du)σ|
2
dx

≤ 2L
( σ

R

)n+2
∫

B(R)

|Dv − (Dv)R|
2
dx+ 4

∫

B(R)

|Dw|2dx

≤ 4L
( σ

R

)n+2
∫

B(R)

|Du− (Du)R|
2
dx+ 4

(

1+2L
( σ

R

)n+2
)

∫

B(R)

|Dw|2dx.

(6)

Now as w ∈ W
1,2
0 (BR,R

N) we can choose a test function ϕ = w in (5) and we
get

ν2

∫

B(R)

|Dw|2 dx ≤ 3

(
∫

B(R)

ω2 (|Du− (Du)R|) |Du− (Du)R|
2
dx

+

∫

B(R)

|aα
i (x0, Du) − aα

i (x,Du)|2 dx

+

∫

B(R)

|fα
i (x) − (fα

i )R|
2
dx

)

.

(7)

From (6), (7) and Poincaré’s inequality we have

φ(σ) =

∫

B(σ)

|Du− (Du)σ|
2
dx

≤ 4L
( σ

R

)n+2
∫

B(R)

|Du− (Du)R|
2
dx

+
12

(

1+2L
(

σ
R

)n+2
)

ν2

[
∫

B(R)

ω2(|Du− (Du)R|) |Du− (Du)R|
2
dx

+

∫

B(R)

|aα
i (x0, Du) − aα

i (x,Du)|2 dx+ c(n)R2

∫

B(R)

|Df |2 dx

]

≤ 4L
( σ

R

)n+2

φ(R)

+
12

(

1 + 2L
(

σ
R

)n+2
)

ν2

[

(I1 + I2) + c(n)Rδ‖Df‖2
L2,δ−2(Ω,RnN )

]

(8)

where c(n) denotes the constant from Poincaré inequality. Then using Hölder
inequality with the exponent p from the assumptions of the Theorem, embed-
ding and Lemma 2.2 we have

I1 ≤

(
∫

B(R)

|Du− (Du)R|
2p dx

)
1

p
(

∫

B(R)

ω2p′ (|Du− (Du)R|) dx

)
1

p′

≤ C2
pR

2− n
p′

∫

B(R)

|D2u|2 dx

(
∫

B(R)

ω2p′ (|Du− (Du)R|) dx

)
1

p′
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≤ C

(

p, n,
M

ν

) (

1

κnRn

∫

B(R)

ω2p′ (|Du− (Du)R|) dx

)
1

p′

×
(

φ(2R) +Rn+2 +R2‖Du‖2
L2(B(2R),RnN ) +Rδ‖Df‖2

L2,δ−2(Ω,RnN )

)

(9)

where Cp stands for the embedding constant from W 1,2
(

B(1),RnN
)

into
L2p

(

B(1),RnN
)

and

C

(

p, n,
M

ν

)

= C2
p × C

(

M

ν

)

× (1 + c(n)) , (10)

C(M
ν

) is the constant from Lemma 2.2.

Taking in Lemma 2.5 ψ(t) = ω2p′(t), w = |Du− (Du)R| on B(R) and w = 0
otherwise, we have ER(t) = {y ∈ B(R) : |Du− (Du)R| > t} and for the last
integral we get

∫

B(R)

ω2p′ (|Du− (Du)R|) dx =

∫

∞

0

[

d

dt
(ω2p′)(t)

]

µ (ER(t)) dt.

Now we can estimate the integral on the right hand side according to as-
sumptions of the theorem. In the first case we assume that Pp = Jp =
∫

∞

0

d
dt

(ω2p′ )(t)

t
dt < ∞. As µ (ER(t)) is nonnegative and non-increasing then

µ (ER(t))≤ 1
t

∫ t

0
µ (ER(s))ds holds, and we have

∫

∞

0

[

d

dt
(ω2p′)(t)

]

µ (ER(t)) dt ≤

∫

∞

0

d

dt
(ω2p′)(t)

(

1

t

∫ t

0

µ (ER(s)) ds

)

dt

≤

∫

∞

0

d
dt

(ω2p′)(t)

t
dt

∫

B(R)

|Du− (Du)R| dx

≤ Jp(κnR
n)

1

2φ
1

2 (R). (11)

If Pp = Sp = sup0<t<∞

d
dt

(ω2p′)(t) <∞ we have

∫

∞

0

[

d

dt
(ω2p′)(t)

]

µ (ER(t)) dt ≤ Sp(κnR
n)

1

2φ
1

2 (R) (12)

Denoting K⋆ = κ
−

1

2p′

n C
(

p, n, M
ν

)

P
1

p′

p ‖Du‖
1

2p′

BMO(Ω,RnN )
and using (9), (11), (12)

for the estimate of I1 we get

I1 ≤ K⋆φ(2R) +K⋆
(

Rn+2 +R2‖Du‖2
L2(B(2R),RnN ) +Rδ‖Df‖2

L2,δ−2(Ω,RnN )

)

.

As we suppose that Du ∈ BMO(Ω,RnN) we have from Proposition 2.1 that
Du ∈ L2,λ for any λ < n and for R < 1

‖Du‖2
L2(B(2R),RnN ) ≤ c⋆(λ, n)Rλ‖Du‖BMO(Ω,RnN ).
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Set λ = δ − 2 and include c⋆(λ, n) into K⋆. Hence using (ii)

I1 ≤ K⋆φ(2R) +K⋆
(

1 + ‖Du‖2
BMO(Ω,RnN ) + ‖Df‖2

L2,δ−2(Ω,RnN )

)

Rδ,

I2 ≤M2R2

∫

B(R)

(

1 + |Du|2
)

dx ≤M2

(

κnR
n+2 +R2

∫

B(R)

|Du|2 dx

)

≤M2
(

κn + c⋆(λ, n)‖Du‖2
BMO(Ω,RnN )

)

Rδ.

(13)

By means of (13) we get from (8)

φ(σ) ≤



4L
( σ

R

)n+2

+
12

(

1 + 2L
(

σ
R

)n+2
)

ν2
K⋆



φ(2R) +
12

(

1 + 2L
(

σ
R

)n+2
)

ν2

× (K⋆ +M2)
(

κn + c⋆(λ, n)‖Du‖2
BMO(Ω,RnN ) + 2‖Df‖2

L2,δ−2(Ω,RnN )

)

Rδ.

Thus the inequality (4) is satisfied with

A = 4L

K =
12

(

1 + 2L
(

σ
R

)n+2
)

ν2
K⋆

B =
12

(

1 + 2L
(

σ
R

)n+2
)

ν2
(K⋆ +M2)

×
(

κn + ‖Du‖2
BMO(Ω,RnN ) + 2‖Df‖2

L2,δ−2(Ω,RnN )

)

.

We take α = n + 2, β = n + 2γ. Note that ǫ0 in Lemma 2.3 can be calculated
explicitly (see the proof of Lemma 2.1., Chapter III in [8]). Then assumption (2)
implies that K < ǫ0 and all assumptions of Lemma 2.3 are satisfied. Hence
φ(σ) ≤ Cσδ. The thesis follows from Proposition 2.1, Part (b).
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[6] Daněček, J., John, O. and Stará, J., Structural conditions guaranteeing C1,γ-
regularity of weak solutions to nonlinear second-order elliptic systems. Nonlin-

ear Anal. 66 (2007), 288 – 300.

[7] De Giorgi, E., Un esempio di estremali discontinue per un problema vari-
azionale di tipo ellitico (in Italian). Boll. Un. Mat. Ital. IV, Ser. 1 (1968),
135 – 137.

[8] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear

Elliptic Systems. Annals Math. Studies 105. Princeton (NJ): Princenton Univ.
Press 1983.

[9] Giusti, E. and Miranda, M., Un esempio di soluzioni discontinue per un prob-
lema di minimo relativo ad un integrale di calcolo delle ellitico (in Italian).
Boll. Un. Mat. Ital. IV, Ser. 1 (1968), 219 – 226.
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