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Basic Topological and Geometric Properties

of Orlicz Spaces over an Arbitrary Set of Atoms

Henryk Hudzik and Lucjan Szymaszkiewicz

Abstract. Orlicz spaces lϕ(Γ) over an arbitrary set Γ, being a natural generaliza-
tions of Orlicz sequence spaces are studied. The following problems in these spaces
are considered: relationships between the Luxemburg norm and the modular, Fatou
property, relationships between the Luxemburg norm and the Orlicz norm, equality
of the Orlicz norm and the Amemiya norm, order continuous elements, a formula for
the norm in the quotient space lϕ(Γ)/hϕ(Γ) in terms of the modular Iϕ for both the
Luxemburg and the Orlicz norm, the problem when the equality of the space lϕ(Γ)
and its subspace hϕ(Γ) holds, isometric representation of the dual spaces (hϕ(Γ))∗,
(lϕ(Γ))∗, (hϕo (Γ))∗ and (lϕo (Γ))∗, representation of support functionals, criteria for
smooth points and extreme points of S(lϕ(Γ)) and problem of the existence of such
points. It is worthy noticing that the problem of the existence of smooth points on
S(lϕ(Γ)) depends essentially on the assumption if Γ is countable or not.
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1. Introduction

Let X be a vector lattice. A subspace Y of the vector lattice X is an ideal if
for any two elements x, y ∈ X the following implication holds:

(|x| ≤ |y| ∧ y ∈ Y ) ⇒ (x ∈ Y ).

If A denotes some property, then by (A) we will denote the class of all
Banach spaces satisfying property A.

We say that a vector lattice X is Dedekind complete (σ-Dedekind complete)
if for any subset (countable subset) A ⊂ X orderly bounded from above there
exists a supremum. We write then X ∈ (DC) (X ∈ (σ- DC)).
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It is known that in the above definition we can take only sets A ⊂ X+

(see [19, Theorem 12.1] or [14, Theorem 15.11] and remarks). On the base of
this fact the following lemma is quite obvious.

Lemma 1.1. If X ∈ (DC) (X ∈ (σ- DC)) and Y ⊂ X is an ideal in X, then
Y ∈ (DC) (Y ∈ (σ- DC)).

A vector lattice which is simultaneously a normed space is called a normed
lattice if its norm ‖·‖ is monotone, i.e., it satisfies the following condition:

(|x| ≤ |y|) ⇒ (‖x‖ ≤ ‖y‖).

If a normed lattice is complete, then it is called a Banach lattice.
We say that a normed lattice X is order continuous (more precisely a norm

‖·‖ on X is order continuous) if for any net (xα) in X such that xα ↓ 0 (i.e.,
xα ≥ xβ for α ≤ β and infα xα = 0) we have infα ‖xα‖ = 0. We write then
X ∈ (OC).

We say that a normed lattice X is σ-order continuous if for any sequence
(xn) in X such that xn ↓ 0 (i.e., x1 ≥ x2 ≥ . . . and infn xn = 0) we have
‖xn‖ ↓ 0. We write then X ∈ (σ- OC).

The following theorem holds (see, for example, [18, Theorem 1.1]).

Theorem 1.2. For any Banach lattice X the following conditions are equiva-
lent:

1. X ∈ (OC);

2. X ∈ (DC) and X ∈ (OC);

3. X ∈ (σ- DC) and X ∈ (σ- OC).

For any Banach lattice X define

Xa =
{

x ∈ X : ∀(xα) |x| ≥ xα ↓ 0 ⇒ inf
α
‖xα‖ = 0

}

.

It can be shown (see for example [18, p. 60]) that:

Theorem 1.3. For any Banach lattice X we have:

1. Xa is an ideal in X;

2. Xa ∈ (OC);

3. if B ⊂ X is an ideal such that B ∈ (OC) then B ⊂ Xa;

4. the ideal Xa is closed in X.

Note that a Banach lattice X ∈ (OC) if and only if X = Xa. The most
important class of Banach lattices form Köthe spaces called also Banach function
lattices.
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Let µ be a measure defined on some σ-algebra Σ of subsets of a nonempty
set S. We denote by L0(S,Σ, µ) the space of all equivalence classes of real
measurable functions. There is a natural order in this space (x ≤ y) ⇐⇒
(x(s) ≤ y(s) µ-a.e. in S). It is easy to see that L0(S,Σ, µ) is a σ-Dedekind
complete vector lattice.

We say that a Banach lattice X is a Köthe space if it is an ideal in some
L0(S,Σ, µ). Note that by Lemma 1.1 Köthe spaces are σ-Dedekind complete
Banach lattices. For a reference to Köthe spaces see, for example, [12].

Let Γ be an arbitrary nonempty set. Define on Γ the counting measure µ
acting on the σ-algebra of all subsets of Γ in the following way: µ(A) = card(A)
if A is finite and µ(A) = ∞ otherwise. Consequently l0(Γ) := L0(Γ, 2Γ, µ) is the
set of all functions defined on Γ with values in R. For any function x : Γ → R

and a set A ⊂ Γ the symbol
∑

i∈A x(i) or the shorter one
∑

A x will denote the
integral

∫

A
xdµ. Notice that for x ≥ 0 it means that

∑

i∈A

x(i) = sup
I⊂A

card(I)<∞

∑

i∈I

x(i).

Denote, for the convenience, by Σ1 the family of all finite subsets of Γ and
for any set A ⊂ Γ by xA the element x · χA (χA is the characteristic function of
a set A).

Let ϕ be an Orlicz function. Remind that a function ϕ : R → [0,+∞]
is called an Orlicz function if it is convex, even, ϕ(0) = 0, ϕ is left-hand side
continuous on [0,+∞) and not being equal to zero identically. By ψ we denote
the function conjugate to ϕ in the sense of Young, defined by

ψ(u) = sup
v>0

(|u|v − ϕ(v)).

These two functions are connected by the Young inequality

|uv| ≤ ϕ(u) + ψ(v) (u, v ∈ R).

Define on the space l0(Γ) the modular Iϕ by

Iϕ (x) =
∑

i∈Γ

ϕ(x(i)) (x ∈ l0(Γ)).

From the Young inequality we get
∑

i∈Γ

|x(i) y(i)| ≤ Iϕ (x) + Iψ (y) (∀x, y ∈ l0(Γ)).

Define the Orlicz space lϕ(Γ) = {x ∈ l0(Γ) : ∃λ>0 Iϕ (λx) <∞} and equip it
with the Luxemburg norm

‖x‖ϕ = inf
{

k > 0 : Iϕ

(x

k

)

≤ 1
}

.
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For a reference to Orlicz functions and Orlicz spaces see [13,15–17]. If we define
the partial order x ≤ y ⇐⇒ ∀i∈Γ x(i) ≤ y(i), then

|x| ≤ |y| ⇒ Iϕ (x) ≤ Iϕ (y) and |x| ≤ |y| ⇒ ‖x‖ϕ ≤ ‖y‖ϕ ,

which means that the modular Iϕ and the norm ‖ · ‖ϕ are monotonous. The
space lϕ(Γ) with the partial order ≤ is a vector lattice and lϕ(Γ) is an ideal
in l0(Γ). To conclude that lϕ(Γ) is a Köthe space we have to show that space
(lϕ(Γ), ‖ · ‖ϕ) is complete. With this end in view let us notice the following

Lemma 1.4. For any sequence (xn)n∈N in l0(Γ) we have:

1. ‖xn‖ϕ → 0 implies that ∀i∈Γ xn(i) → 0;

2. if (xn)n∈N is a Cauchy sequence in lϕ(Γ), then
(

xn(i)
)

n∈N
is a Cauchy

sequence in R for any i ∈ Γ.

Proof. We will show only the first implication. Let ‖xn‖ϕ → 0 and take any
i ∈ Γ. We have Iϕ (kxn) → 0 as n→ ∞ for any k > 0, so we have ϕ(kxn(i)) → 0
as n→ ∞ for any k > 0.

Assume that xn(i) 6→ 0 for some i ∈ Γ, i.e., there exists a sequence (nk)k∈N

of natural numbers and ε > 0 such that |xnk(i)| ≥ ε. Taking then k := aϕ+1

ε
,

where aϕ := sup {u ≥ 0 : ϕ(u) = 0}, we get

ϕ(k xnk(i)) = ϕ(k|xnk(i)|) ≥ ϕ(kε) = ϕ

(

aϕ + 1

ε
ε

)

= ϕ(aϕ + 1) > 0,

which means that ϕ(kxn(i)) 6→ 0.

Theorem 1.5. The space (lϕ(Γ), ‖·‖ϕ) is a Banach space.

Proof. Let (xn)n∈N be a Cauchy sequence in (lϕ(Γ), ‖·‖ϕ). By Lemma 1.4 the

sequence (xn)n∈N has a limit x in l0(Γ). It is enough to show that ‖xn−x‖ϕ
n→∞
−−−→

0.

Let us fix two numbers ε > 0 and λ > 0. We will show that there exists a
number N ∈ N such that Iϕ (λ(xn − x)) ≤ ε for all n ≥ N , which will finish the
proof.

Since (xn)n∈N is a Cauchy sequence, by definition there exists N ∈ N such
that ‖xn − xm‖ϕ ≤ ε

λ
for n,m ≥ N . Next we get that ‖λ(xn − xm)‖ϕ ≤ ε and

consequently
Iϕ (λ(xn − xm)) ≤ ε. (1)

By inequality (1) we get ϕ
(

λ(xn(i)−xm(i))
)

≤ ε for n,m ≥ N and i ∈ Γ. Note
that

ϕ
(

λ(xn(i) − xm(i))
) m→∞
−−−→ ϕ

(

λ(xn(i) − x(i))
)

,

for any fixed n ≥ N and i ∈ Γ. By the Fatou Lemma and inequality (1) we get
Iϕ (λ(xn − x))) ≤ lim infm→∞ Iϕ (λ(xn − xm)) ≤ ε for n ≥ N .
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Next lemma will be used repeatedly in the remaining part of this article.

Lemma 1.6. It holds for any x ∈ l0(Γ): If supI∈Σ1

∥

∥xI
∥

∥

ϕ
< ∞, then ‖x‖ϕ =

supI∈Σ1

∥

∥xI
∥

∥

ϕ
and x ∈ lϕ(Γ).

Proof. It is enough to show the inequality ‖x‖ϕ ≤ supI∈Σ1

∥

∥xI
∥

∥

ϕ
. Let c :=

supI∈Σ1

∥

∥xI
∥

∥

ϕ
. We have Iϕ

(

xI

c

)

≤ Iϕ
(

xI

‖xI‖ϕ

)

≤ 1 for any I ∈ Σ1. Therefore

Iϕ
(

x
c

)

= supI∈Σ1
Iϕ
(

xI

c

)

≤ 1, whence ‖x‖ϕ ≤ c.

Define now on the space lϕ(Γ) the Orlicz norm

‖x‖oϕ = sup
Iψ(y)≤1

∑

Γ

xy.

It is easy to show that it is a norm on lϕ(Γ) indeed (see [17]). We can also
consider ‖x‖oϕ for any element x ∈ l0(Γ) obtaining so called function norm

which can take value ∞ on some elements of the space l0(Γ).

Lemma 1.7. The equality

‖x‖oϕ = sup

{

∑

Γ

xy : Iψ (y) ≤ 1,∀i∈Γ x(i) · y(i) ≥ 0, supp(y) ∈ Σ1

}

holds for any x ∈ l0(Γ).

Proof. It is enough to show the inequality „≤”. Assume first that ‖x‖oϕ <∞ and

take any ε > 0. From the definition of the Orlicz norm there exists y ∈ l0(Γ)
such that Iψ (y) ≤ 1 and ‖x‖oϕ − ε <

∑

Γ xy ≤ ‖x‖oϕ. We can assume that
∀i∈Γ x(i) ·y(i) ≥ 0 (if it is not true then we can modify y so that the inequalities
are true). Take now I ∈ Σ1 such that ‖x‖oϕ − ε <

∑

I xy. Define z = yI . We
have Iψ (z) ≤ Iψ (y) ≤ 1, supp(z) ∈ Σ1 and

‖x‖oϕ− ε <
∑

Γ

xz ≤ sup

{

∑

Γ

xy : Iψ (y)≤1,∀i∈Γ x(i) · y(i) ≥ 0, supp(y)∈Σ1

}

.

The case when ‖x‖oϕ = ∞ can be proved analogously.

Lemma 1.8. For any x ∈ l0(Γ) there holds the equality ‖x‖oϕ = supI∈Σ1

∥

∥xI
∥

∥

o

ϕ
.

Proof. By

‖x‖oϕ = sup
Iψ(y)≤1
xy≥0

∑

Γ

xy = sup
Iψ(y)≤1
xy≥0

sup
I∈Σ1

∑

I

xy = sup
Iψ(y)≤1
xy≥0

sup
I∈Σ1

∑

Γ

xIy = sup
I∈Σ1

∥

∥xI
∥

∥

o

ϕ

the assertion follows.
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The next two lemmas show relationships between Luxemburg norm and
Orlicz norm.

Lemma 1.9. For any x ∈ l0(Γ) we have the inequality ‖x‖oϕ ≤ 2 ‖x‖ϕ.

Proof. If ‖x‖ϕ = ∞ or ‖x‖ϕ = 0, then the inequality is satisfied. Therefore
we can assume that 0 < ‖x‖ϕ < ∞. If now Iψ (y) ≤ 1, then by the Young
inequality we have

∑

Γ

x

‖x‖ϕ
y ≤ Iϕ

(

x

‖x‖ϕ

)

+ Iψ (y) ≤ 2.

Therefore
∑

Γ xy ≤ 2 ‖x‖ϕ. From the arbitrariness of y with Iψ (y) ≤ 1 we get
the thesis.

Lemma 1.10. For any x ∈ l0(Γ) we have the inequality ‖x‖ϕ ≤ ‖x‖oϕ.

Proof. We can assume that ‖x‖oϕ < ∞. Assume first that supp(x) ∈ Σ1. In
a standard way we can show that ‖x‖ϕ ≤ ‖x‖oϕ (see, for example, [1, Theo-

rem 8.14, p. 274]). If now x ∈ l0(Γ) is arbitrary, then

sup
I∈Σ1

∥

∥xI
∥

∥

ϕ
≤ sup

I∈Σ1

∥

∥xI
∥

∥

o

ϕ
= ‖x‖oϕ <∞.

From Lemma 1.6 we get the thesis.

Corollary 1.11. If x ∈ l0(Γ) and ‖x‖oϕ <∞, then x ∈ lϕ(Γ).

Proof. If ‖x‖oϕ <∞ then ‖x‖ϕ <∞. Consequently x ∈ lϕ(Γ) since for example

Iϕ
(

x
‖x‖ϕ+1

)

≤ 1.

Corollary 1.11 and Lemma 1.8 imply the analogue of Lemma 1.6 for the
Orlicz norm.

Lemma 1.12. For any x ∈ l0(Γ) with supI∈Σ1

∥

∥xI
∥

∥

o

ϕ
< ∞ we have ‖x‖oϕ =

supI∈Σ1

∥

∥xI
∥

∥

o

ϕ
and x ∈ lϕ(Γ).

Let x ∈ l0(Γ). Define fx : (0,+∞) → (0,+∞] by

fx(k) =
1

k
(1 + Iϕ (kx)).

If x 6∈ lϕ(Γ) then fx(k) = +∞ for any k > 0. If x ∈ lϕ(Γ) then let us denote
kx := sup {k > 0 : Iϕ (kx) <∞}. From the Lebesgue Dominated Convergence
Theorem we get that fx is continuous on (0, kx). At kx the function fx is
left-hand side continuous. Define the Amemiya norm on lϕ(Γ) by

‖x‖Aϕ = inf
k>0

fx(k).

It can be checked that it is a norm indeed. From the above notices about the
function fx, denoting by Q the set of rational numbers, we get the following



Properties of Orlicz Spaces 431

Lemma 1.13. For any x ∈ l0(Γ) we have:

1. ‖x‖Aϕ <∞ if and only if x ∈ lϕ(Γ);

2. ‖x‖Aϕ = infk∈(0,kx)∩Q fx(k).

Let us recall now the following lemma.

Lemma 1.14 ([6, Lemma 1]). If ϕ(u)
u

u→∞
−−−→ ∞, then ∀x∈lϕ(Γ)∃k>0 ‖x‖Aϕ = fx(k).

For every x ∈ l0(Γ) let us define the set K(x) :=
{

k > 0 : ‖x‖Aϕ = fx(k)
}

. It

can happen that K(x) = ∅ but only in the case, when ϕ(u)
u

→ a <∞ if u→ ∞.

Lemma 1.15. Let x ∈ lϕ(Γ) and B ⊂ Γ. Then for any k ∈ K(xB) there exists
l ≤ k such that l ∈ K(x).

Proof. Let x ∈ lϕ(Γ) and B ⊂ Γ. Suppose that k ∈ K(xB), i.e.,
∥

∥xB
∥

∥

A

ϕ
=

1
k

(

1 + Iϕ
(

kxB
))

. Take any l > k. Then we have

1

l
(1 + Iϕ (lx)) =

1

l

(

1 + Iϕ
(

lxB
))

+
1

l
Iϕ
(

lxΓ\B
)

≥
1

k

(

1 + Iϕ
(

kxB
))

+
1

k
Iϕ
(

kxΓ\B
)

=
1

k
(1 + Iϕ (kx)).

From this inequality and from the fact that 1
l
(1+ Iϕ (lx)) → ∞ as l → 0 we get

the thesis.

Lemma 1.16. If x ∈ l0(Γ), then ‖x‖oϕ ≤ ‖x‖Aϕ .

Proof. Let x ∈ l0(Γ) and k > 0. Then we have

‖x‖oϕ = sup
Iψ(y)≤1

1

k

∑

Γ

k xy ≤ sup
Iψ(y)≤1

1

k
(Iϕ (kx) + Iψ (y)) ≤

1

k
(Iϕ (kx) + 1).

From arbitrariness of k > 0 we get the thesis.

Theorem 1.17. For any x ∈ l0(Γ) we have ‖x‖Aϕ = supB∈Σ1

∥

∥xB
∥

∥

A

ϕ
.

Proof. Assume first that x 6∈ lϕ(Γ). Then we have to show supB∈Σ1

∥

∥xB
∥

∥

A

ϕ
=

∞. Assume for the contrary that supB∈Σ1

∥

∥xB
∥

∥

A

ϕ
< ∞. By Lemma 1.16,

∥

∥xB
∥

∥

o

ϕ
≤
∥

∥xB
∥

∥

A

ϕ
for any B ∈ Σ1. Hence supB∈Σ1

∥

∥xB
∥

∥

o

ϕ
≤ supB∈Σ1

∥

∥xB
∥

∥

A

ϕ
.

Since ‖x‖oϕ = supB∈Σ1

∥

∥xB
∥

∥

o

ϕ
(see Lemma 1.8), so ‖x‖oϕ <∞, whence x ∈ lϕ(Γ)

(Corollary 1.11), a contradiction.

Assume now that x ∈ lϕ(Γ). Without lost of generality we can assume that
‖x‖Aϕ = 1. There are two cases to consider:
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1. ∀B∈Σ1
K(xB) = ∅,

2. ∃B∈Σ1
K(xB) 6= ∅.

Consider them one by one.

Ad 1.: Observe that A := limu→∞
ϕ(u)
u

<∞ by Lemma 1.14 and

∥

∥xB
∥

∥

A

ϕ
= lim

k→∞

1

k

(

1 + Iϕ
(

kxB
))

= A
∥

∥xB
∥

∥

1
, for any B ∈ Σ1.

We have then

sup
B∈Σ1

∥

∥xB
∥

∥

A

ϕ
= sup

B∈Σ1

A
∥

∥xB
∥

∥

1
= A ‖x‖1 = lim

k→∞

1

k
(1 + Iϕ (kx)) ≥ ‖x‖Aϕ .

The opposite inequality is obvious.

Ad 2.: Denote by B0 such a finite set that there exists l ∈ K(xB0). Define
the set L :=

{

k > 0 : ∃B∈Σ1

(

B0 ⊂ B ∧ k ∈ K(xB)
)}

. We have l ∈ L, so L 6= ∅.
Let k0 := inf L. We will show now that k0 ≥ 1. Take any set B ∈ Σ1 such
that B0 ⊂ B and k ∈ K(xB). It is enough to prove that k ≥ 1. Assume
for the contrary that k < 1. From Lemma 1.15 there exists s ∈ K(x) such
that s ≤ k < 1. Therefore, 1 = ‖x‖Aϕ = 1

s
(1 + Iϕ (sx)) ≥ 1

s
> 1, which is a

contradiction. Consequently we have shown that k0 ≥ 1.

Take any ε > 0. Let C ∈ Σ1 be such that B0 ⊂ C and

1

k0

(

1 + Iϕ
(

k0x
C
))

≥
1

k0

(1 + Iϕ (k0x)) −
ε

2
≥ ‖x‖Aϕ −

ε

2
.

Then we have for kC ∈ K(xC):

‖x‖Aϕ −
ε

2
−

(

1

k0

−
1

kC

)

≤
1

k0

+
Iϕ
(

k0x
C
)

k0

−
1

k0

+
1

kC

=
1

kC
+
Iϕ
(

k0x
C
)

k0

≤
1

kC
+
Iϕ
(

kCx
C
)

kC

=
∥

∥xC
∥

∥

A

ϕ

≤ sup
B∈Σ1

∥

∥xB
∥

∥

A

ϕ
.

The above inequality is satisfied for any set C ∈ Σ1 containing B0. Therefore,
taking C with the above properties and large enough, so that 1

k0
− 1

kC
≤ ε

2
, we

get the thesis.

Theorem 1.18. For any x ∈ l0(Γ) we have ‖x‖oϕ = ‖x‖Aϕ .

Proof. We know that
∥

∥xB
∥

∥

o

ϕ
=
∥

∥xB
∥

∥

A

ϕ
for any B ∈ Σ1 (see [8]). Next taking

suprema over all B ∈ Σ1 on both sides of this equality and applying Theo-
rem 1.17 and Lemma 1.8, we get the thesis.
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2. Subspaces hϕ(Γ) of lϕ(Γ)

Let us define the subspace hϕ(Γ) of lϕ(Γ) by

hϕ(Γ) =

{

x ∈ lϕ(Γ) : ∀λ>0∃I∈Σ1

∑

i∈Γ\I

ϕ(λx(i)) <∞

}

.

Theorem 2.1. For every x ∈ l0(Γ) the fact that x ∈ hϕ(Γ) is equivalent to the
condition

∀ε>0∃I∈Σ1

∥

∥x− xI
∥

∥

ϕ
≤ ε.

Remark. This means that the subspace hϕ(Γ) is equal to the closure of the
subspace {x ∈ l0(Γ) : supp(x) ∈ Σ1} in the norm topology, that is,

hϕ(Γ) = cl
{

x ∈ l0(Γ) : supp(x) ∈ Σ1

}

.

Proof. Suppose that x ∈ lϕ(Γ) and ∀ε>0∃I∈Σ1

∥

∥x− xI
∥

∥

ϕ
≤ ε. Fix λ > 0. For

ε = 1
λ

there exists a set I ∈ Σ1 such that
∥

∥x− xI
∥

∥

ϕ
≤ 1

λ
. Then

∥

∥λ(x− xI)
∥

∥

ϕ
≤

1 and consequently Iϕ
(

λ(x− xI)
)

≤ 1. Hence

∑

i∈Γ\I

ϕ(λx(i)) = Iϕ
(

λ(x− xI)
)

≤ 1 <∞, that is, x ∈ hϕ(Γ).

Now assume that x ∈ hϕ(Γ) and ε > 0. For λ = 1
ε

there exists a set I ∈ Σ1

such that
∑

i∈Γ\I ϕ(x(i)
ε

) ≤ M < ∞ for some M > 0. The above sum can have
at most countable number of elements not equal to zero. Hence there exists a
finite set J ⊃ I such that

∑

i∈Γ\J ϕ(x(i)
ε

) ≤ 1. This means that Iϕ
(

x−xJ

ε

)

≤ 1,

whence
∥

∥x− xJ
∥

∥

ϕ
≤ ε.

The above theorem can be formulated alternatively in the following way:

x ∈ hϕ(Γ) ⇐⇒ inf
I∈Σ1

∥

∥x− xI
∥

∥

ϕ
= 0

or

x ∈ hϕ(Γ) ⇐⇒ the net (xI)I∈Σ1
converges to x in norm.

In the remaining part we will use the following notation:

(lϕ(Γ), ‖·‖ϕ) = lϕ(Γ), (lϕ(Γ), ‖·‖oϕ) = lϕo (Γ)

(hϕ(Γ), ‖·‖ϕ) = hϕ(Γ), (hϕ(Γ), ‖·‖oϕ) = hϕo (Γ).

Sometimes it will be no importance which norm is considered. In such a case
we will write simply lϕ(Γ) and hϕ(Γ) (i.e., we will use the same notations as for
the Luxemburg norm).
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Lemma 2.2. The space hϕ(Γ) is Dedekind complete.

Proof. Observe first that the space l0(Γ) is Dedekind complete. By Lemma 1.1
we get that hϕ(Γ) ∈ (DC).

Lemma 2.3. The space hϕ(Γ) is σ-order continuous.

Proof. Let (xn) be a sequence in hϕ(Γ) such that xn ↓ 0. We have to show that
Iϕ (λxn) ↓ 0 for any λ > 0. Fix λ > 0. Since x1 ∈ hϕ(Γ), we can choose a set

I ∈ Σ1 such that Iϕ
(

λx
Γ\I
1

)

< ∞. From the Lebesgue Dominated Convergence

Theorem we get Iϕ
(

λx
Γ\I
n

)

↓ 0. Since xn ↓ 0, so xn(i) ↓ 0 for any i ∈ Γ, in
particular for any i ∈ I. Hence ϕ(λxn(i)) ↓ 0 for any i ∈ I. Finally,

Iϕ (λxn) =
∑

i∈Γ\I

ϕ(λxn(i)) +
∑

i∈I

ϕ(λxn(i))

=
(

Iϕ
(

λxΓ\I
n

)

+
∑

i∈I

ϕ(λxn(i))
)

↓ 0.

Corollary 2.4. The space hϕ(Γ) is order continuous.

Proof. The proof follows immediately from Theorem 1.2 and from the fact
that hϕ(Γ) is Dedekind complete (see Lemma 2.2) and σ-order continuous (see
Lemma 2.3).

Corollary 2.5. We have the inclusion hϕ(Γ) ⊂ lϕ(Γ)a.

Proof. Since hϕ(Γ) is an ideal in lϕ(Γ), the thesis follows by Corollary 2.4 and
Theorem 1.3.

Theorem 2.6. The equality hϕ(Γ) = lϕ(Γ)a holds.

Proof. It is enough to show that lϕ(Γ)a ⊂ hϕ(Γ). Take any x ∈ lϕ(Γ)a. Since
x ∈ hϕ(Γ) iff |x| ∈ hϕ(Γ), we can assume that x ≥ 0. We have to show that
for every λ > 0 there exists a set I ∈ Σ1 such that Iϕ

(

λxΓ\I
)

<∞. Fix λ > 0.
The set {Γ \ I : I ∈ Σ1} equipped with the order

(

Γ \ I ≤ Γ \ J
)

⇐⇒
(

Γ \ I ⊃ Γ \ J
)

is a directed set. Let us associate with any set Γ \ I (I ∈ Σ1) the element xΓ\I .
We get a net converging monotonously to zero (xΓ\I ↓ 0), i.e.,

(

Γ \ I ≤ Γ \ J
)

yields
(

xΓ\I ≥ xΓ\J
)

and infI∈Σ1
xΓ\I = 0. By the assumption x ∈ lϕ(Γ)a

and the fact that x ≥ xΓ\I for any I ∈ Σ1, we get that infI∈Σ1

∥

∥xΓ\I
∥

∥

ϕ
= 0.

Let I0 ∈ Σ1 be such that
∥

∥xΓ\I0
∥

∥

ϕ
≤ 1

λ
. Then

∥

∥λxΓ\I0
∥

∥

ϕ
≤ 1 and finally

Iϕ
(

λxΓ\I0
)

≤ 1 <∞.
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Theorem 2.7. The subspace hϕ(Γ) is also characterized by the equality

hϕ(Γ) =
{

x ∈ lϕ(Γ) : |x| ≥ xn ↓ 0 ⇒ ‖xn‖ϕ ↓ 0
}

.

Proof. By Theorems 2.6 and 1.3 and the fact that every sequence is a net, we
have

hϕ(Γ) =
{

x ∈ lϕ(Γ) : |x| ≥ xα ↓ 0 ⇒ ‖xα‖ϕ ↓ 0
}

⊂
{

x ∈ lϕ(Γ) : |x| ≥ xn ↓ 0 ⇒ ‖xn‖ϕ ↓ 0
}

.

It can be shown that A :=
{

x ∈ lϕ(Γ) : |x| ≥ xn ↓ 0 ⇒ ‖xn‖ϕ ↓ 0
}

is an
ideal in lϕ(Γ) and that A ∈ (σ- OC). Since lϕ(Γ) ∈ (DC), so A ∈ (DC) (see
Lemma 1.1) and next A ∈ (OC) (see Theorem 1.2). By Theorem 1.3, we get
A ⊂ lϕ(Γ)a = hϕ(Γ).

Theorem 2.8. If x ∈ hϕ(Γ), then supp(x) is at most a countable set.

Proof. Let x ∈ hϕ(Γ) and define for any n ∈ N the set An =
{

i ∈ G : |x(i)|> 1
n

}

.

We will show that An ∈ Σ1. Let I ∈ Σ1 be such that Iϕ
(

n(aϕ + 1)xΓ\I
)

< ∞.
Since An =

(

An∩(Γ\I)
)

∪
(

An∩I
)

, it is enough to show that An∩(Γ\I) ∈ Σ1.
This is true since

ϕ(aϕ + 1)µ(An ∩ (Γ \ I)) =
∑

An∩(Γ\I)

ϕ(aϕ + 1)

≤
∑

i∈Γ\I

ϕ(n(aϕ + 1)x(i))

= Iϕ
(

n(aϕ + 1)xΓ\I
)

<∞ .

Lemma 2.9. For any x ∈ lϕ(Γ) the following equality holds:

inf
z∈hϕ(Γ)

‖x− z‖ϕ = inf
y∈lϕ(Γ)

supp(y)∈Σ1

‖x− y‖ϕ .

Proof. Let us fix x ∈ lϕ(Γ). The inequality „≤” is obvious. We will show the
inequality „≥”. Take any ε > 0 and z ∈ hϕ(Γ). By Theorem 2.1 we have

hϕ(Γ) = cl {y ∈ lϕ(Γ) : supp(y) ∈ Σ1} .

Hence there exists y ∈ lϕ(Γ) such that supp(y) ∈ Σ1 and ‖z − y‖ϕ < ε. Now
we have ‖x− y‖ϕ ≤ ‖x− z‖ϕ + ‖z − y‖ϕ ≤ ‖x− z‖ϕ + ε. Therefore

inf
y∈lϕ(Γ)

supp(y)∈Σ1

‖x− y‖ϕ ≤ ‖x− z‖ϕ + ε.
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By the arbitrariness of z ∈ hϕ(Γ), we get

inf
y∈lϕ(Γ)

supp(y)∈Σ1

‖x− y‖ϕ ≤ inf
z∈hϕ(Γ)

‖x− z‖ϕ + ε.

As it is true for each ε > 0, we get the thesis.

Theorem 2.10. For any x ∈ lϕ(Γ) the equalities

d(x) = do(x) = inf
I∈Σ1

∥

∥x− xI
∥

∥

ϕ
= inf

I∈Σ1

∥

∥x− xI
∥

∥

o

ϕ
= θ(x),

hold, where d(x) = infy∈hϕ(Γ) ‖x− y‖ϕ, do(x) = infy∈hϕ(Γ) ‖x− y‖oϕ, and θ(x) =

inf
{

λ > 0 : ∃I∈Σ1

∑

i∈Γ\I ϕ
(

x(i)
λ

)

<∞
}

.

Proof. If x ∈ hϕ(Γ), then all above numbers are equal to zero. Consequently,
we can assume that x 6∈ hϕ(Γ). Then θ(x) > 0 since hϕ(Γ) = {x : θ(x) = 0}.
First we will show that θ(x) ≤ d(x). Take any ε > 0 such that 0 < ε < θ(x)
and y ∈ lϕ(Γ) such that supp(y) ∈ Σ1. Then

∑

i∈Γ\I

ϕ

(

x(i)

θ(x) − ε

)

= ∞ (∀ I ∈ Σ1),

in particular
∑

i∈Γ\supp(y) ϕ
(

x(i)
θ(x)−ε

)

= ∞. Hence

Iϕ

(

x− y

θ(x) − ε

)

=
∑

i∈Γ

ϕ

(

x− y

θ(x) − ε

)

=
∑

i∈Γ\supp(y)

ϕ

(

x(i)

θ(x) − ε

)

+
∑

i∈supp(y)

ϕ

(

(x− y)(i)

θ(x) − ε

)

= ∞.

Hence
∥

∥

x−y
θ(x)−ε

∥

∥

ϕ
> 1, that is, ‖x− y‖ϕ > θ(x)−ε. By the arbitrariness of ε > 0,

we get ‖x− y‖ϕ ≥ θ(x) and next by the arbitrariness of y with support in Σ1,
we have

inf
y∈lϕ(Γ)

supp(y)∈Σ1

‖x− y‖ϕ ≥ θ(x).

By Lemma 2.9 we get d(x) ≥ θ(x).

Together with the obvious inequalities we have the following inequalities:

θ(x) ≤ d(x) ≤ do(x) ≤ inf
I∈Σ1

∥

∥x− xI
∥

∥

o

ϕ

θ(x) ≤ d(x) ≤ inf
I∈Σ1

∥

∥x− xI
∥

∥

ϕ
≤ inf

I∈Σ1

∥

∥x− xI
∥

∥

o

ϕ
.

Then to finish the proof, it is enough to show that infI∈Σ1

∥

∥x− xI
∥

∥

o

ϕ
≤ θ(x).
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Given any ε > 0, there exists I ∈ Σ1 such that
∑

i∈Γ\I ϕ
(

x(i)
θ(x)+ε

)

< ∞. Hence

there exists a set J ∈ Σ1 such that
∑

i∈Γ\J ϕ
(

x(i)
θ(x)+ε

)

< ε. For any set K ∈ Σ1

satisfying K ⊃ J we have

∑

i∈Γ

ϕ

(

x(i) − xK(i)

θ(x) + ε

)

≤
∑

i∈Γ\J

ϕ

(

x(i)

θ(x) + ε

)

< ε.

Next, by Theorem 1.18, we have

∥

∥x− xK
∥

∥

o

ϕ
≤ (θ(x) + ε)

(

1 +
∑

i∈Γ

ϕ

(

x(i) − xK(i)

θ(x) + ε

)

)

< (θ(x) + ε)(1 + ε),

whence
inf
K∈Σ1

∥

∥x− xK
∥

∥

o

ϕ
= inf

K∈Σ1

K⊃J

∥

∥x− xk
∥

∥

o

ϕ
≤ (θ(x) + ε)(1 + ε).

By the arbitrariness of ε > 0, we get the thesis.

Let L > 1. We say that the function ϕ satisfies condition δL (we will write
ϕ ∈ δL) if there exist constants K > 0, u0 > 0 such that 0 < ϕ(u0) < ∞ and
the inequality ϕ(Lu) ≤ Kϕ(u) holds for |u| ≤ u0.

Lemma 2.11. If ϕ ∈ δL for some L > 1, then ϕ takes value zero only at zero.

Proof. Suppose that ϕ ∈ δL for some L > 1 and suppose for the contrary that
aϕ := sup {u ≥ 0 : ϕ(u) = 0} > 0. We have ϕ(aϕ+ ε) > 0 since aϕ+ ε > aϕ. On
the other hand, since L > 1, there exists ε > 0 such that aϕ+ε

L
< aϕ, whence

ϕ(aϕ + ε) = ϕ

(

L
aϕ + ε

L

)

≤ Kϕ

(

aϕ + ε

L

)

= 0,

since ϕ ∈ δL. A contradiction.

Lemma 2.12. For any L > 1 the fact that ϕ ∈ δL is equivalent to the fact that
ϕ ∈ δ2.

We will omit the standard proof.

Theorem 2.13. If ϕ ∈ δ2, then hϕ(Γ) = lϕ(Γ).

Proof. Let x ∈ lϕ(Γ) and ϕ ∈ δ2. Then there exists λ0 > 0 such that Iϕ (λ0x) <
∞. Take now any λ > 0. If λ ≤ λ0, then obviously Iϕ (λx) < ∞. Assume that
λ > λ0, i.e., λ

λ0
> 1. In virtue of Lemma 2.12 we know that ϕ ∈ δ λ

λ0

, that is,

there exist K > 0 and u0 > 0 such that 0 < ϕ(u0) < ∞ and ϕ
(

λu
λ0

)

≤ Kϕ(u)
for |u| ≤ u0.
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Define now the set I = {i ∈ Γ : |λ0x(i)| > u0}. Since 0 <
∑

i∈I ϕ(u0) ≤
∑

i∈I ϕ(λ0x(i)) ≤ Iϕ (λ0x) <∞, we get I ∈ Σ1. We have

∑

i∈Γ\I

ϕ(λx(i)) ≤
∑

i∈Γ\I

ϕ

(

λ

λ0

λ0x(i)

)

≤
∑

i∈Γ\I

Kϕ(λ0x(i)) ≤ KIϕ (λ0x) <∞,

which finishes the proof.

3. Dual spaces of hϕ(Γ)

We start with the following

Lemma 3.1. For any x, y ∈ l0(Γ) the following Hölder inequality holds:
∑

Γ

|xy| ≤ ‖x‖ϕ ‖y‖
o

ψ .

Proof. If x = 0 or ‖x‖ϕ = ∞, then the inequality is obvious. Assume that

0 < ‖x‖ϕ <∞. Then we have
∑

Γ |xy| = ‖x‖ϕ
∑

Γ
|x|

‖x‖ϕ
|y| ≤ ‖x‖ϕ ‖y‖

o

ψ .

We denote by X∗ the dual space of a normed space (X, ‖·‖). For any
functional F ∈ X∗ the norm is defined by formula

‖F‖ := sup {|F (x)| : ‖x‖ ≤ 1} .

Theorem 3.2. For each element y ∈ lψ(Γ), the formula F (x) =
∑

Γ xy, for any
x ∈ hϕ(Γ), determines a functional F ∈ hϕ(Γ)∗ with ‖F‖ = ‖y‖oψ. Conversely,

any functional G ∈ hϕ(Γ)∗ is determined by some element y from lψ(Γ), that
is, G(x) =

∑

Γ xy for any x ∈ hϕ(Γ).

Proof. Let y ∈ lψ(Γ). Define F (x) =
∑

Γ xy. By the Hölder inequality we have
|F (x)| ≤ ‖x‖ϕ ‖y‖

o

ψ, i.e., F is a well defined linear functional on hϕ(Γ) and
‖F‖ ≤ ‖y‖oψ <∞, whence F is continuous. Define

ej(i) =

{

1 for i = j,

0 for i 6= j,
(i, j ∈ Γ).

Then y(j) = F (ej) for any j ∈ Γ. Then by Lemma 1.8,

‖y‖oψ =
∥

∥

∥

(

F (ei)
)

i∈Γ

∥

∥

∥

o

ψ
= sup

Iϕ(x)≤1 supp(x)∈Σ1

∑

i∈Γ

x(i)F (ei)

= sup
Iϕ(x)≤1 supp(x)∈Σ1

F (x)

≤ sup
Iϕ(x)≤1 supp(x)∈Σ1

‖F‖ ‖x‖ϕ

≤ ‖F‖.
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Consequently, we have shown the equality ‖F‖ = ‖y‖oψ.

The above calculation shows also that if we take any functional G ∈ hϕ(Γ)∗

and define y = (G(ei))i∈Γ, then ‖y‖oψ ≤ ‖G‖ < ∞ and, by Corollary 1.11,

we have that y ∈ lψo (Γ). It remains to show that y determines F equal to G.
Indeed, F and G are equal on the set {x ∈ hϕ(Γ) : supp(x) ∈ Σ1} and hϕ(Γ)
is the closure of this set, so by continuity of the functionals F and G, we get
F = G.

The above theorem shows that any element v ∈ lψ(Γ) determines a linear
continuous functional on hϕ(Γ). We denote it by Fv. Note that we can naturally
extend the functional Fv to the functional on lϕ(Γ) with preserving of the norm.
Namely, defining G(x) =

∑

Γ xy (x ∈ lϕ(Γ)), we have of course that G(x) =
Fv(x) for x ∈ hϕ(Γ). By the Hölder inequality (see Lemma 3.1), we get

|G(x)| =
∣

∣

∣

∑

Γ

xy
∣

∣

∣
≤ ‖x‖ϕ ‖y‖

o

ψ (∀x ∈ lϕ(Γ)),

i.e., G is well defined on lϕ(Γ) and ‖G‖ ≤ ‖y‖oψ. Since G is an extension of F ,
so ‖G‖ ≥ ‖Fv‖ = ‖y‖oψ. In the following the functional G will be denoted by
the same symbol Fv.

Theorem 3.3. Every functional x∗ ∈ lϕ(Γ)∗ can be written, in the unique
manner, as a sum x∗ = Fv + G, where Fv is determined by some element
v ∈ lψ(Γ) and G is so-called singular functional, i.e., G(hϕ(Γ)) = {0}.

Proof. Since x∗|hϕ(Γ) is a functional on hϕ(Γ), by Theorem 3.2, there exists
v ∈ lψo (Γ) determining this functional. Let Fv denote its extension to lϕ(Γ)
(defined above). Define G = x∗−Fv. If x ∈ hϕ(Γ), then G(x) = x∗(x)−Fv(x) =
x∗|hϕ(Γ)(x) − x∗|hϕ(Γ)(x) = 0. Assume now that x∗ = Fz +H, where z ∈ lψ(Γ)
and H(hϕ(Γ)) = {0}. Since Fv + G = Fz + H, Fv − Fz = H − G. For any
x ∈ hϕ(Γ) we have (Fv − Fz)(x) = (H − G)(x) = H(x) − G(x) = 0, i.e.,
Fv(x) = Fz(x) for x ∈ hϕ(Γ), whence v = z, and consequently G = H.

In the proof of the next theorem we will use the following

Lemma 3.4. Let x ∈ lϕ(Γ) and
∣

∣

∑

i∈Γ x(i)
∣

∣ < ∞. Then for any ε > 0 there
exists a set Iε ∈ Σ1 such that

∣

∣

∑

i∈Γ\I x(i)
∣

∣ < ε for any I ∈ Σ1 satisfying I ⊃ Iε.

Proof. Since
∣

∣

∑

i∈Γ x(i)
∣

∣ < ∞, we have
∑

i∈Γ x
+(i) < ∞ and

∑

i∈Γ x
−(i) < ∞.

Let ε > 0 and take K ∈ Σ1 such that
∑

K x
+ >

∑

Γ x
+ − ε

2
. We can assume

that if i ∈ K, then x+(i) > 0. Analogously we take J ∈ Σ1 such that
∑

J x
− >

∑

Γ x
− − ε

2
and x−(i) > 0 for i ∈ J .
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Defining Iε = K∪J , we notice that
∑

Iε
x+ =

∑

K x
+ and

∑

Iε
x− =

∑

J x
−.

For any I ∈ Σ1 such that I ⊃ Iε we have

∣

∣

∣

∣

∑

Γ\I

x

∣

∣

∣

∣

≤
∑

Γ\I

x+ +
∑

Γ\I

x−

≤
∑

Γ\Iε

x+ +
∑

Γ\Iε

x−

=

(

∑

Γ

x+ −
∑

Iε

x+

)

+

(

∑

Γ

x− −
∑

Iε

x−
)

=

(

∑

Γ

x+ −
∑

K

x+

)

+

(

∑

Γ

x− −
∑

J

x−
)

<
ε

2
+
ε

2
= ε.

Theorem 3.5. For every functional x∗ = Fv +G ∈ lϕ(Γ)∗, we have

‖x∗‖ = ‖v‖oψ + ‖G‖ .

Proof. First we will prove the inequality „≤”. We have

‖x∗‖ = ‖Fv +G‖ ≤ ‖Fv‖ + ‖G‖ = ‖v‖oψ + ‖G‖ .

Fix ε > 0 and take x1, x2 ∈ lϕ(Γ) such that ‖x1‖ϕ ≤ 1, ‖x2‖ϕ ≤ 1 and
‖v‖oψ − ε = ‖Fv‖ − ε < Fv(x1), ‖G‖ − ε < G(x2). Since ‖Fv : lϕ(Γ) → R‖ =
‖Fv : hϕ(Γ) → R‖, we can assume that x1 ∈ hϕ(Γ) and consequently that
supp(x1) ∈ Σ1 (since hϕ(Γ) is the closure of the set {x ∈ lϕ(Γ) : supp(x) ∈ Σ1}
and Fv : hϕ(Γ) → R is continuous). Since

∣

∣

∑

Γ vx2

∣

∣ = |Fv(x2)| < ∞, by
Lemma 3.4, there exists Iε ∈ Σ1 such that ∀I∈Σ1, I⊃Iε

∣

∣

∑

Γ\I vx2

∣

∣ < ε. Now

take a set K ∈ Σ1 such that supp(x1) ⊂ K, Iε ⊂ K and
∑

i∈K ϕ(x2(i)) >
∑

i∈Γ ϕ(x2(i)) − ε, and define

x(i) =

{

x1(i) for i ∈ K,

x2(i) for i ∈ Γ \K.

Then

Iϕ (x) =
∑

i∈K

ϕ(x1(i)) +
∑

i∈Γ\K

ϕ(x2(i)) < Iϕ (x1) + ε ≤ 1 + ε.

Therefore, Iϕ
(

x
1+ε

)

≤ 1
1+ε

Iϕ (x) ≤ 1, that is,
∥

∥

x
1+ε

∥

∥

ϕ
≤ 1. Hence ‖x∗‖ ≥
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x∗
(

x
1+ε

)

. Next we have

(1 + ε) ‖x∗‖ ≥ x∗(x) = x∗ (x1 χK) + x∗
(

x2 χΓ\K

)

= Fv (x1 χK) +G (x1 χK) + Fv
(

x2 χΓ\K

)

+G
(

x2 χΓ\K

)

= Fv(x1) + 0 + Fv
(

x2 χΓ\K

)

+G (x2 χΓ − x2 χK)

= Fv(x1) + Fv
(

x2 χΓ\K

)

+G (x2)

= Fv(x1) +
∑

i∈Γ\K

v(i)x2(i) +G (x2)

> ‖v‖oψ − ε+ (−ε) + ‖G‖ − ε = ‖v‖oψ + ‖G‖ − 3ε.

Consequently, we have shown that (1 + ε) ‖x∗‖ > ‖v‖oψ + ‖G‖ − 3ε. By the
arbitrariness of ε > 0, we get the thesis.

4. Dual spaces of hϕ
o (Γ)

We start with the following

Lemma 4.1. For any x ∈ lϕ(Γ) the following equalities holds:

‖x‖ϕ = sup
‖y‖oψ≤1

∑

Γ

xy = sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy.

Proof. Notice that

sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy ≤ sup
‖y‖oψ≤1

∑

Γ

xy ≤ sup
‖y‖oψ≤1

‖x‖ϕ ‖y‖
o

ψ ≤ ‖x‖ϕ .

It remains to show that

‖x‖ϕ ≤ sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy. (2)

Assume that the inequality (2) holds for the elements with finite supports. Then
the equality holds also for all elements. Indeed, let x ∈ lϕ(Γ) and y be such
that ‖y‖oψ ≤ 1 and supp(y) ∈ Σ1. Then we have for any I ∈ Σ1,

∑

Γ

xIy =
∑

I

xIy ≤
∑

I

xIy +
∑

i∈Γ\I

x(i)y(i) sgn(x(i)y(i)) =
∑

Γ

xz,

where

z(i) =

{

y(i) for i ∈ I

y(i) sgn(x(i)y(i)) for i ∈ Γ \ I.
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Since ‖z‖oψ ≤ ‖y‖oψ ≤ 1 and supp(z) ⊂ supp(y) ∈ Σ1, we have

∑

Γ

xIy ≤ sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy.

Hence

sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xIy ≤ sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy.

Next, by Lemma 1.6 and inequality (2) for elements with finite supports, we
get

‖x‖ϕ = sup
I∈Σ1

∥

∥xI
∥

∥

ϕ
≤ sup

I∈Σ1

sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xIy ≤ sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy,

which is the desired inequality.

Consequently, in order to show that

‖x‖ϕ ≤ sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy,

we can assume that supp(x) ∈ Σ1. Additionally, assume without loss of gener-
ality that ‖x‖ϕ = 1. Then Iϕ (x) ≤ 1 and ∀i∈Γϕ(x(i)) ≤ 1, which gives

|x(i)| ≤ bϕ := sup {u : ϕ(u) <∞} (∀ i ∈ Γ).

Consider first the case when there exists i0 ∈ Γ such that |x(i0)| = bϕ.
Defining z = 1

bϕ
χ{i0} sgn(x(i0)), we get supp(z) = {i0},

‖z‖oψ = sup
Iϕ(g)≤1

∑

Γ

zg = sup
Iϕ(g)≤1

1

bϕ
g(i0) ≤

1

bϕ
bϕ = 1

and

sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy ≥
∑

Γ

xz = x(i0)
1

bϕ
sgn(x(i0)) = bϕ

1

bϕ
= 1.

Now assume that ∀i∈Γ|x(i)| < bϕ. Since supp(x) ∈ Σ1, there exists ε0 > 0
such that ∀i∈Γ(1 + ε0)|x(i)| < bϕ. Take any 0 < ε ≤ ε0. Then ‖(1 + ε)x‖ϕ > 1
and consequently Iϕ ((1 + ε)x)) > 1. Define

w(i) =

{

ϕ′((1 + ε)x(i)) for i ∈ supp(x)

0 for i 6∈ supp(x),

where ϕ′ is the left-hand side derivative of the function ϕ and z = w
Iψ(w)+1

. The
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elements w and z are well defined, supp(z) = supp(w) ⊂ supp(x) and ‖z‖oψ ≤ 1.
Indeed,

‖z‖oψ = sup
Iϕ(h)≤1

∑

Γ

zh =
1

Iψ (w) + 1
sup

Iϕ(h)≤1

∑

Γ

wh

≤
1

Iψ (w) + 1
sup

Iϕ(h)≤1

∑

Γ

(Iψ (w) + Iϕ (h))

≤
1

Iψ (w) + 1
(Iψ (w) + 1) = 1.

Now we also have

sup
‖y‖oψ≤1

supp(y)∈Σ1

∑

Γ

xy ≥
∑

Γ

xz

=
1

Iψ (w) + 1

∑

Γ

xw

=
1

1 + ε

1

Iψ (w) + 1

∑

Γ

(1 + ε)xw

=
1

1 + ε

1

Iψ (w) + 1

∑

i∈supp(x)

(

(1 + ε)x(i)ϕ′((1 + ε)x(i))
)

=
1

1 + ε

1

Iψ (w) + 1

∑

i∈supp(x)

(

ϕ
(

(1 + ε)x(i)
)

+ ψ
(

ϕ′((1 + ε)x(i))
)

)

=
1

1 + ε

1

Iψ (w) + 1

(

Iϕ ((1 + ε)x) + Iψ (w)
)

>
1

1 + ε

1

Iψ (w) + 1

(

1 + Iψ (w)
)

=
1

1 + ε
.

By the arbitrariness of ε > 0, we get the thesis.

Theorem 4.2. For each element y ∈ lψ(Γ) the formula F (x) =
∑

Γ xy for any
x ∈ hϕo (Γ), determines the functional F ∈ hϕo (Γ)∗ with ‖F‖ = ‖y‖ψ. Conversely,

any functional G ∈ hϕo (Γ)∗ is determined by some element y from lψ(Γ).

Proof. Let y ∈ lψ(Γ). Define F (x) =
∑

Γ xy. By the Hölder inequality, we
get |F (x)| ≤ ‖x‖oϕ ‖y‖ψ, i.e., F is a well defined linear functional on hϕo (Γ) and
‖F‖ ≤ ‖y‖ψ. The opposite inequality follows by Lemma 4.1:

‖F‖ = sup
‖x‖oϕ≤1

x∈hϕo (Γ)

F (x) = sup
‖x‖oϕ≤1

x∈hϕo (Γ)

∑

Γ

xy ≥ sup
‖x‖oϕ≤1

supp(x)∈Σ1

∑

Γ

xy = ‖y‖ψ .

Now take any G ∈ hϕo (Γ)∗. Since the norms ‖·‖oϕ and ‖·‖ϕ are equivalent,
hϕo (Γ)∗ is equal to hϕ(Γ)∗ as sets and consequently, by Theorem 3.2 there exists
y ∈ lψ(Γ) such that G(x) =

∑

Γ xy for x ∈ hϕ(Γ).
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5. Smooth points of lϕ(Γ)

In this section we will give criteria for smooth points of the unit sphere of lϕ(Γ)
equipped with the Luxemburg norm. Next we will point out the differences
between the spaces depending on the cardinality of the set Γ. Smooth points
in Orlicz spaces or in Musielak-Orlicz spaces corresponding to σ-finite measure
spaces were investigated among others in [2–6,9–11].

Let us define support functionals and smooth points.

Definition 5.1. We say that a functional x∗ ∈ X∗ is a support functional at a
point x ∈ S(X) if ‖x∗‖ = 1 and x∗(x) = 1. By Grad(x) we will denote the set
of all support functionals at a point x ∈ S(X). If we take any x 6= 0, then we
define that x∗ ∈ Grad(x) if ‖x∗‖ = 1 and x∗(x) = ‖x‖.

Definition 5.2. We say that x ∈ S(X) is a smooth point if Grad(x) is a single-
ton.

Now we will give some lemmas. Let us recall that d(x) :=infy∈hϕ(Γ) ‖x− y‖ϕ.

Lemma 5.3. If G ∈ lϕ(Γ)∗ is a singular functional, then |G(x)| ≤ ‖G‖ d(x)
for any x ∈ lϕ(Γ).

Proof. Take any x ∈ lϕ(Γ). For any y ∈ hϕ(Γ), we have |G(x)| = |G(x) −
G(y)| = |G(x− y)| ≤ ‖G‖ ‖x− y‖ϕ , so |G(x)| ≤ ‖G‖ infy∈hϕ(Γ) ‖x− y‖ϕ .

Lemma 5.4. Let x ∈ S(lϕ(Γ)). If d(x) < 1, then any x∗ ∈ Grad(x) is a regular
functional (i.e., the singular part of x∗ is equal to 0).

Proof. Let x∗ = Fv + G ∈ Grad(x). Assume for the contrary that ‖G‖ > 0.
Then, by Lemma 5.3 and Theorem 3.5, we get

1 = x∗(x) = Fv(x) +G(x) ≤ ‖Fv‖ ‖x‖ϕ + ‖G‖ d(x) < ‖Fv‖ + ‖G‖ = ‖x∗‖ ,

whence ‖x∗‖ > 1, a contradiction.

Lemma 5.5. Let x ∈ lϕ(Γ), ‖x‖ϕ = 1 and d(x) = 1. Then there exist y, z ∈
lϕ(Γ) such that ‖y‖ϕ = ‖z‖ϕ = 1, supp(y) ∩ supp(z) = ∅ and x = y + z.

Proof. Let x ∈ lϕ(Γ) be such that ‖x‖ϕ = 1 and d(x) = 1. Since d(x) = θ(x)
(see Theorem 2.10), so

inf

{

λ > 0 : ∃I∈Σ1

∑

i∈Γ\I

ϕ

(

x(i)

λ

)

<∞

}

= 1.

Consequently, for every 0 < λ < 1 and every set I ∈ Σ1, we have

∑

i∈Γ\I

ϕ

(

x(i)

λ

)

= ∞. (3)
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Take now any sequence (λn)n∈N such that 0 < λ1 < λ2 < λ3 < . . . < 1 and

λn
n→∞
−−−→ 1.

We will define by induction a sequence (In)n∈N of sets such that In ∈ Σ1 for
n ∈ N, In ∩ Ik = ∅ for n 6= k and

∑

i∈In

ϕ

(

x(i)

λn

)

> 1. (4)

Since
∑

i∈Γ ϕ
(

x(i)
λ1

)

= ∞, there exists I1 ∈ Σ1 such that
∑

i∈I1
ϕ
(

x(i)
λ1

)

> 1.
Having defined the sets Ik (k = 1, . . . , n) satisfying the above conditions, let us
define the set In+1. Since I1 ∪ I2 ∪ . . . ∪ In ∈ Σ1, by (3), we have

∑

i∈Γ\(I1∪I2∪...∪In)

ϕ

(

x(i)

λn+1

)

= ∞.

Hence there exists a set In+1 ⊂ Γ \ (I1 ∪ I2 ∪ . . . ∪ In), In+1 ∈ Σ1 such that
∑

i∈In+1
ϕ
(

x(i)
λn+1

)

> 1. Define now elements y and z by

y =xχI1∪I3∪I5∪I7∪... + xχΓ\(I1∪I2∪I3∪...) and z = xχI2∪I4∪I6∪I8∪....

It is clear that x = y + z and supp(y) ∩ supp(z) = ∅. We have to show that
‖y‖ϕ = ‖z‖ϕ = 1.

Notice that Iϕ (y) ≤ Iϕ (x) ≤ 1 and Iϕ (z) ≤ Iϕ (x) ≤ 1. Take any λ < 1.
Then there exists λk > λ. We can assume without loss of generality that k is
an odd number. By (4) we have

Iϕ

(y

λ

)

≥ Iϕ

(

y

λk

)

≥ Iϕ

(

1

λk
xχIk

)

=
∑

i∈Ik

ϕ

(

x(i)

λk

)

> 1

and

Iϕ

(z

λ

)

≥ Iϕ

(

z

λk+1

)

≥ Iϕ

(

1

λk+1

xχIk+1

)

=
∑

i∈Ik+1

ϕ

(

x(i)

λk+1

)

> 1.

Therefore ‖y‖ϕ = ‖z‖ϕ = 1.

Lemma 5.6. Let x ∈ lϕ(Γ), ‖x‖ϕ = 1 and card {i ∈ Γ : |x(i)| = bϕ} ≥ 2. Then
there exist y, z ∈ lϕ(Γ) such that ‖y‖ϕ = ‖z‖ϕ = 1, supp(y) ∩ supp(z) = ∅ and
x = y + z.

Proof. The proof is analogous as the proof of Proposition 2 in [10] for Γ = N.
We will present it here for the sake of completeness.

By the assumption, there exist j, k ∈ Γ such that j 6= k and |x(j)| = |x(k)| =
bϕ. Define y = xχ{j}, z = xχΓ\{j}. We have supp(y)∩supp(z) = ∅ and x = y+z.
It is enough to show that ‖y‖ϕ = ‖z‖ϕ = 1. Indeed, Iϕ (y) ≤ Iϕ (x) ≤ 1,
Iϕ (z) ≤ Iϕ (x) ≤ 1 and, for any λ > 1, we have Iϕ (y) = Iϕ (z) = ∞.
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We have just proven analogues of Lemmas 0.1, 0.2, 0.3 and 0.4 from [2]. On
the base of these results necessary and sufficient conditions for smooth points
of the Musielak-Orlicz space were given in that article. Next it can be proved
in a similar way, an analogue of Theorem 1.1 from that article. Namely, the
following theorem holds.

Theorem 5.7. A point x ∈ S(lϕ(Γ)) is a smooth point if and only if:

1. d(x) < 1 (let us remind that d(x) denote the distance of x to hϕ(Γ));

2. there exists at most one index i ∈ Γ such that |x(i)| = bϕ;

3. if |x(i)| < bϕ for any i ∈ Γ then for any i ∈ Γ such that ϕ(|x(i)|) < 1 the
equality ϕ′

−(|x(i)|) = ϕ′
+(|x(i)|) holds;

4. if |x(i0)| = bϕ for some i0 ∈ Γ, then Iϕ (x) < 1 or ϕ′
−(bϕ) = ∞ or

ϕ′
+(|x(i)|) = 0 for any i 6= i0.

From the above theorem we can deduce the next our theorems.

Theorem 5.8. If ϕ is an Orlicz function that is smooth at zero, then there
exists smooth points on the unit sphere S(lϕ(Γ)). In particular, smooth points
of S(lϕ(Γ)) are the elements defined by the formula

x = sup{u : ϕ(u) ≤ 1} · χ{k},

where k is an arbitrary element of Γ.

Proof. Let us fix k ∈ Γ and notice that x defined in the theorem belongs to
hϕ(Γ), that is, the first claim of Theorem 5.7 is satisfied. From the definition of
element x, we get immediately that the second claim of Theorem 5.7 is satisfied
too.

Consider now two cases:

Case 1: ϕ(bϕ) > 1. Then Iϕ (x) = 1, that is, ‖x‖ϕ = 1. If now |x(i)| < ϕ−1(1),
then i 6= k and, consequently, x(i) = 0. By the assumption that ϕ is smooth at
zero, we get that conditions 3 and 4 of Theorem 5.7 are satisfied. Therefore x
is a smooth point.

Case 2: ϕ(bϕ) ≤ 1. Since Iϕ (x) ≤ 1 and Iϕ (x/λ) = ∞ for every λ < 1, so
‖x‖ϕ = 1. Consequently, we have x(k) = bϕ and x(i) = 0 for i 6= k. Since
ϕ is smooth at zero, so ϕ′

+(x(i)) = 0 for i 6= k, that is, conditions 3 and 4 of
Theorem 5.7 are satisfied, and consequently, x is a smooth point.

When Γ is an uncountable set and ϕ is an Orlicz function that takes only
finite values, then we can reverse the above theorem.

Theorem 5.9. Let Γ be an uncountable set and ϕ be an Orlicz function that
takes only finite values. If the unit sphere S(lϕ(Γ)) has smooth points, then ϕ
is smooth at zero.
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Proof. Let x ∈ S(lϕ(Γ)) be a smooth point. If aϕ > 0, then ϕ is automatically
smooth at 0. Assume that aϕ = 0. Then x(j) = 0 for some j ∈ Γ (in fact
x(i) = 0 for all indices outside a set A which is at most countable). Then by
the third condition of Theorem 5.7, we get that ϕ is smooth at zero.

We will end our considerations concerning smooth points with an example.

Example 5.10. The unit sphere S(l1(Γ)) of l1(Γ) has smooth points if and only
if the set Γ is countable.

Namely, if Γ = N, then smooth points are all the sequences x ∈ S(l1(N))
with supp(x) = N. The support functional at such a point is just y ∈

(

l1(N)
)∗

=
l∞(N) defined as y = (sgn(x1), sgn(x2), sgn(x3), . . .), where sgn is the signum
function.

Now assume that Γ is an uncountable set. For any x ∈ S(l1(Γ)) there
exists i0 ∈ Γ such that x(i0) = 0. Notice that for any α ∈ [−1, 1] the element
yα ∈

(

l1(Γ)
)∗

= l∞(Γ) defined by the formula

yα(i) =

{

α for i = i0

sgn(xi) for i 6= i0.

is a support functional at this point. Consequently, at each point of the unit
sphere there exists infinitely many support functionals, that is, no point of
x ∈ S(l1(Γ)) is a smooth point.

6. Extreme points of lϕ(Γ)

In the last section of this article we will present criteria for extreme points of
S(lϕ(Γ)).

Definition 6.1. We call x ∈ S(X) an extreme point of the unit ball of a normed
space X if for any y, z ∈ S(X) the equality x = 1

2
(y + z) implies that y = z.

For an Orlicz function ϕ we define

Ext(ϕ) :=

{

u ∈ R : ∀
w,v∈R

(

w 6= v ∧
w + v

2
= u

)

⇒

(

ϕ (u) <
ϕ(w) + ϕ(v)

2

)}

.

We will use now the following result from [7] giving criteria for extreme
points in Orlicz spaces Lϕ equipped with the Luxemburg norm.

Theorem 6.2 ( [7, Theorem 1]). Let ϕ be an Orlicz function and (T,Σ, µ) be
any measure space without atoms with infinite measure.

(i) Assume that ϕ is a continuous Orlicz function. Then x ∈ S(Lϕ) is an
extreme point if and only if Iϕ (x) = 1 and either
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(a) x(t) ∈ Ext(ϕ) for µ-p.w. t ∈ T or

(b) there exist an atom A such that x(t) ∈ Ext(ϕ) for µ-a.e. t ∈ T \ A
and x|A = u0, where ϕ(u0) 6= 0.

(ii) If ϕ is not continuous and Iϕ (x) = 1, then x ∈ S(Lϕ) is an extreme point
if and only if one of the above conditions (a) or (b) holds.

(iii) If ϕ is not continuous and Iϕ (x) < 1, then x ∈ S(Lϕ) is an extreme point
if and only |x(t)| = bϕ for µ-p.w. t ∈ T .

In the above theorem Lϕ denotes any Orlicz space, that is, an Orlicz space
over arbitrary (not necessarily σ-finite) measure space, which can be purely
atomic or mixed, but without atoms with infinite measure. We are interested
here mainly in lϕ(Γ). If we additionally assume that the set Γ is infinite, then
the above theorem takes for lϕ(Γ) a particular simple form.

Theorem 6.3. For any infinite set Γ, we have the following:

(a) If aϕ < bϕ, then x ∈ S(lϕ(Γ)) is an extreme point if and only if Iϕ (x) = 1,
|x(i)| ≥ aϕ for any i ∈ Γ and

µ {i ∈ Γ : |x(i)| > aϕ ∧ |x(i)| /∈ Ext(ϕ)} ≤ 1.

(b) If aϕ = bϕ, then x ∈ S(lϕ(Γ)) is an extreme point if and only if |x(i)| = aϕ
for any i ∈ Γ.

Note that if the set Γ is finite and aϕ < bϕ, then the condition Iϕ (x) = 1 is
not necessary for x ∈ S(lϕ(Γ)) to be an extreme point.

As it is seen from the last theorem, in contrast to the criteria for smooth
points, if we consider extreme points of B(lϕ(Γ)) the fact if Γ is countable or
not is not so essential as for smooth points.
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