On a Singular Perturbation Problem for a Class of Variational Inequalities

J. A. Álvarez-Dios, M. Chipot, J. C. García
and M. C. Muñiz

Abstract

The goal of this paper is to study the asymptotic behavior of a degenerate singular perturbation problem for a class of variational inequalities depending on a positive parameter ε. We also give an existence and uniqueness result.

Keywords. Variational inequalities, singular perturbation problem, asymptotic behavior
Mathematics Subject Classification (2000). 35J85,47J20

1. Introduction

Let Ω be a bounded open set of $\mathbb{R}^{n}, n \geq 1$. We denote by $L^{2}(\Omega)$ the space of square integrable functions normed by

$$
|v|_{2, \Omega}=\left\{\int_{\Omega} v^{2} d x\right\}^{\frac{1}{2}}
$$

and by $H^{1}(\Omega)$ the usual Sobolev space built on $L^{2}(\Omega)$, which we will suppose normed by

$$
\begin{equation*}
\|v\|_{1,2}=\left\{|v|_{2, \Omega}^{2}+\left||\nabla v|_{2, \Omega}^{2}\right\}^{\frac{1}{2}}\right. \tag{1}
\end{equation*}
$$

($|\nabla v|$ denotes the Euclidean norm of the gradient. We refer the reader to $[1,6,7]$ for details on Sobolev spaces.) We denote by $a \in L^{\infty}(\Omega)$ a function satisfying

$$
\begin{equation*}
0 \leq a \leq \Lambda \quad \text { a.e. } x \in \Omega, a \not \equiv 0 \tag{2}
\end{equation*}
$$

[^0]Let K be a nonempty closed convex set of $H^{1}(\Omega)$ and $f \in\left(H^{1}(\Omega)\right)^{*}$ the dual space of $H^{1}(\Omega)$. We would like to study in this note problems of the type

$$
\left\{\begin{array}{l}
u_{\varepsilon} \in K \tag{3}\\
\int_{\Omega}\left[\varepsilon A\left(x, \varepsilon u_{\varepsilon}\right) \nabla u_{\varepsilon} \cdot \nabla\left(v-u_{\varepsilon}\right)+a u_{\varepsilon}\left(v-u_{\varepsilon}\right)\right] d x \geq\left\langle f, v-u_{\varepsilon}\right\rangle \quad \forall v \in K
\end{array}\right.
$$

More precisely, we would like to investigate the behaviour of u_{ε} when $\varepsilon \rightarrow 0$ $(\varepsilon>0)$. Note that if A is the identity matrix and $a(x) \geq \lambda>0$ a.e. in Ω, then (3) is the archetype of singular perturbation problems, see [9] for instance.

In the above variational inequality $A=A(x, u)$ is a $n \times n$-matrix of the Caratheodory type - i.e. such that

$$
\begin{align*}
& x \longmapsto A(x, u) \text { is measurable } \forall u \in \mathbb{R}, \tag{4}\\
& u \longmapsto A(x, u) \text { is continuous a.e. } x \in \Omega . \tag{5}
\end{align*}
$$

(Here A is considered to be a $\mathbb{R}^{n^{2}}$-valued mapping.) Moreover we suppose that A is uniformly elliptic with uniformly bounded entries. This can be expressed by the existence of $\lambda, \Lambda>0$ such that

$$
\begin{align*}
|A(x, u)| \leq \Lambda & \text { a.e. } x \in \Omega, \forall u \in \mathbb{R} \tag{6}\\
\lambda|\xi|^{2} \leq A \xi \cdot \xi & \text { a.e. } x \in \Omega, \forall u \in \mathbb{R}, \forall \xi \in \mathbb{R}^{n} . \tag{7}
\end{align*}
$$

(In (6), $|A|$ denotes the operator norm of matrices subordinated to the Euclidean norm; in $(7),|\xi|$ is the Euclidean norm of $\xi, A \xi$ is the vector obtained by applying the matrix A to ξ and "." denotes the usual scalar product.)

Singular perturbations problems were studied in details in the book [9]. However very little is devoted there to perturbation of variational inequalities or to nonlinearity issues. Allowing function a to degenerate also leads to new interesting behaviours who are beyond the scope of [9]. This is what we would like to investigate here.

From a physical point of view (3) models for instance a slow steady diffusion of a colony of bacteria (see [2]), u_{ϵ} being the density of the population and $\{x \in \Omega ; a(x) \neq 0\}$ a domain where some death occurs due for instance to a hostile environment. Function f is the outside supply. The set K helps in imposing some further constraints on the species at stake.

2. Existence and uniqueness of a solution

We have
Theorem 2.1. Under the assumptions of the introduction, for any $\varepsilon>0$ there exists a solution to (3).

Proof. We use the Schauder fixed point theorem in the spirit of [3]. Let

$$
\mathcal{K}=\bar{K} \cap B(0, R),
$$

where \bar{K} denotes the closure of K in $L^{2}(\Omega), B(0, R)$ the ball of centre 0 and radius R in $L^{2}(\Omega)$. For $w \in \mathcal{K}$ there exists a unique $u=T(w)$ solution to

$$
\left\{\begin{array}{l}
u \in K \tag{8}\\
\int_{\Omega}[\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla(v-u)+a u(v-u)] d x \geq\langle f, v-u\rangle \quad \forall v \in K
\end{array}\right.
$$

This follows from the theory of variational inequalities. Indeed by (7) we have

$$
\begin{align*}
(\lambda \varepsilon \wedge 1) \int_{\Omega}\left(|\nabla u|^{2}+a u^{2}\right) d x & \leq \lambda \varepsilon \int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega} a u^{2} d x \\
& \leq \int_{\Omega}\left(\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla u+a u^{2}\right) d x \tag{9}
\end{align*}
$$

(\wedge denotes the minimum of two numbers). Since

$$
\begin{equation*}
\|u\|_{a}=\left\{\int_{\Omega}\left(|\nabla u|^{2}+a u^{2}\right) d x\right\}^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

is a norm equivalent to the norm (1) - (see [5]) - we see that

$$
a(u, v)=\int_{\Omega}(\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla v+a u v) d x
$$

is a continuous, coercive, bilinear form on $H^{1}(\Omega)$. Thus (8) admits a unique solution.

Let us fix $v_{0} \in K$. Using (9), (8) we derive

$$
\begin{align*}
(\lambda \varepsilon \wedge 1)\|u\|_{a}^{2} & \leq \int_{\Omega}\left(\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla u+a u^{2}\right) d x \\
& \leq \int_{\Omega}\left(\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla v_{0}+a u v_{0}\right) d x-\left\langle f, v_{0}-u\right\rangle \\
& \leq(\varepsilon \vee 1) \Lambda \int_{\Omega}\left(|\nabla u|\left|\nabla v_{0}\right|+|u|\left|v_{0}\right|\right) d x+|f|_{*}\left(\left\|v_{0}\right\|_{1,2}+\|u\|_{1,2}\right) \tag{11}
\end{align*}
$$

(see (2), (6); $|f|_{*}$ denotes the strong dual norm of f and \vee the maximum of two numbers). From (11) we easily derive

$$
(\lambda \varepsilon \wedge 1)\|u\|_{a}^{2} \leq\|u\|_{1,2}\left\{(\varepsilon \vee 1) \Lambda\left\|v_{0}\right\|_{1,2}+|f|_{*}\right\}+|f|_{*}\left\|v_{0}\right\|_{1,2} .
$$

By the equivalence of norms $\|\cdot\|_{a},\|\cdot\|_{1,2}$ we obtain

$$
\begin{equation*}
|u|_{2, \Omega} \leq\|u\|_{1,2} \leq C \tag{12}
\end{equation*}
$$

where $C=C\left(\varepsilon, \lambda, \Lambda, v_{0}, f\right)$ is independent of w. Taking $R>C$, it follows that T maps \mathcal{K} onto \mathcal{K}. Moreover, it is easy to prove that T is compact and continuous (see (12)). This completes the existence result by the Schauder fixed point theorem.

We now turn to the issue of uniqueness. For that we assume A to be uniformly Lipschitz continuous in u, that is to say

$$
\begin{equation*}
|A(x, u)-A(x, v)| \leq \gamma|u-v| \quad \text { a.e. } x \in \Omega, \forall u, v \in \mathbb{R}, \tag{13}
\end{equation*}
$$

(see (6) for the definition of the matrix norm used here). Moreover, we suppose that K is such that for every nonnegative Lipschitz function F with Lipschitz modulus less than 1 and vanishing on $(-\infty, 0)$, it holds

$$
\begin{equation*}
u_{1}+F\left(u_{2}-u_{1}\right), \quad u_{2}-F\left(u_{2}-u_{1}\right) \in K, \quad \forall u_{1}, u_{2} \in K \tag{14}
\end{equation*}
$$

Then we can show
Theorem 2.2. Under the above assumptions, in particular if (13), (14) hold, the solution of (3) is unique.

Proof. Let $u_{1}=u_{\varepsilon, 1}$ and $u_{2}=u_{\varepsilon, 2}$ be two solutions of problem (3). For simplicity we will drop the index ε. Using the test functions defined by (14) in (3) written for u_{1} and u_{2} respectively, we get

$$
\begin{aligned}
& \int_{\Omega}\left[\varepsilon A\left(x, \varepsilon u_{1}\right) \nabla u_{1} \cdot \nabla F\left(u_{2}-u_{1}\right)+a u_{1} F\left(u_{2}-u_{1}\right)\right] d x \\
&- \int_{\Omega}\left[\varepsilon A\left(x, \varepsilon u_{2}\right) \nabla u_{2} \cdot \nabla F\left(u_{2}-u_{1}\right)\right\rangle \\
&\left.\left.u_{2}-u_{1}\right)+a u_{2} F\left(u_{2}-u_{1}\right)\right] d x \geq-\left\langle f, F\left(u_{2}-u_{1}\right)\right\rangle .
\end{aligned}
$$

By adding we obtain

$$
\begin{aligned}
& \varepsilon \int_{\Omega}\left(A\left(x, \varepsilon u_{1}\right) \nabla u_{1}-A\left(x, \varepsilon u_{2}\right) \nabla u_{2}\right) \cdot \nabla F\left(u_{2}-u_{1}\right) d x \\
&+\int_{\Omega} a\left(u_{1}-u_{2}\right) F\left(u_{2}-u_{1}\right) d x \geq 0
\end{aligned}
$$

which can also be written as

$$
\begin{align*}
& \int_{\Omega}\left\{\varepsilon A\left(x, \varepsilon u_{2}\right) \nabla\left(u_{2}-u_{1}\right) \cdot \nabla F\left(u_{2}-u_{1}\right) d x+a\left(u_{2}-u_{1}\right) F\left(u_{2}-u_{1}\right)\right\} d x \tag{15}\\
& \leq \varepsilon \int_{\Omega}\left(A\left(x, \varepsilon u_{1}\right)-A\left(x, \varepsilon u_{2}\right)\right) \nabla u_{1} \cdot \nabla F\left(u_{2}-u_{1}\right) d x
\end{align*}
$$

We particularize F by choosing

$$
F=F_{\delta}(x)= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0 \leq x \leq \delta \\ \delta & \text { if } x>\delta\end{cases}
$$

Noticing that

$$
\left(u_{2}-u_{1}\right) F_{\delta}\left(u_{2}-u_{1}\right) \geq F_{\delta}\left(u_{2}-u_{1}\right)^{2}, \quad \nabla\left(u_{2}-u_{1}\right)=\nabla F_{\delta}\left(u_{2}-u_{1}\right) \text { on } \Omega_{\delta}
$$

where $\Omega_{\delta}=\left\{x \in \Omega ; 0<\left(u_{2}-u_{1}\right)(x)<\delta\right\}$, we derive from (15)

$$
\begin{array}{r}
\int_{\Omega}\left\{\varepsilon A\left(x, \varepsilon u_{2}\right) \nabla F_{\delta}\left(u_{2}-u_{1}\right) \cdot \nabla F_{\delta}\left(u_{2}-u_{1}\right)+a F_{\delta}\left(u_{2}-u_{1}\right)^{2}\right\} d x \\
\leq \int_{\Omega} \varepsilon\left(A\left(x, \varepsilon u_{1}\right)-A\left(x, \varepsilon u_{2}\right)\right) \nabla u_{1} \cdot \nabla F_{\delta}\left(u_{2}-u_{1}\right) d x
\end{array}
$$

By arguing like in (9), it follows that we have

$$
(\lambda \varepsilon \wedge 1)\left\|F_{\delta}\left(u_{2}-u_{1}\right)\right\|_{a}^{2} \leq \int_{\Omega} \varepsilon\left(A\left(x, \varepsilon u_{1}\right)-A\left(x, \varepsilon u_{2}\right)\right) \nabla u_{1} \cdot \nabla F_{\delta}\left(u_{2}-u_{1}\right) d x
$$

Using (13) we get

$$
\begin{aligned}
(\lambda \varepsilon \wedge 1)\left\|F_{\delta}\left(u_{2}-u_{1}\right)\right\|_{a}^{2} & \leq \varepsilon^{2} \gamma \int_{\Omega_{\delta}}\left|u_{1}-u_{2}\right|\left|\nabla u_{1}\right|\left|\nabla F_{\delta}\left(u_{2}-u_{1}\right)\right| d x \\
& \leq \varepsilon^{2} \gamma\left\{\int_{\Omega_{\delta}}\left|u_{1}-u_{2}\right|^{2}\left|\nabla u_{1}\right|^{2} d x\right\}^{\frac{1}{2}}\left\|F_{\delta}\left(u_{2}-u_{1}\right)\right\|_{a}
\end{aligned}
$$

by the Cauchy-Schwarz inequality. Using again the equivalence of the norms given by (1), (10), we derive that

$$
\left\|F_{\delta}\left(u_{2}-u_{1}\right)\right\|_{1,2}^{2} \leq C \int_{\Omega_{\delta}}\left|u_{1}-u_{2}\right|^{2}\left|\nabla u_{1}\right|^{2} d x
$$

where C is independent of δ. It implies

$$
\int_{\Omega} F_{\delta}\left(u_{2}-u_{1}\right)^{2} d x \leq C \int_{\Omega_{\delta}}\left|u_{1}-u_{2}\right|^{2}\left|\nabla u_{1}\right|^{2} d x
$$

and thus

$$
\int_{\Omega} \chi_{\left\{u_{2}-u_{1}>\delta\right\}} \delta^{2} d x \leq C \int_{\Omega} \chi_{\Omega_{\delta}} \delta^{2}\left|\nabla u_{1}\right|^{2} d x
$$

χ denotes the characteristic function of sets, $\left\{u_{2}-u_{1}>\delta\right\}=\left\{x \in \Omega ;\left(u_{2}-\right.\right.$ $\left.\left.u_{1}\right)(x)>\delta\right\}$. Dividing by δ^{2} it comes

$$
\int_{\Omega} \chi_{\left\{u_{2}-u_{1}>\delta\right\}} d x \leq C \int_{\Omega} \chi_{\Omega_{\delta}}\left|\nabla u_{1}\right|^{2} d x .
$$

Letting $\delta \rightarrow 0$, since

$$
\chi_{\Omega_{\delta}} \rightarrow 0, \chi_{\left\{u_{2}-u_{1}>\delta\right\}} \rightarrow \chi_{\left\{u_{2}-u_{1}>0\right\}} \text { a.e., }
$$

we obtain by the Lebesgue theorem $\int_{\Omega} \chi_{\left\{u_{2}-u_{1}>0\right\}} d x=0$ and thus $u_{2} \leq u_{1}$. Exchanging the roles of u_{1} and u_{2}, the result follows.

3. Asymptotic behaviour of u_{ε}

3.1. The convergence of $\varepsilon u_{\varepsilon}$. Before investigating the behavior of u_{ε}, it is useful (see [4]) to consider $\varepsilon u_{\varepsilon}$. Some notation is in order. Let k_{0} be an arbitrary element in K. We define

$$
K_{\varepsilon}\left(k_{0}\right)=\varepsilon\left(K-k_{0}\right)=\left\{\varepsilon\left(k-k_{0}\right), k \in K\right\}, \quad K_{0}=\bigcap_{\varepsilon>0} K_{\varepsilon}\left(k_{0}\right) .
$$

Then we have
Lemma 3.1. Let k_{0} be an arbitrary element of K.
(i) $\left\{K_{\varepsilon}\left(k_{0}\right)\right\}_{\varepsilon>0}$ is a nondecreasing sequence of closed convex sets, i.e., $\varepsilon<\varepsilon^{\prime}$ implies $K_{\varepsilon}\left(k_{0}\right) \subset K_{\varepsilon^{\prime}}\left(k_{0}\right)$.
(ii) K_{0} is a closed convex set containing 0 independent of $k_{0} \in K$.

Proof. (i) $K-k_{0}$ is closed, convex, containing 0 and so is $K_{\varepsilon}\left(k_{0}\right)=\varepsilon\left(K-k_{0}\right)$. Next, assuming $\varepsilon<\varepsilon^{\prime}$ and considering $\varepsilon\left(k-k_{0}\right) \in K_{\varepsilon}\left(k_{0}\right)$, we have

$$
\varepsilon\left(k-k_{0}\right)=\frac{\varepsilon}{\varepsilon^{\prime}} \varepsilon^{\prime}\left(k-k_{0}\right)=\frac{\varepsilon}{\varepsilon^{\prime}} \varepsilon^{\prime}\left(k-k_{0}\right)+\left(1-\frac{\varepsilon}{\varepsilon^{\prime}}\right) 0 \in K_{\varepsilon^{\prime}}\left(k_{0}\right) .
$$

(ii) K_{0} is a closed convex set as an intersection of closed convex sets. It contains 0 since $0 \in K_{\varepsilon}\left(k_{0}\right)$, for all $\varepsilon>0$. Let us show that K_{0} is independent of the element $k_{0} \in K$. For that consider $v \in \bigcap_{\varepsilon>0} K_{\varepsilon}\left(k_{0}\right)$. Then, for every $\varepsilon>0$ there exists $k \in K$ such that $v=\varepsilon\left(k-k_{0}\right)$. Taking $k_{0}^{\prime} \in K$ and $\varepsilon^{\prime}>\varepsilon$ we have $v=\varepsilon\left(k-k_{0}\right)=\varepsilon\left(k-k_{0}^{\prime}\right)+\varepsilon\left(k_{0}^{\prime}-k_{0}\right)$, and then by (i) $v-\varepsilon\left(k_{0}^{\prime}-k_{0}\right)=$ $\varepsilon\left(k-k_{0}^{\prime}\right) \in K_{\varepsilon}\left(k_{0}^{\prime}\right) \subset K_{\varepsilon^{\prime}}\left(k_{0}^{\prime}\right)$. Letting $\varepsilon \rightarrow 0$, since v is a fixed element, we get $v \in K_{\varepsilon^{\prime}}\left(k_{0}^{\prime}\right)$, for all $\varepsilon^{\prime}>0$. This shows that $\bigcap_{\varepsilon>0} K_{\varepsilon}\left(k_{0}\right) \subset \bigcap_{\varepsilon>0} K_{\varepsilon}\left(k_{0}^{\prime}\right)$, and the result follows by exchanging k_{0} and k_{0}^{\prime}.

We now introduce

$$
\begin{equation*}
W_{a}=\left\{v \in K_{0}, a v=0 \text { a.e. in } \Omega\right\} . \tag{16}
\end{equation*}
$$

Since W_{a} is clearly a closed convex set of $H^{1}(\Omega)$, fixing $\varepsilon=1$ in Theorem 2.1 it follows that there exists a w_{0} solution to

$$
\left\{\begin{array}{l}
w_{0} \in W_{a} \tag{17}\\
\int_{\Omega} A\left(x, w_{0}\right) \nabla w_{0} \cdot \nabla\left(v-w_{0}\right) d x \geq\left\langle f, v-w_{0}\right\rangle \quad \forall v \in W_{a} .
\end{array}\right.
$$

Remark 3.2. The above bilinear form seems not to be coercive on $H^{1}(\Omega)$, however on W_{a} one has

$$
\int_{\Omega} A(x, w) \nabla u \cdot \nabla v d x=\int_{\Omega}(A(x, w) \nabla u \cdot \nabla v+a u v) d x \quad \forall u, v \in W_{a} .
$$

If in addition we suppose that W_{a} satisfies (14), then the solution to (17) is unique. The proof follows from Theorem 2.2 where we take $\varepsilon=1$.

Then we have
Theorem 3.3. Suppose that u_{ε} is solution to (3). If W_{a} satisfies (14) and if (2), (4)-(7), (13) hold, we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon u_{\varepsilon}=w_{0} \quad \text { in } H^{1}(\Omega) \text { strong, }
$$

where w_{0} is the unique solution to (17).
Remark 3.4. Note at this point that we do not assume the solution to (3) to be unique. Only (17) is supposed to have a unique solution.

We will need the following lemma (see $[2,8]$),
Lemma 3.5 (Minty). The problem (3) is equivalent to

$$
\left\{\begin{array}{l}
u_{\varepsilon} \in K \tag{18}\\
\int_{\Omega}\left[\varepsilon A\left(x, \varepsilon u_{\varepsilon}\right) \nabla v \cdot \nabla\left(v-u_{\varepsilon}\right)+a v\left(v-u_{\varepsilon}\right)\right] d x \geq\left\langle f, v-u_{\varepsilon}\right\rangle \quad \forall v \in K .
\end{array}\right.
$$

Proof. We reproduce the proof for the reader's convenience. First if (3) holds then

$$
\begin{aligned}
\int_{\Omega}\left[\varepsilon A\left(x, \varepsilon u_{\varepsilon}\right)\right. & \left.\nabla v \cdot \nabla\left(v-u_{\varepsilon}\right)+a v\left(v-u_{\varepsilon}\right)\right] d x \\
= & \int_{\Omega}\left[\varepsilon A\left(x, \varepsilon u_{\varepsilon}\right) \nabla\left(v-u_{\varepsilon}\right) \cdot \nabla\left(v-u_{\varepsilon}\right)+a\left(v-u_{\varepsilon}\right)^{2}\right] d x \\
& +\int_{\Omega}\left[\varepsilon A\left(x, \varepsilon u_{\varepsilon}\right) \nabla u_{\varepsilon} \cdot \nabla\left(v-u_{\varepsilon}\right)+a u_{\varepsilon}\left(v-u_{\varepsilon}\right)\right] d x \\
\geq & \left\langle f, v-u_{\varepsilon}\right\rangle \quad \forall v \in K
\end{aligned}
$$

(by (2), (3), (7)). Next if (18) holds, replacing v by $u_{\varepsilon}+t\left(v-u_{\varepsilon}\right)$ which is in K for any $t \in(0,1), v \in K$, we get

$$
\begin{aligned}
\int_{\Omega}\left[\varepsilon A\left(x, \varepsilon u_{\varepsilon}\right)\right. & \nabla\left\{u_{\varepsilon}+t\left(v-u_{\varepsilon}\right)\right\} \cdot \nabla t\left(v-u_{\varepsilon}\right) \\
+ & \left.+a\left\{u_{\varepsilon}+t\left(v-u_{\varepsilon}\right)\right\} t\left(v-u_{\varepsilon}\right)\right] d x \geq t\left\langle f, v-u_{\varepsilon}\right\rangle
\end{aligned}
$$

Dividing by t and letting $t \rightarrow 0$ we get (3).
We now turn to the proof of Theorem 3.3.
Proof of Theorem 3.3. Let us take a fixed element u^{*} in K. Considering $v=$ $(1-\varepsilon) u_{\varepsilon}+\varepsilon u^{*} \in K$ in (3) we get
$\varepsilon \int_{\Omega} A\left(x, \varepsilon u_{\varepsilon}\right) \nabla u_{\varepsilon} \cdot \nabla\left(-\varepsilon u_{\varepsilon}+\varepsilon u^{*}\right) d x+\int_{\Omega} a u_{\varepsilon}\left(-\varepsilon u_{\varepsilon}+\varepsilon u^{*}\right) d x \geq\left\langle f,-\varepsilon u_{\varepsilon}+\varepsilon u^{*}\right\rangle$.

This implies setting $v_{\varepsilon}=\varepsilon u_{\varepsilon}$

$$
\begin{aligned}
& \int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon} d x+\frac{1}{\varepsilon} \int_{\Omega} a v_{\varepsilon}^{2} d x \\
& \leq \varepsilon \int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla u^{*} d x+\int_{\Omega} a v_{\varepsilon} u^{*} d x+\left\langle f, v_{\varepsilon}-\varepsilon u^{*}\right\rangle
\end{aligned}
$$

Using (6), (7) we derive

$$
\begin{align*}
& \lambda \int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{2} d x+\frac{1}{\varepsilon} \int_{\Omega} a v_{\varepsilon}^{2} d x \\
& \quad \leq \varepsilon \int_{\Omega}\left(\Lambda\left|\nabla v_{\varepsilon}\right|\left|\nabla u^{*}\right|+a\left|v_{\varepsilon}\right| \| u^{*} \mid\right) d x+|f|_{*}\left\|v_{\varepsilon}\right\|_{1,2}+\varepsilon|f|_{* *}\left\|u^{*}\right\|_{1,2} \tag{19}
\end{align*}
$$

Assuming $\varepsilon \leq 1, \varepsilon \Lambda<1$ - recall that $\varepsilon \rightarrow 0$ - we get

$$
(\lambda \wedge 1)\left\|v_{\varepsilon}\right\|_{a}^{2} \leq\left\|v_{\varepsilon}\right\|_{a}\left\|u^{*}\right\|_{a}+|f|_{*}\left\|v_{\varepsilon}\right\|_{1,2}+|f|_{*}\left\|u^{*}\right\|_{1,2}
$$

Due to the equivalence of norms $\|\cdot\|_{a},\|\cdot\|_{1,2}$ we obtain, for some constants independent of $\varepsilon,\left\|v_{\varepsilon}\right\|_{1,2}^{2} \leq C\left\|v_{\varepsilon}\right\|_{1,2}+C^{\prime}$. It follows that

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{1,2} \leq C^{\prime \prime} \tag{20}
\end{equation*}
$$

and - up to a sequence - there exists $v_{0} \in K$ such that when $\varepsilon \rightarrow 0$,

$$
\begin{array}{ll}
v_{\varepsilon} \rightharpoonup v_{0} & \text { in } H^{1}(\Omega) \\
v_{\varepsilon} \rightarrow v_{0} & \text { in } L^{2}(\Omega) \\
v_{\varepsilon} \rightarrow v_{0} & \text { a.e. in } \Omega . \tag{23}
\end{array}
$$

From (19), (20) we derive $\int_{\Omega} a v_{\varepsilon}^{2} d x \leq \varepsilon C$, where C is independent of ε. Using Fatou's lemma we infer

$$
\begin{equation*}
\int_{\Omega} a v_{0}^{2} d x=0, \quad \text { i.e. } a v_{0}=0 \text { a.e. in } \Omega . \tag{24}
\end{equation*}
$$

Next we would like to show that $v_{0} \in K_{0}$. Consider $k_{0} \in K$. We have $v_{\varepsilon}=$ $\varepsilon u_{\varepsilon}=\varepsilon\left(u_{\varepsilon}-k_{0}\right)+\varepsilon k_{0}$, and thus for $\varepsilon^{\prime}>\varepsilon$, by Lemma 3.1, $v_{\varepsilon}-\varepsilon k_{0}=\varepsilon\left(u_{\varepsilon}-k_{0}\right) \in$ $K_{\varepsilon^{\prime}}\left(k_{0}\right)$. Letting $\varepsilon \rightarrow 0$ we get $v_{0} \in K_{\varepsilon^{\prime}}\left(k_{0}\right)$ for all ε^{\prime}. It follows that $v_{0} \in K_{0}$ and by (24) $v_{0} \in W_{a}$. Next, considering (18) and multiplying the inequality by ε we have

$$
\begin{equation*}
\int_{\Omega}\left(A\left(x, v_{\varepsilon}\right) \nabla(\varepsilon v) \cdot \nabla\left(\varepsilon v-v_{\varepsilon}\right)+a v\left(\varepsilon v-v_{\varepsilon}\right)\right) d x \geq\left\langle f, \varepsilon v-v_{\varepsilon}\right\rangle \forall v \in K \tag{25}
\end{equation*}
$$

Consider $w \in W_{a}$ an arbitrary element. Since $w \in K_{0}$, for every ε there exists $w_{\varepsilon} \in K$ such that $w=\varepsilon\left(w_{\varepsilon}-k_{0}\right)$. Taking

$$
\begin{equation*}
v=w_{\varepsilon}=\frac{w}{\varepsilon}+k_{0} \tag{26}
\end{equation*}
$$

in (25) we obtain

$$
\begin{align*}
& \int_{\Omega}\left(A\left(x, v_{\varepsilon}\right) \nabla\left(w+\varepsilon k_{0}\right) \cdot \nabla\left(w-v_{\varepsilon}+\varepsilon k_{0}\right)\right. \tag{27}\\
& \left.\quad+a\left(\frac{w}{\varepsilon}+k_{0}\right)\left(w-v_{\varepsilon}+\varepsilon k_{0}\right)\right) d x \geq\left\langle f, w-v_{\varepsilon}+\varepsilon k_{0}\right\rangle
\end{align*}
$$

Since $w \in W_{a}$, then $a w=0$ a.e. $x \in \Omega$ and (27) leads to

$$
\begin{align*}
& \int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla w \cdot \nabla\left(w-v_{\varepsilon}\right) d x+\varepsilon \int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla w \cdot \nabla k_{0} d x \\
& +\varepsilon \int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla k_{0} \cdot \nabla\left(w-v_{\varepsilon}+\varepsilon k_{0}\right) d x+\int_{\Omega} a k_{0}\left(-v_{\varepsilon}+\varepsilon k_{0}\right) d x \tag{28}\\
& \geq\left\langle f, w-v_{\varepsilon}\right\rangle+\varepsilon\left\langle f, k_{0}\right\rangle
\end{align*}
$$

It follows from (23) that $A\left(x, v_{\varepsilon}\right) \nabla w \rightarrow A\left(x, v_{0}\right) \nabla w$ in $L^{2}(\Omega)$, and passing to the limit in (28) we obtain

$$
\int_{\Omega} A\left(x, v_{0}\right) \nabla w \cdot \nabla\left(w-v_{0}\right) d x \geq\left\langle f, w-v_{0}\right\rangle \quad \forall w \in W_{a}
$$

Using Lemma 3.5 with $\varepsilon=1$, we see that v_{0} also satisfies

$$
\left\{\begin{array}{l}
v_{0} \in W_{a} \\
\int_{\Omega} A\left(x, v_{0}\right) \nabla v_{0} \cdot \nabla\left(w-v_{0}\right) d x \geq\left\langle f, w-v_{0}\right\rangle \quad \forall w \in W_{a}
\end{array}\right.
$$

i.e., $v_{0}=w_{0}$ the unique solution to (17). Since the possible limit of $v_{\varepsilon}=\varepsilon u_{\varepsilon}$ is unique, it is the whole sequence v_{ε} that satisfies (21)-(23). Let us now show that the convergence is in fact strong. For that we multiply (3) by ε and take $v=w_{\varepsilon}$ given by (26). We obtain

$$
\int_{\Omega}\left(A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla\left(w+\varepsilon k_{0}-v_{\varepsilon}\right)+a u_{\varepsilon}\left(w+\varepsilon k_{0}-v_{\varepsilon}\right)\right) d x \geq\left\langle f, w+\varepsilon k_{0}-v_{\varepsilon}\right\rangle .
$$

Thus rearranging this inequality and taking into account that $\frac{1}{\varepsilon}>1$, we get

$$
\begin{align*}
\int_{\Omega}\left(A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon}+a v_{\varepsilon}^{2}\right) d x \leq & \int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla\left(w+\varepsilon k_{0}\right) d x \tag{29}\\
& +\int_{\Omega} a u_{\varepsilon} \varepsilon k_{0} d x-\left\langle f, w+\varepsilon k_{0}-v_{\varepsilon}\right\rangle .
\end{align*}
$$

Thus we derive taking $w=w_{0}$ in (29)

$$
\begin{aligned}
&(\lambda\wedge 1)\left\|v_{\varepsilon}-w_{0}\right\|_{a}^{2} \\
& \leq \int_{\Omega}\left(A\left(x, v_{\varepsilon}\right) \nabla\left(v_{\varepsilon}-w_{0}\right) \cdot \nabla\left(v_{\varepsilon}-w_{0}\right)+a\left(v_{\varepsilon}-w_{0}\right)^{2}\right) d x \\
&= \int_{\Omega}\left(A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon}+a\left(v_{\varepsilon}\right)^{2}\right) d x \\
&-\int_{\Omega}\left\{A\left(x, v_{\varepsilon}\right) \nabla w_{0} \cdot \nabla v_{\varepsilon}+A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla w_{0}\right\} d x+\int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla w_{0} \cdot \nabla w_{0} d x \\
& \leq \int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla\left(w+\varepsilon k_{0}\right) d x+\int_{\Omega} a u_{\varepsilon} \varepsilon k_{0} d x-\left\langle f, w+\varepsilon k_{0}-v_{\varepsilon}\right\rangle \\
& \quad-\int_{\Omega}\left\{A\left(x, v_{\varepsilon}\right) \nabla w_{0} \cdot \nabla v_{\varepsilon}+A\left(x, v_{\varepsilon}\right) \nabla v_{\varepsilon} \cdot \nabla w_{0}\right\} d x+\int_{\Omega} A\left(x, v_{\varepsilon}\right) \nabla w_{0} \cdot \nabla w_{0} d x
\end{aligned}
$$

which converges towards zero when $\varepsilon \rightarrow 0$. This completes the proof of the theorem.
3.2. Convergence of u_{ε}. Suppose that we are in dimension 1 . Then - due to the embedding $H^{1}(\Omega) \subset \mathcal{C}(\bar{\Omega})$ - we derive from Theorem 3.3 that $v_{\varepsilon} \rightarrow w_{0}$ in $\mathcal{C}(\bar{\Omega})$. In particular

$$
u_{\varepsilon}=\frac{v_{\varepsilon}}{\varepsilon} \rightarrow \operatorname{sign} w_{0} \cdot \infty \quad \text { on }\left[w_{0} \neq 0\right],
$$

and we can expect convergence of u_{ε} only on the set $\left[w_{0}=0\right]$. Due to (16) and since $w_{0} \in W_{a}$ we have $w_{0}=0$ on $\Omega^{\prime}=\{x \in \Omega ; a(x)>0\}$. Now we would like to investigate the behavior of u_{ε} on this set. For this we will suppose

$$
\begin{equation*}
f \in L^{2}(a d x)^{*} \tag{30}
\end{equation*}
$$

where we have set

$$
\begin{aligned}
L^{2}(a d x) & =\left\{v \text { measurable on } \Omega \text { such that } \int_{\Omega} a v^{2} d x<+\infty\right\} \\
L^{2}(a d x)^{*} & =\text { the dual of } L^{2}(a d x)
\end{aligned}
$$

It is clear that $L^{2}(a d x)$ is a Hilbert space for the scalar product $(u, v)_{a}=$ $\int_{\Omega} a u v d x$, and its dual can be identified to $L^{2}(a d x)$ via the Riesz representation theorem. If f satisfies (30) we have

$$
\begin{equation*}
\langle f, v\rangle \leq C|v|_{a}=C\left\{\int_{\Omega} a v^{2} d x\right\}^{\frac{1}{2}} \leq C\|v\|_{a} \tag{31}
\end{equation*}
$$

and thus $f \in H^{1}(\Omega)^{*}$. So, there exists u_{ε} solution to (3). Moreover, we have

Theorem 3.6. Let $f \in L^{2}(a d x)^{*}$ and let u_{ε} be a solution to (3). Then it holds that

$$
u_{\varepsilon} \rightarrow u_{0} \text { in } L^{2}(a d x),
$$

where u_{0} is the solution to

$$
\left\{\begin{array}{l}
u_{0} \in \bar{K}\left(\text { the closure of } K \text { in } L^{2}(a d x)\right) \tag{32}\\
\int_{\Omega} a u_{0}\left(v-u_{0}\right) d x \geq\left\langle f, v-u_{0}\right\rangle \quad \forall v \in \bar{K}
\end{array}\right.
$$

Proof. Let v_{0} be a fixed element in K. Taking $v=v_{0}$ in (3) and setting $A=A\left(x, \varepsilon u_{\varepsilon}\right)$ we obtain

$$
\varepsilon \int_{\Omega}\left(A \nabla u_{\varepsilon} \cdot \nabla\left(v_{0}-u_{\varepsilon}\right)+a u_{\varepsilon}\left(v_{0}-u_{\varepsilon}\right)\right) d x \geq\left\langle f, v_{0}-u_{\varepsilon}\right\rangle .
$$

Using (7) we deduce
$\varepsilon \lambda \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x+\int_{\Omega} a u_{\varepsilon}^{2} d x \leq \varepsilon \int_{\Omega} A \nabla u_{\varepsilon} \cdot \nabla v_{0} d x+\int_{\Omega} a u_{\varepsilon} v_{0} d x+\left\langle f, u_{\varepsilon}-v_{0}\right\rangle$. Recalling (6) we get - see also (31)-
$\varepsilon \lambda\left|\left|\nabla u_{\varepsilon}\right|\right|_{2, \Omega}^{2}+\left|u_{\varepsilon}\right|_{a}^{2} \leq\left.\varepsilon \Lambda| | \nabla u_{\varepsilon}| |_{2, \Omega}| | \nabla v_{0}\right|_{2, \Omega}+\left|u_{\varepsilon}\right|_{a}\left|v_{0}\right|_{a}+|f|_{a}^{*}\left\{\left|u_{\varepsilon}\right|_{a}+\left|v_{0}\right|_{a}\right\}$, where $|f|_{a}^{*}$ denotes the strong dual norm of f. Setting $N\left(u_{\varepsilon}\right)=\left\{\varepsilon \lambda| | \nabla u_{\varepsilon}| |_{2, \Omega}^{2}+\right.$ $\left.\left|u_{\varepsilon}\right|_{a}^{2}\right\}^{\frac{1}{2}}$ one easily deduces that the following holds:

$$
N\left(u_{\varepsilon}\right)^{2} \leq\left\{\left.\sqrt{\varepsilon} \frac{\Lambda}{\sqrt{\lambda}}| | \nabla v_{0}\right|_{2, \Omega}+\left|v_{0}\right|_{a}+|f|_{a}^{*}\right\} N\left(u_{\varepsilon}\right)+|f|_{a}^{*}\left|v_{0}\right|_{a}
$$

and thus for some constant C independent of $\varepsilon(\varepsilon<1)$ we obtain

$$
\begin{equation*}
N\left(u_{\varepsilon}\right)^{2} \leq C \tag{33}
\end{equation*}
$$

So, up to a subsequence we have $u_{\varepsilon} \rightharpoonup u$ in $L^{2}(a d x)$. From (3) we derive

$$
\begin{align*}
\int_{\Omega} a u_{\varepsilon} v d x & \geq\left\langle f, v-u_{\varepsilon}\right\rangle-\varepsilon \int_{\Omega} A \nabla u_{\varepsilon} \cdot \nabla v d x+\int_{\Omega} a u_{\varepsilon}^{2} d x \\
& \geq\left\langle f, v-u_{\varepsilon}\right\rangle-\left.\left.\varepsilon \Lambda| | \nabla u_{\varepsilon}\right|_{2, \Omega}| | \nabla v\right|_{2, \Omega}+\int_{\Omega} a u_{\varepsilon}^{2} d x \\
& \geq\left\langle f, v-u_{\varepsilon}\right\rangle-\sqrt{\varepsilon} C^{\prime}+\int_{\Omega} a u_{\varepsilon}^{2} d x \tag{34}
\end{align*}
$$

by (33). Passing to the limit inf in ε we get

$$
\int_{\Omega} a u v d x \geq\langle f, v-u\rangle+\int_{\Omega} a u^{2} d x, \quad \forall v \in K
$$

By density the above inequality holds for every $v \in \bar{K}$ and $u=u_{0}$ solution to (32). By uniqueness of the limit it follows that the whole sequence u_{ε} converges to u_{0} in $L^{2}(a d x)$ weakly. Taking $v=u_{0}$ in (34) and passing to the $\lim \sup$ in ε we obtain $\lim \sup \int_{\Omega} a u_{\varepsilon}^{2} d x \leq \int_{\Omega} a u_{0}^{2} d x \leq \lim \inf \int_{\Omega} a u_{\varepsilon}^{2} d x$. Thus it holds $\lim _{\varepsilon \rightarrow 0} \int_{\Omega} a u_{\varepsilon}^{2} d x=\int_{\Omega} a u_{0}^{2} d x$. This establishes the strong convergence of u_{ε} and completes the proof.

In the case where $u_{0} \in K$ we can estimate more precisely the rate of convergence of u_{ε} toward u_{0} and show

Theorem 3.7. Suppose that $u_{0} \in K$. Then we have

$$
\left\|u_{\varepsilon}\right\|_{1,2} \leq C_{1}, \quad\left|u_{\varepsilon}-u_{0}\right|_{a} \leq \sqrt{\varepsilon} C_{2},
$$

where C_{1} and C_{2} are two constants independent of ε.
Proof. Since $u_{0} \in K$, we can choose $v=u_{0}$ in (3) and $v=u_{\varepsilon}$ in (32). Adding up we obtain $\varepsilon \int_{\Omega} A \nabla u_{\varepsilon} \cdot \nabla\left(u_{0}-u_{\varepsilon}\right) d x-\int_{\Omega} a\left(u_{\varepsilon}-u_{0}\right)^{2} d x \geq 0$. This can also be written as $\varepsilon \int_{\Omega} A \nabla\left(u_{\varepsilon}-u_{0}+u_{0}\right) \cdot \nabla\left(u_{0}-u_{\varepsilon}\right) d x-\int_{\Omega} a\left(u_{\varepsilon}-u_{0}\right)^{2} d x \geq 0$. Therefore
$\varepsilon \int_{\Omega} A \nabla\left(u_{0}-u_{\varepsilon}\right) \cdot \nabla\left(u_{0}-u_{\varepsilon}\right) d x+\int_{\Omega} a\left(u_{\varepsilon}-u_{0}\right)^{2} d x \leq \varepsilon \int_{\Omega} A \nabla u_{0} \cdot \nabla\left(u_{0}-u_{\varepsilon}\right) d x$.
Thus

$$
\varepsilon \lambda\left|\left|\nabla\left(u_{\varepsilon}-u_{0}\right)\right|\right|_{2, \Omega}^{2}+\left|u_{\varepsilon}-u_{0}\right|_{a}^{2} \leq \varepsilon \Lambda| | \nabla u_{0}| |_{2, \Omega}| | \nabla\left(u_{\varepsilon}-u_{0}\right)| |_{2, \Omega}
$$

(see (6), (7)). It follows that $\left|\left|\nabla\left(u_{\varepsilon}-u_{0}\right)\right|\right|_{2, \Omega} \leq\left.\frac{\Lambda}{\lambda}| | \nabla u_{0}\right|_{2, \Omega}$ and $\left|u_{\varepsilon}-u_{0}\right|_{a}^{2} \leq$ $\varepsilon \frac{\Lambda^{2}}{\lambda}\left|\mid \nabla u_{0} \|_{2, \Omega}\right.$. This completes the proof since $\|\cdot\|_{a}$ is equivalent to $\|\cdot\|_{1,2}$.

4. Some examples

4.1. The case where K is bounded. In this case $K_{0}=W_{a}=\{0\}$ but one can also see directly - since u_{ε} is bounded - that $v_{\varepsilon}=\varepsilon u_{\varepsilon} \rightarrow 0$ in $H^{1}(\Omega)$.
4.2. The case of a vector space. If $K=V$ is a closed subspace of $H^{1}(\Omega)$, then $K_{0}=V, W_{a}=\{v \in V ; a v=0$ a.e. in $\Omega\}$, and w_{0} is the weak solution to

$$
w_{0} \in W_{a}, \quad \int_{\Omega} A\left(x, w_{0}\right) \nabla w_{0} \cdot \nabla v d x=\langle f, w\rangle \quad \forall w \in W_{a}
$$

(see also [4]). Note that $w_{0}=0$ when $a>0$ a.e. in Ω.

Now if $f \in\left(L^{2}(a d x)\right)^{*}$ by the Riesz representation theorem there exists a unique $u \in L^{2}(a d x)$ such that

$$
\begin{equation*}
\langle f, v\rangle=(u, v)_{a}, \quad \forall v \in L^{2}(a d x) \tag{35}
\end{equation*}
$$

and u_{0} is such that - see (32)-

$$
u_{0} \in \bar{V}, \quad\left(u_{0}, v\right)_{a}=(u, v)_{a}, \quad \forall v \in \bar{V}
$$

where \bar{V} denotes the closure of V in $L^{2}(a d x)$ (to see that replace v by $u_{0} \pm v$ in (32)). In the case where V is dense in $L^{2}(a d x)$ one has

$$
\begin{equation*}
u_{0}=u \tag{36}
\end{equation*}
$$

This is the case in particular when $V=H^{1}(\Omega), H_{0}^{1}(\Omega)$.
4.3. The case of the obstacle problem. Consider for instance

$$
K=\left\{v \in H_{0}^{1}(\Omega) ; v \geq \varphi \text { a.e. in } \Omega\right\}
$$

where φ is a function satisfying $\varphi \in H^{1}(\Omega), \varphi \leq 0$ on Γ. Then clearly $\varphi^{+} \in K$ and

$$
\begin{aligned}
K_{\varepsilon}\left(\varphi^{+}\right) & =\left\{\varepsilon\left(v-\varphi^{+}\right) ; v \in K\right\} \\
& =\left\{w \in H_{0}^{1}(\Omega) ; \frac{w}{\varepsilon}+\varphi^{+} \geq \varphi \text { a.e. in } \Omega\right\} \\
& =\left\{w \in H_{0}^{1}(\Omega) ; w \geq-\varepsilon \varphi^{-} \text {a.e. in } \Omega\right\} .
\end{aligned}
$$

It follows that $K_{0}=\left\{w \in H_{0}^{1}(\Omega) ; w \geq 0\right.$ a.e. in $\left.\Omega\right\}, W_{a}=\left\{w \in K_{0} ; a w=0\right.$ a.e. in $\Omega\}$. This determines the solution w_{0} in this case.

Suppose now to simplify that $a=a_{0} \chi_{\Omega^{\prime}}$, where $\Omega^{\prime} \subset \Omega$ is a measurable subset and a_{0} a function satisfying $0<\lambda \leq a_{0} \leq \Lambda$ a.e. in Ω^{\prime}. It is easy to see in this case that $L^{2}(a d x)=L^{2}\left(\Omega^{\prime}\right)$. Thus

$$
\begin{equation*}
\bar{K}=\left\{v \in L^{2}(a d x) ; v \geq \varphi \text { a.e. in } \Omega^{\prime}\right\} . \tag{37}
\end{equation*}
$$

Indeed, one has $K \subset \bar{K}$. Moreover if $v \in L^{2}(a d x)$ satisfies $v \geq \varphi$ a.e. in Ω^{\prime}, consider $v_{n} \in H_{0}^{1}(\Omega)$ such that $v_{n} \rightarrow v \chi_{\Omega^{\prime}}$ in $L^{2}(\Omega)$ (recall that $H_{0}^{1}(\Omega)$ is dense in $\left.L^{2}(\Omega)\right)$. Then $v_{n} \vee \varphi \in K, v_{n} \vee \varphi \rightarrow v$ in $L^{2}\left(\Omega^{\prime}\right)$. This shows (37). If we introduce u such that (35) holds, then problem (32) can be written

$$
\begin{equation*}
u_{0} \in \bar{K}, \quad\left(u_{0}, v-u_{0}\right)_{a} \geq\left(u, v-u_{0}\right)_{a}, \quad \forall v \in \bar{K} \tag{38}
\end{equation*}
$$

We claim that it holds that

$$
\begin{equation*}
u_{0}=u \vee \varphi \tag{39}
\end{equation*}
$$

Indeed, first $u \vee \varphi \in \bar{K}$. Moreover for $v \in \bar{K}$-i.e. $v \geq \varphi$ a.e. in $\Omega^{\prime}-$ it holds that

$$
\int_{\Omega^{\prime}} a\{(u \vee \varphi)-u\}\{v-(u \vee \varphi)\} d x=\int_{\Omega^{\prime} \cap\{u<\varphi\}} a\{\varphi-u\}\{v-\varphi\} d x \geq 0
$$

i.e., $u \vee \varphi$ satisfies (38) and (39) is proved.
4.4. An example in one dimension. Taking $\Omega=(0,1), \Omega^{\prime}=\left(0, \frac{1}{2}\right), a=\chi_{\Omega^{\prime}}$ and $\eta \in \mathbb{R}$, let us choose K as $K=\left\{v \in H^{1}(\Omega), v-\eta \in H_{0}^{1}(\Omega)\right\}$. It is easy to see that K is a closed, convex and nonempty subset from $H^{1}(\Omega)$. In order to linearize our problem, we take $A(x, u)$ and f equal to one; thus problem (3) reads

$$
u_{\varepsilon} \in K ; \quad \varepsilon \int_{\Omega} u_{\varepsilon}^{\prime}\left(v^{\prime}-u_{\varepsilon}^{\prime}\right) d x+\int_{\Omega^{\prime}} u_{\varepsilon}\left(v-u_{\varepsilon}\right) d x \geq \int_{\Omega}\left(v-u_{\varepsilon}\right) d x, \quad \forall v \in K
$$

Taking $v=u_{\varepsilon} \pm w$ where $w \in H_{0}^{1}(\Omega)$ we see after an integration by parts that u_{ε} is solution to

$$
u_{\varepsilon} \in K ; \quad \int_{\Omega}\left(-\varepsilon u_{\varepsilon}^{\prime \prime}+u_{\varepsilon} \chi_{\Omega^{\prime}}-1\right) w d x=0, \quad \forall w \in H_{0}^{1}(\Omega)
$$

and this implies that u_{ε} solves the following ordinary differential equation:

$$
\begin{array}{ll}
-\varepsilon u_{\varepsilon}^{\prime \prime}+u_{\varepsilon}=1 & \text { in }\left(0, \frac{1}{2}\right), \quad-\varepsilon u_{\varepsilon}^{\prime \prime}=1 \quad \text { in }\left(\frac{1}{2}, 1\right) \\
& u_{\varepsilon}(0)=\eta=u_{\varepsilon}(1)
\end{array}
$$

with the continuity conditions $u_{\varepsilon}^{-}\left(\frac{1}{2}\right)=u_{\varepsilon}^{+}\left(\frac{1}{2}\right), u_{\varepsilon}^{\prime-}\left(\frac{1}{2}\right)=u_{\varepsilon}^{\prime+}\left(\frac{1}{2}\right)$. Using $u_{\varepsilon}(0)=\eta$ it is straightforward to obtain

$$
u_{\varepsilon}(x)=1+(\eta-1) e^{\frac{-x}{\sqrt{\varepsilon}}}+2 A \sinh \left(\frac{x}{\sqrt{\varepsilon}}\right), \quad x \in\left(0, \frac{1}{2}\right),
$$

where A is given in terms of $u^{\star}=u_{\varepsilon}^{-}\left(\frac{1}{2}\right)=u_{\varepsilon}^{+}\left(\frac{1}{2}\right)$ by

$$
A=\frac{u^{\star}-1+(1-\eta) e^{\frac{-1}{2 \sqrt{\varepsilon}}}}{2 \sinh \left(\frac{1}{2 \sqrt{\varepsilon}}\right)}
$$

Moreover, in the interval $\left(\frac{1}{2}, 1\right)$ the solution reads

$$
u_{\varepsilon}(x)=2 u^{\star}(1-x)+\eta(2 x-1)+\frac{1}{4 \varepsilon}\left(-2 x^{2}+3 x-1\right) .
$$

Finally, using the continuity condition for the derivatives at $x=\frac{1}{2}$ we obtain

$$
u^{\star}=\frac{2 \eta \sqrt{\varepsilon}+\frac{1}{4 \sqrt{\varepsilon}}+(\eta-1) e^{\frac{-1}{2 \sqrt{\varepsilon}}}+\left[(\eta-1) e^{\frac{-1}{2 \sqrt{\varepsilon}}}+1\right] \operatorname{coth}\left(\frac{1}{2 \sqrt{\varepsilon}}\right)}{2 \sqrt{\varepsilon}+\operatorname{coth}\left(\frac{1}{2 \sqrt{\varepsilon}}\right)} .
$$

Applying theorem 3.3 it yields that $\varepsilon u_{\varepsilon} \rightarrow w_{0}$ where w_{0} solves the problem

$$
w_{0} \in W_{a}, \quad \int_{0}^{1} w_{0}^{\prime}\left(v^{\prime}-w_{0}^{\prime}\right) d x \geq \int_{0}^{1}\left(v-w_{0}\right) d x, \quad \forall v \in W_{a}
$$

with $W_{a}=\left\{v \in H_{0}^{1}(\Omega), v=0\right.$ a.e. in $\left.\Omega^{\prime}\right\}$. Taking $v=w_{0} \pm w$ we get after integration by parts

$$
w_{0} \in W_{a}, \quad \int_{\frac{1}{2}}^{1}\left(-w_{0}^{\prime \prime}-1\right) w d x=0, \quad \forall w \in W_{a}
$$

and then we deduce that w_{0} solves

$$
\begin{gathered}
w_{0}=0 \quad \text { in }\left(0, \frac{1}{2}\right), \quad-w_{0}^{\prime \prime}=1 \quad \text { in }\left(\frac{1}{2}, 1\right) \\
w_{0}\left(\frac{1}{2}\right)=0=w_{0}(1) .
\end{gathered}
$$

Therefore we have that

$$
w_{0}= \begin{cases}0, & \text { in }\left(0, \frac{1}{2}\right) \\ \frac{1}{4}\left(-2 x^{2}+3 x-1\right) & \text { in }\left(\frac{1}{2}, 1\right) .\end{cases}
$$

Figure 1 shows $\varepsilon u_{\varepsilon}$ for several values of ε and its limit w_{0} taking η equal to one.

Figure 1: $\varepsilon u_{\varepsilon}$ and w_{0}.
Let us choose to simplify $\eta=1$. We obtain by straightforward computations in the interval ($0, \frac{1}{2}$)

$$
u_{\varepsilon}(x)=1+\frac{\left(u^{\star}-1\right)}{\sinh \left(\frac{1}{2 \sqrt{\varepsilon}}\right)} \sinh \left(\frac{x}{\sqrt{\varepsilon}}\right)
$$

with

$$
u^{\star}-1=\frac{1}{4 \sqrt{\varepsilon}\left(2 \sqrt{\varepsilon}+\operatorname{coth}\left(\frac{1}{2 \sqrt{\varepsilon}}\right)\right)} .
$$

Thus we deduce that $u_{\varepsilon}(x) \rightarrow 1$ in $\left(0, \frac{1}{2}\right)$ but the convergence is not strong in $L^{2}\left(0, \frac{1}{2}\right)$; indeed, we have

$$
\int_{0}^{\frac{1}{2}}\left(u_{\varepsilon}(x)-1\right)^{2} d x=\frac{1}{16 \varepsilon\left(2 \sqrt{\varepsilon}+\operatorname{coth}\left(\frac{1}{2 \sqrt{\varepsilon}}\right)\right)^{2}} \frac{1}{\left(\sinh \left(\frac{1}{2 \sqrt{\varepsilon}}\right)\right)^{2}} \int_{0}^{\frac{1}{2}} \sinh \left(\frac{x}{\sqrt{\varepsilon}}\right)^{2} d x .
$$

Then

$$
\int_{0}^{\frac{1}{2}}\left(u_{\varepsilon}(x)-1\right)^{2} d x=\frac{\sqrt{\varepsilon} \sinh \left(\frac{1}{\sqrt{\varepsilon}}\right)-1}{64 \varepsilon\left(2 \sqrt{\varepsilon}+\operatorname{coth}\left(\frac{1}{2 \sqrt{\varepsilon}}\right)\right)^{2}\left(\sinh \left(\frac{1}{2 \sqrt{\varepsilon}}\right)\right)^{2}},
$$

and this integral goes to infinity when $\varepsilon \rightarrow 0$. This is due to the fact that f defined by $\langle f, v\rangle=\int_{\Omega} v(x) d x$ does not belong to $L^{2}(a d x)^{*}$. On the other hand for this value of η, if we choose f such that $\langle f, v\rangle=\int_{\Omega^{\prime}} v(x) d x, f$ belongs to $L^{2}(a d x)^{*}$ and u_{ε} solution to

$$
u_{\varepsilon} \in K ; \quad \varepsilon \int_{\Omega} u_{\varepsilon}^{\prime}\left(v^{\prime}-u_{\varepsilon}^{\prime}\right) d x+\int_{\Omega^{\prime}} u_{\varepsilon}\left(v-u_{\varepsilon}\right) d x \geq \int_{\Omega^{\prime}}\left(v-u_{\varepsilon}\right) d x, \quad \forall v \in K
$$

is the solution of (see above)

$$
\begin{array}{cl}
-\varepsilon u_{\varepsilon}^{\prime \prime}+u_{\varepsilon}=1 & \text { in }\left(0, \frac{1}{2}\right), \quad-\varepsilon u_{\varepsilon}^{\prime \prime}=0 \quad \text { in }\left(\frac{1}{2}, 1\right) \\
& u_{\varepsilon}(0)=1=u_{\varepsilon}(1)
\end{array}
$$

with the continuity conditions $u_{\varepsilon}^{-}\left(\frac{1}{2}\right)=u_{\varepsilon}^{+}\left(\frac{1}{2}\right)$ and $u_{\varepsilon}^{\prime-}\left(\frac{1}{2}\right)=u_{\varepsilon}^{\prime+}\left(\frac{1}{2}\right)$. It is straightforward to deduce that u_{ε} equals 1 for all $\varepsilon>0$ and the convergence towards f is then here strong.

References

[1] Brezis, H., Analyse Fonctionelle - Théorie et Applications. Paris: Mason 1983.
[2] Chipot, M., Elements of Nonlinear Analysis. Basel: Birkhäuser 2000.
[3] Chipot, M. and Michaille, G., Uniqueness Results and Monotonicity Properties for Strongly Nonlinear Elliptic Variational Inequalities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) (1989), $137-166$.
[4] Chipot, M. and Muñiz, M. C., On some degenerate singular perturbation problems. Asymptotic Analysis 24 (2000), $209-232$.
[5] Chipot, M., l goes to plus infinity. Basel: Birkhäuser 2001.
[6] Evans, L. C., Partial Differential Equations. Graduate Studies Math. 19. Providence (RI): Amer. Math. Soc. 1998.
[7] Gilbarg, D. and Trudinger, Neil S., Elliptic Partial Differential Equations of Second Order. New York: Springer 1985.
[8] Kinderlehrer, D. and Stampacchia, G., An Introduction to Variational Inequalities. New York: Academic Press 1980.
[9] Lions, J. L., Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal. Lecture Notes Math. 323. Berlin: Springer 1973.

Received January 16, 2006; revised April 19, 2006

[^0]: J.A. Álvarez-Dios, J. C. García and M.C. Muñiz: Department of Applied Mathematics, University of Santiago de Compostela, 15706 Santiago, Spain; jaaldios@usc.es, carlosgb@usc.es, mcarmen@usc.es
 M. Chipot: Institut für Angewandte Mathematik. Universität Zürich. 8057 Zürich; m.m.chipot@math.unizh.ch

 The first author has been supported by PGIDIT02PXIA20701AF. The second author has been supported by the Swiss National Science Foundation under the contracts \# $20-67618.02$ and $20-105155 / 1$. The fourth author has been supported by Xunta de Galicia under research project PGIDIT06PXIB207052PR.

