Interpolation and Transmutation

A. Boumenir

Abstract. We show that the existence of a transmutation between two self-adjoint operators L_1 and L_2 is equivalent to the existence of an interpolation operator in the spectral variable. This equivalence helps construct a transmutation operator between abstract self-adjoint operators.

Keywords. Sampling, interpolation, transmutation

Mathematics Subject Classification (2000). Primary 41A05, secondary 94A20

1. Introduction

We are concerned with the existence of a transmutation also known as a transformation operator between two given self-adjoint operators, L_1 and L_2 that act in the Hilbert spaces H_1 and H_2, respectively. Recall that a linear operator W is said to be a transmutation operator if $H_2 \xrightarrow{W} H_1$ and

$$L_1 W = W L_2$$

(1)

holds on a dense subspace of the Hilbert space H_2. If the operator W is invertible, then $L_1 = W L_2 W^{-1}$ and this helps reconstruct the operator L_1 from the knowledge of both L_2 and W. The concept of transmutation became an essential tool for the inverse spectral problem by the Gelfand-Levitan theory, see [9, 12]. Further concepts and applications of transmutations can be found in the books by Carroll, see [5, 6]. Observe that (1) can also be seen as the homogeneous part of an operator equation in X

$$L_1 X - X L_2 = Y,$$

(2)

where Y, L_1 and L_2 are given operators. When L_1 and L_2 are bounded operators, one can prove the existence and uniqueness of a solution X, see [2, 13],

$$X = \frac{1}{2\pi i} \int_{\Gamma} (L_1 - \lambda I)^{-1} Y (L_2 - \lambda I)^{-1} d\lambda$$

A. Boumenir: Department of Mathematics, University of West Georgia, 1601 Maple St, Carrollton, GA 30118, USA; boumenir@westga.edu
and (2) has a unique solution if and only if (1) has the trivial solution. Ob-
serv that equation (1), in the simple case when L_1 and L_2 are finite matrices
with disjoint spectra, has the trivial solution $W = 0$, see also the Sylvester-
Rosemblum theorem [2]. A simple way to see this classical result is to assume
that if v is an eigenvector for L_2, i.e., $L_2v = \lambda v$ where $\lambda \in \sigma_2$ and σ_i
denotes the spectrum of L_i, for $i = 1, 2$. Then (1) implies $L_1Wv = WL_2v = \lambda Wv$,
and so either $Wv = 0$ or $\lambda \notin \sigma_1$. Since $\sigma_1 \cap \sigma_2 = \emptyset$, we must have $Wv = 0$ and the
fact that v is an arbitrary eigenvector implies that $W = 0$.

It is also known that if L_1 and L_2 are unbounded operators uniqueness may
not hold, see also examples using the shift operator in [2]. Observe that in the
case where operators have continuous spectra, the above simple argument fails
because eigenfunctions are now distributions see [10]. Let us define the linear
operator τ_{12} by

$$\tau_{12}(X) := L_1X - XL_2$$

and thus (2) becomes $\tau_{12}(X) = Y$. Then the existence and uniqueness of a
solution X to (2) is equivalent to the invertibility of the operator τ_{12}. It turns out
that the spectrum of τ_{12} always contains the direct sum $\sigma_1 - \sigma_2$, see [1], and thus
if $\sigma_1 \cap \sigma_2 \neq \emptyset$, then it is not invertible. In other words, any nontrivial bounded
operator solution W for (1) belongs to the null space of the operator τ_{12}.

In this note we show that equation (1) has non trivial unbounded solutions
even if $\sigma_1 \cap \sigma_2 = \emptyset$, which means that (2) has no uniqueness in the class of
unbounded operators. More precisely we show that a nontrivial solution W
for (1) exists if and only if a special interpolation operator between the spaces
of the transforms does. When both operators are self-adjoint, the approach
also allows for interpolation on the real line, and more precisely reconstructing
values of a transform on σ_1 from its known values on σ_2. Most interesting cases
will arise when the spectra are discrete and disjoint as the interpolation reduces
to the well known idea of sampling, see [14, 16].

To motivate the approach, let us explain how to construct an explicit solu-
tion of (1) while $\sigma_1 \cap \sigma_2 = \emptyset$. Consider the unbounded self-adjoint differential
operators

$$\begin{aligned}
L_1(f)(x) &:= -f''(x) + q_1(x)f(x), \ x \geq 0 \\
f'(0) - h_1f(0) &= 0 \\
L_2(f)(x) &:= -f''(x) + q_2(x)f(x), \ x \geq 0 \\
f'(0) - h_2f(0) &= 0
\end{aligned}$$

which act in the Hilbert space $H_2 = H_1 = L^2(0, \infty)$. For $i = 1, 2$, let us denote
their eigenfunctionals by

$$L_i(y_i)(x, \lambda) = \lambda y_i(x, \lambda)$$

(4)
which we normalize by $y_i(0, \lambda) = 1$. By the Gelfand–Levitan theory, we can always construct q_1 and q_2 such that σ_1 and σ_2 are discrete and disjoint $\sigma_1 \cap \sigma_2 = \emptyset$, see [8]. On the other hand, we have the existence of transformation operators such that

$$y_i(x, \lambda) = \cos(x\sqrt{\lambda}) + \int_0^x K_i(x, t) \cos(t\sqrt{\lambda}) \, dt$$

$$\cos(x\sqrt{\lambda}) = y_i(x, \lambda) + \int_0^x H_i(x, t)y_i(t, \lambda) \, dt,$$

where K_i and H_i are continuous kernels. The next step is to compose the above mappings, as to eliminate $\cos(x\sqrt{\lambda})$ and write

$$y_2(x, \lambda) = y_1(x, \lambda) + \int_0^x (H_1(x, t) + K_2(x, t)) y_1(t, \lambda) \, dt$$

$$+ \int_0^x K_2(x, t) \int_0^t H_1(t, s)y_1(s, \lambda) \, ds \, dt$$

$$= y_1(x, \lambda) + \int_0^x K_{12}(x, t)y_1(t, \lambda) \, dt,$$

where K_{12} is continuous in (x, t), and so we can write

$$y_2(x, \lambda) = V(y_1)(x, \lambda).$$

The operator V then is an unbounded operator solution to (1) since $L_2V = VL_1$ holds over the set $\{y_1(x, \lambda)\}_{\lambda \in \sigma_1}$ which is a complete set of functionals. To see the unboundedness of V observe that if $\lambda_n \in \sigma_1$, then $y_1(x, \lambda_n) \in L^2(0, \infty)$ while $y_2(x, \lambda_n) = V(y_1)(x, \lambda_n) \notin L^2(0, \infty)$ since the spectra are disjoint. This adds a simple counter example to the Sylvester-Rosemblum theorem in the case the operators are unbounded.

2. Notation

We shall assume that L_1 and L_2 are both unbounded self-adjoint operators acting in the separable Hilbert spaces H_1 and H_2, respectively. For the sake of simplicity, we assume that their respective spectra σ_1 and σ_2 are simple. Then by the spectral theorem, [15, p. 31], for $i = 1, 2$, each operator L_i generates an isomorphism or a transform F_i such that

$$H_i \xrightarrow{F_i} L_{dp_i}^2$$

with

$$L_{dp_i}^2 := \left\{ F \text{ measurable: } \int_{-\infty}^\infty |F(\lambda)|^2 \, d\rho_i(\lambda) < \infty \right\}$$

$$F_i(L_i f)(\lambda) = \lambda F_i(f)(\lambda) \quad \text{and} \quad \|f\|_i^2 = \int_{-\infty}^\infty |F_i(f)(\lambda)|^2 \, d\rho_i(\lambda),$$
where \(\| \cdot \|_i \) is the norm in \(H_i, i = 1, 2 \). The function \(\rho_i \) is called the spectral function and defines a Lebesgue-Stieltjes measure \(d\rho_i \). Thus it is non-decreasing, has a jump discontinuity at an eigenvalue only, is increasing on the continuous spectrum and its support \(\text{supp} d\rho_i = \sigma_i \). The existence of a spectral function guarantees that the spectrum is simple otherwise it is a matrix. In [10], one can find a more general setting for the spectral theory of operators in rigged Hilbert spaces, based on fact that when \(\lambda \) is in the continuous spectrum, the corresponding eigenfunctional is a generalized function.

Let us denote by \(\text{Dom}(W) \) the domain of the operator \(W \). We begin with few definitions.

Definition 2.1. \(W \) is a transformation operator ((T.O.) for short) if

i) \(W : H_2 \rightarrow H_1 \) and \(\overline{\text{Dom}(W)} = H_2 \);

ii) the set \(\Omega := \{ f \in \text{Dom}(W) \text{ and } L_2 f \in \text{Dom}(W) \} \) is dense in \(H_2 \);

iii) \(L_1 W(f) = WL_2(f) \) holds for any \(f \in \Omega \).

The above definition agrees with the definition of a transformation operator as given in [11], except for its boundedness. We now define the interpolation operator which connects both transforms.

Definition 2.2. \(J \) is an interpolation operator ((I.O.) for short) if

1) is a densely closed linear operator \(L^2_{d\rho_2} \xrightarrow{J} L^2_{d\rho_1} \);

2) the set \(S := \{ F \in \text{Dom}(J) \text{ and } \lambda F(\cdot) \in \text{Dom}(J) \} \) is dense in \(L^2_{d\rho_2} \);

3) for any \(F \in S \) we have \(\lambda J(F)(\lambda) = J(\lambda F)(\lambda) \).

At first sight the operator \(J \) is simply a mapping between two weighted \(L^2 \) spaces. The idea of interpolation is contained in the following:

Proposition 2.3. If \(J \) is an I.O. then \(\phi(\lambda) J(F)(\lambda) = J(\phi F)(\lambda) \) holds for any analytic function \(\phi \) and \(F \in L^2_{d\rho_2} \) with a compact support.

Proof. Let \(F \in L^2_{d\rho_2} \) have a compact support then for any \(n \geq 0 \) we have \(\lambda^n F(\lambda) \in L^2_{d\rho_2} \), \(\lambda^n F(\lambda) \in S \) and, by condition 3),

\[
\lambda^n J(F)(\lambda) = J(\lambda^n F)(\lambda).
\]

The next step we use the fact that any analytic function about the origin can be written as a power series \(\phi(\lambda) = \sum_{n \geq 0} a_n \lambda^n \) and since \(J \) is closed operator we have

\[
\sum_{n \geq 0} a_n \lambda^n J(F)(\lambda) = J\left(\sum_{n \geq 0} a_n \lambda^n F \right)(\lambda)
\]

\[
\phi(\lambda) J(F)(\lambda) = J(\phi F)(\lambda).
\]
Also by translation we have \((\lambda - a) J(F)(\lambda) = J((\lambda - a) F)(\lambda)\) which extends
the argument to any analytic function. While the function \(\phi F\) is known only
over \(\sigma_2\), \(\phi\) is constructed over a new domain \(\sigma_1\), whenever \(J(F)(\lambda) \neq 0\), by the
formula
\[
\phi(\lambda) = J(\phi F)(\lambda)/J(F)(\lambda).
\]
Thus to define \(\phi\) at different values say \(\lambda_0\), we need to use a function \(F\) with
\(J(F)(\lambda_0) \neq 0\).

On the other hand if \(J\) is a sampling operator in the classical sense then
condition 3) \(\lambda J(F)(\lambda) = J(\lambda F)(\lambda)\) is obvious as shown by the following simple
example of an interpolation operator.

Let \(\sigma_2 = \mathbb{Z}\) where \(\mathbb{Z}\) is the set of integers and \(\sigma_1 = \{\lambda_n\}\) where \(\lambda_n \notin \mathbb{Z}\) and
thus \(\sigma_1 \cap \sigma_2 = \emptyset\). Let us recall the definition
\[
PW_\pi = \left\{ F \text{ entire: } |F(\lambda)| \leq M e^{\pi|\Im(\lambda)|} \text{ and } \int_{-\infty}^{\infty} |F(x)|^2 \, dx < \infty \right\}.
\]
The Shannon–Whittacker–Kotelnikov sampling theorem [16] allows us to write
down a mapping explicitly for \(F \in PW_\pi\):
\[
F(\mu) := \sum_{n \in \mathbb{Z}} F(n) \frac{\sin(\pi(\mu - n))}{\pi(\mu - n)} \quad \text{for } \sum_{n \in \mathbb{Z}} |F(n)|^2 < \infty.
\]
Thus take the space \(L^2_{d\rho_2}\) where the measure \(\rho_2(\lambda) = [\lambda]\) represents the greatest
integer function in \(\lambda\). If \(\{F(n)\}_{n \in \mathbb{Z}}\) is given, then \(\{F(\lambda_n)\}_{n \in \mathbb{Z}}\) can be obtained from
\[
J(F)(\lambda_n) := \sum_{k \in \mathbb{Z}} F(k) \frac{\sin(\pi(\lambda_n - k))}{\pi(\lambda_n - k)}.
\]
A mapping \(L^2_{d\rho_2} \overset{J}{\rightarrow} L^2_{d\rho_1}\) can now be defined by the operation in (8) and by (7)
we in fact have \(J(F)(\lambda_n) = F(\lambda_n)\). It remains to see that condition 3) then
holds since, for \(\lambda F(\cdot) \in L^2_{d\rho_2}\), \(J(\lambda F(\cdot))(\lambda_n) = \lambda_n F(\lambda_n) = \lambda_n J(F)(\lambda_n)\).

3. Interpolation

We now prove the main result.

Proposition 3.1. Assume that \(L_i\) is an unbounded self adjoint operators acting
in \(H_i\) with spectral functions \(\rho_i\) for \(i = 1, 2\). Let \(J\) be a linear operator \(L^2_{d\rho_2} \overset{J}{\rightarrow} L^2_{d\rho_1}\) and define
\[
W = F_1^{-1} J F_2.
\]
Then \(W\) is a T.O. if and only if \(J\) is an I.O.
Proof. It is enough to show that the conditions in Definitions 2.2 and 2.1 are equivalent in their respective order. Since \(F_1 \) and \(F_2 \) are unitary operators it follows from (9) that \(W \) is densely defined if and only if \(J \) is densely defined. For the second point, we need to show that \(S \) is dense if and only if \(\Omega \) is dense. From (9) we have

\[
\psi \in \text{Dom}(J) \iff F_2^{-1}(\psi) \in \text{Dom}(W)
\]

and hence

\[
\psi \in S \iff F_2^{-1}(\psi) \in \Omega.
\]

In other words \(S \) is dense in \(L^2_{d\rho_2} \) if and only if \(\Omega \) is dense in \(H_2 \). For the third condition, let \(f \in \Omega \), then

\[
L_1W(f) = L_1F_1^{-1}JF_2(f) = F_1^{-1}\lambda JF_2(f)
\]

\[
WL_2(f) = F_2^{-1}JF_2L_2(f) = F_2^{-1}J\lambda JF_2(f)
\]

which simply says that

\[
L_1W(f) = WL_2(f) \quad \forall f \in \Omega \iff J(\lambda F) = \lambda J(F) \quad \forall F \in S.
\]

Therefore \(W \) is a T.O. if and only if \(J \) is an I.O.

Once the connection between I.O. and T.O. has been established, we now show how to construct an I.O. in a particular case. For the sake of simplicity, we shall call upon the well known Gelfand and Levitan theory, see [9] and [8].

From the given kernel defined by (5) define its adjoint \(W = V' \), i.e., \(W : L^2(0, \infty) \rightarrow L^2(0, \infty) \):

\[
Wf(x) = f(x) + \int_x^\infty K(t, x)f(t) \, dt.
\]

(10)

Since the kernel \(K(x, t) \), by the Gelfand-Levitan theory, is a continuous function in both variables \(W \) is densely defined as its domain includes for example \(C_0(0, \infty) \).

Let us recall that the Gelfand–Levitan theory requires the spectral function \(\rho \) to satisfy the following conditions, where

\[
\sigma(\lambda) := \begin{cases}
\rho(\lambda) - \frac{2}{\pi} \sqrt{\lambda} & \text{if } \lambda \geq 0 \\
\rho(\lambda) & \text{if } \lambda < 0.
\end{cases}
\]

Theorem 3.2 (Gelfand–Levitan–Gasymov). For \(\rho(\lambda) \), a nondecreasing and right-continuous function to be the spectral function of (3) it is necessary and sufficient that it satisfies the following conditions:
(A) for \(f \in L^2_{dx}(0, \infty) \) with compact support,
\[
\int_{-\infty}^{\infty} |E(f)(\lambda)|^2 \, d\rho(\lambda) = 0 \implies f(x) \equiv 0,
\]
where \(E(f)(\lambda) := \int_{0}^{\infty} f(x) \cos(x\sqrt{\lambda}) \, dx \);

(B) \(\int_{-\infty}^{\infty} \cos(x\sqrt{\lambda}) \, d\sigma(\lambda) \) converges boundedly to \(\Psi(x) \) as \(N \to \infty \) and \(\Psi \) has two locally integrable derivatives.

We have

Proposition 3.3. Assume that \(\rho_i(\lambda) \) satisfy conditions (A) and (B), then the operator \(J : L^2_{\rho_2} \to L^2_{\rho_1} \) defined by
\[
J(F)(\lambda) := \int_{0}^{\infty} W(f)(x)y_1(x, \lambda) \, dx,
\]
where \(f(x) := \int_{0}^{\infty} F(\lambda)y_2(x, \lambda) \, d\rho_2(\lambda) \) and \(f \in C^2_0[0, \infty) \) is an interpolation operator in the sense of Definition 2.2.

Proof. Conditions (A) and (B) ensure the existence of potentials \(q_i(x) \) for the solution of the inverse spectral problem and the recovered differential operators (4) generate unitary transforms
\[
F_i : L^2_{dx}(0, \infty) \to L^2_{\rho_i}, \quad i = 1, 2
\]
\[
F_i(f)(\lambda) := \int_{0}^{\infty} f(x)y_i(x, \lambda) \, dx \quad \text{and} \quad f(x) := \int F_i(f)(\lambda)y_i(x, \lambda) \, d\rho_i(\lambda).
\]
The operator \(J \) can be defined via \(L^2(0, \infty) \) as in (9):
\[
J := F_1 W F_2^{-1},
\]
where \(W \) is defined by (10). We now verify that the three conditions for \(J \) to be an I.O. are satisfied. By (12), \(F \in \text{Dom}(J) \) if and only if \(F^{-1}(F) \in \text{Dom}(W) \). Since \(F_2 \) is a unitary operator and \(\text{Dom}(W) \) is dense in \(L^2(0, \infty) \) it follows that \(J \) is also densely defined in \(L^2_{\rho_2} \).

For the second condition it is enough to show that \(\Omega = \{ f \in \text{Dom}(W) \} \) is dense in \(L^2(0, \infty) \). If \(f \in C^2_0(0, \infty) \), then \(f \in \text{Dom}(W) \) and \(L_2(f) = -f'' + q_2 f \in C_0(0, \infty) \) and so \(L_2 f \in \text{Dom}(W) \). Thus \(C^2_0(0, \infty) \subset \Omega \), and from the density of \(C^2_0(0, \infty) \) it follows that \(\Omega \) is also dense in \(L^2(0, \infty) \). It remains to see that \(S \) is unitarily equivalent to \(\Omega \):
\[
f \in \Omega \iff F_2(f) \in S
\]
and therefore it is also dense in \(L^2_{\rho_2} \).
A. Boumenir

The last condition to verify is if \(F \in S \) then \(\lambda J (F) (\lambda) = J (\lambda F (\cdot)) (\lambda) \). Let \(F(\lambda) := F_2 (f) (\lambda) \) where \(f \in C_0^\infty (0, \infty) \). We then have \(F \in S \) and \(\lambda F (\lambda) = F_2 (L_2 f) (\lambda) \), and it follows by (11) and the adjoint of \(V \) defined in (10) that

\[
\lambda J (F) (\lambda) = \lambda \int_0^\infty W(f) (x) y_1(x, \lambda) \, dx
= \lambda \int_0^\infty V'(f) (x) y_1(x, \lambda) \, dx
= \lambda \int_0^\infty f(x) V(y_1) (x, \lambda) \, dx
= \lambda \int_0^\infty f(x) y_2(x, \lambda) \, dx
= \int_0^\infty f(x) L_2 (y_2) (x, \lambda) \, dx
= \int_0^\infty L_2 (f) (x) y_2(x, \lambda) \, dx
= \int_0^\infty L_2 (f) (x) V(y_1) (x, \lambda) \, dx
= \int_0^\infty W L_2 (f) (x) y_1(x, \lambda) \, dx
= J (\lambda F (\cdot)) (\lambda).
\]

\[\square\]

Corollary 3.4. Let the conditions of Proposition 3 hold, then \(W \) is a nontrivial solution of the operator equation \(W L_2 = L_1 W \).

Proof. Since \(J \) is an I.O. operator, it follows from Proposition 2 that \(W \) is a T.O. \[\square\]

We now end this section by observing that if two given abstract self-adjoint operators \(P_1 \) and \(P_2 \) are similar to \(L_1 \) and \(L_2 \), in the sense they have the same spectral functions, then they “share” the same existing I.O. between \(L_1 \) and \(L_2 \). Indeed from the similarities relations

\[
L_1 = UP_1 U^{-1}, \quad L_2 = RP_2 R^{-1} \quad \text{and} \quad WL_2 = L_1 W
\]

it follows that \(WRP_2 R^{-1} = UP_1 U^{-1} W \), i.e., \(U^{-1} WRP_2 = P_1 U^{-1} W R \). Thus \(U^{-1} W R \) is the new T.O. for \(P_1 \) and \(P_2 \).

Corollary 3.5. Assume that \(P_i \) is an unbounded self adjoint operator acting in \(H_i \) with transform \(\tilde{F}_i \) and its spectral function \(\rho_i \), for \(i = 1, 2 \), satisfies conditions (A) and (B) in the Gelfand–Levitan–Gasymov theorem, then a T.O. \(\tilde{W} \) between \(P_1 \) and \(P_2 \) is simply given by

\[
\tilde{W} \psi := \tilde{F}_1^{-1} \int_0^\infty W f(x) y_1(x, \lambda) \, dx \quad \text{and} \quad f(x) = \int \tilde{F}_2 (\psi) (\lambda) y_2(x, \lambda) \, d\rho_2 (\lambda),
\]

where \(y_i(x, \lambda) \) are the eigenfunctionals of \(L_i \) defined in (4).
Interpolation and Transmutation

Proof. Since the Gelfand–Levitan theory already provides a standard I.O., see (11), it follows by Proposition 2, that

\[\tilde{F}_1 \tilde{W} \tilde{F}_2^{-1} = J = F_1 W F_2^{-1} \quad \text{and} \quad \tilde{W} = \tilde{F}_1^{-1} F_1 W F_2^{-1} \tilde{F}_2, \]

and thus \(\tilde{W} (\psi) = \tilde{F}_1^{-1} F_1 W (f) \) where \(f = F_2^{-1} \tilde{F}_2 (\psi) \), and \(W \) is given by (10).

Thus we have seen that the use of spectral functions allowed us to extend the Rosemblum–Sylvester theorem to unbounded operators, and furthermore it provides a new constructive approach to the solution of operator equation of type (1).

Acknowledgement. The author sincerely thanks the referee for the valuable comments.

References

Received September 16, 2005; revised June 22, 2006