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Pointwise Inequalities

in Variable Sobolev Spaces

and Applications
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Abstract. Pointwise estimates for variable exponent Sobolev functions are derived
to obtain several results on Sobolev spaces with variable exponent. Hypersingular
operators acting in these spaces are considered and the corresponding boundedness
and pointwise statements are given over bounded open sets with Lipschitz boundary.
Moreover, classical Sobolev embeddings into Hölder spaces are generalized to the
variable exponent setting.
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1. Introduction

Lebesgue and Sobolev spaces with variable exponent have been intensively stud-
ied during the last years by many authors. We only refer to the papers [27, 38],
where the basics of such spaces were developed, to the papers [12, 33], where
the denseness of nice functions in variable Sobolev spaces was considered, and
to the papers [7, 8, 10, 11, 25, 26, 29, 34, 35] and the recent preprints [5, 6]
and references therein, where several results on maximal, potential and singu-
lar operators in variable Lebesgue spaces were obtained. We also mention the
survey [37].

Roughly speaking, the interest in variable exponent spaces comes not only
from their mathematical curiosity but also from their relevance in many ap-
plications such as fluid dynamics, elasticity theory, differential equations with
non-standard growth conditions and image restoration (cf. [11, 28, 32]).
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In this paper we deal with pointwise type inequalities in Sobolev spaces with
variable exponent. We recover the well-known statement that the oscillation of
Sobolev functions may be estimated in terms of the fractional maximal function
of its gradient (see, for instance, [4, 19, 20, 23]), and use it to study Sobolev
embeddings into Hölder spaces with variable order and hypersingular integrals
of variable Sobolev functions.

Sobolev embeddings on variable exponent Sobolev spaces have been studied
by many authors, mainly in the case when the exponent is less than the dimen-
sion of the Euclidean space R

n (see [10, 13, 14, 15, 30]). The case when the
exponent is greater than n was less studied. We refer first of all to [13], where
embeddings into the Hölder spaces with variable exponent have been obtained
(see Theorems 5.4 and 5.5 in [13]), and to [21] where the capacity approach was
used to get embeddings into the space of continuous functions or in L∞(Ω).

In this paper, we prove a slightly different version of the embeddings into
Hölder spaces with variable exponents, obtained in [13], by following another
approach (see Theorem 4.7 below). In our proof we base ourselves on estima-
tion of the oscillation of f ∈ W 1,p(·)(Ω) by fractional maximal functions of ∇f
developed for instance in [19, 20].

We also consider hypersingular integrals of functions from Sobolev spaces
with variable exponent defined over bounded open sets. We derive boundedness
and pointwise results for the hypersingular operator of variable order α = α(x)
acting in W 1,p(·)(Ω) into an appropriate variable Lebesgue space, in the case
when Ω has Lipschitz boundary. The results obtained are new, even in the par-
ticular case when the exponents are constant. We point out that hypersingular
integrals were recently studied on variable exponent spaces in the papers [2]
and [3]. For a detailed discussion on general hypersingular integrals and their
applications see [36].

The paper is structured as follows. After some necessary preliminaries, in
Section 3 we generalize some known pointwise estimates to the variable Sobolev
spaces. Sobolev embeddings are studied in Section 4, where the main result
is formulated in Theorem 4.4. Finally, Section 5 is devoted to the study of
hypersingular integrals of Sobolev functions defined over bounded open sets.
As mentioned above, boundedness results are given and pointwise convergence
is discussed.

2. Preliminaries

The notation we will follow is standard or it will be properly introduced when-
ever needed. Everywhere below, Ω is assumed to be a non-empty open set of
the Euclidean space R

n.
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2.1. On variable Lebesgue spaces. Let p : Ω → [1,∞) be a (Lebesgue)
measurable bounded function. Put

pΩ := sup
x∈Ω

p(x) and p
Ω
:= inf

x∈Ω
p(x).

In the sequel we always assume that 1 < p
Ω
≤ pΩ <∞. By Lp(·)(Ω) we denote

the space of all measurable functions f on Ω such that the modular

Ip(·),Ω(f) :=

∫

Ω

|f(x)|p(x)dx

is finite. This space, sometimes called Lebesgue space with variable exponent or
variable Lebesgue space, is a Banach space with respect to the norm

‖f‖p(·),Ω := inf
{
λ > 0 : Ip(·),Ω

(
f

λ

)
≤ 1

}
, f ∈ Lp(·)(Ω). (1)

When p(x) ≡ p is constant then Lp(·)(Ω) coincides with the standard Lebesgue
space Lp(Ω). Details on variable Lebesgue spaces may be found in the papers
[12, 16, 27, 35, 38]. We stress that some basic properties of the classic Lebesgue
spaces are not transferred to the variable exponent case. For instance, the
space Lp(·)(Ω) is no longer translation invariant. As a consequence, Young’s
theorem and the so called mean continuity property fail in general (see [17]
and [35] for details). An important property of the variable Lebesgue space is
that the convergence in norm is equivalent to the modular convergence: given
{fk}k∈N0 ⊂ Lp(·)(Ω), then ‖fk‖p(·),Ω → 0 if and only if Ip(·),Ω(fk)→ 0, as k →∞.

As in the classic case, one also defines the Sobolev space of variable exponent
W 1,p(·)(Ω) as the space of all functions f ∈ Lp(·)(Ω) for which the first order
derivatives also belong to Lp(·)(Ω). W 1,p(·)(Ω) is a Banach space equipped with
the norm

‖f‖1,p(·),Ω := ‖f‖p(·),Ω + ‖|∇f |‖p(·),Ω, f ∈W 1,p(·)(Ω),

where ∇f denotes the (weak) gradient of f . In order to emphasize that we are
dealing with variable exponents, we shall write p(·) instead of p to denote an
exponent function. For simplicity, when Ω = R

n then we will omit the Ω in the
notation: for example, we only write ‖ · ‖p(·) instead of ‖ · ‖p(·),Rn to denote the
norm (1).

We write B(x, r) for an open ball in R
n centered at x ∈ R

n and of radius
r > 0, and we denote its measure by |B(x, r)|.

The fractional maximal function M
λ(·)
Ω g, 0 ≤ λ(x) < n, of a locally inte-

grable function g is given by

M
λ(·)
Ω g(x) = sup

r>0

1

|B(x, r)|1−
λ(x)
n

∫

B(x,r)∩Ω

|g(y)| dy, x ∈ Ω.



182 A. Almeida and S. Samko

Fractional maximal functions of variable order within the variable exponent
spaces were considered in [24]. If λ(x) ≡ 0, then M0

Ω = MΩ is the usual
Hardy-Littlewood maximal operator. We shall denote by P(Ω) the class of all
exponents p(·), such that MΩ is bounded in Lp(·)(Ω).

We will often assume the log-Hölder continuity condition

|p(x)− p(y)| ≤
A0

ln 1
|x−y|

, x, y ∈ Ω, |x− y| ≤
1

2
. (2)

Note that (2) implies

|p(x)− p(y)| ≤
2NA0

ln 2N
|x−y|

, x, y ∈ Ω, |x− y| ≤ N

where N ∈ N. Diening [8] proved that if Ω is bounded and p(·) satisfies (2),
then p(·) ∈ P(Ω). The boundedness of MΩ over unbounded open sets holds if
p(·) fulfills (2) and has a logarithmic decay at infinity (see [7]),

|p(x)− p(∞)| ≤
A∞

ln(e+ |x|)
, x ∈ Ω.

According to the result on the (p(·) → q(·))-boundedness of the Riesz po-
tential operator,

I
β(·)
Ω g(x) =

∫

Ω

g(y) dy

|x− y|n−β(x)
,

obtained in [34] and the boundedness of the maximal operator proved in [8],
the following theorem is valid over bounded open sets in R

n.

Theorem 2.1. Let p(·) satisfy (2) and β(·) satisfy the conditions

inf
x∈Ω

β(x) > 0, sup
x∈Ω

β(x)p(x) < n,

and let 1
q(x)

= 1
p(x)

− β(x)
n
. Then

∥∥∥Iβ(·)Ω g
∥∥∥
q(·),Ω

≤ C ‖g‖p(·),Ω.

Theorem 2.2 ([24]). Let p(·) satisfy (2) and β(·) satisfy the conditions

inf
x∈Ω

β(x) > 0, sup
x∈Ω

β(x)p(x) < n,

and let 1
q(x)

= 1
p(x)

− β(x)
n
. Then

∥∥∥Mβ(·)
Ω g

∥∥∥
q(·),Ω

≤ C ‖g‖p(·),Ω. (3)
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Observe that the statement (3) follows from the well-known pointwise esti-
mate

M
β(·)
Ω g(x) ≤ c I

β(·)
Ω (|g|)(x), x ∈ Ω

(see [1, p. 72]), I
β(·)
Ω being the Riesz potential operator of variable order, and

from the Sobolev-type Theorem 2.1.

2.2. Hölder spaces of variable order. Hölder spaces have an important role
in the study of regularity properties in the framework of variational calculus and
differential equations. We consider here a natural generalization as follows.

Let BC(Ω) be the class of bounded continuous functions on Ω. For a
measurable function α : Ω→ (0, 1] and f ∈ BC(Ω), let

[f ]α(·),Ω := sup
x,x+h∈Ω
0<|h|≤1

|f(x+ h)− f(x)|

|h|α(x)
.

By C0,α(·)(Ω) we denote the space of all functions f in BC(Ω) for which [f ]α(·),Ω
is finite. C0,α(·)(Ω) is a Banach space with respect to the norm

‖f‖C0,α(·)(Ω) = ‖f‖∞,Ω + [f ]α(·),Ω.

This is a generalization of the standard Hölder spaces C0,α(Ω) with constant
α ∈ (0, 1]. As in the case of the variable Lebesgue spaces, we shall write α(·)
instead of α to emphasize that we are dealing with a variable order of regularity.

Hölder spaces with variable order were considered in [22, 31], where the map-
ping properties of fractional integration operators in such spaces were studied.

3. Pointwise inequalities for Sobolev functions

It is known that oscillation of functions in Sobolev spaces can be estimated in
terms of the fractional maximal function of its gradient; see for instance [4, 19,
20, 23], where such estimates of the oscillation were used to derive important
properties of functions in Sobolev spaces within the classical setting. This will
be extended to the case of variable exponents in the next section. In this section
we recall the above mentioned estimates of the oscillation (see Proposition 3.3)
and give it with proofs for completeness of presentation.

First we observe that the following statements are valid.

Lemma 3.1 ([18], Lemma 7.16). Let B be a ball in R
n. If g ∈ W 1,1(B), then

|g(x)− gB| ≤ c(n)

∫

B

|∇g(z)|

|x− z|n−1
dz

almost everywhere in B, where gB := 1
|B|

∫
B
g(z) dz denotes the average of g

over B.
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Lemma 3.2. Let D ⊂ R
n be an open bounded set, 0 < α ≤ n and 0 ≤ λ < α.

Then there exists c > 0, not depending on f , x and λ, such that

∫

D

|f(z)| dz

|x− z|n−α
≤

c

α− λ
(diam(D))α−λ Mλ

Df(x), (4)

for almost all x ∈ D, and for every f ∈ L1(D), and it is admitted that λ may

depend on x.

Proof. Let d = diam(D). We have

∫

D

|f(z)| dz

|x− z|n−α
=

∞∑

k=0

∫

D∩(B(x, d
2k
)\B(x, d

2k+1
))

|f(z)|

|x− z|n−α
dz

≤
∞∑

k=0

(
2k+1

d

)n−α∫

D∩B(x, d
2k
)

|f(z)| dz

≤ c(n)
∞∑

k=0

(
2k

d

)λ−α

Mλ
Df(x),

from which (4) follows.

Proposition 3.3. Let Ω be a bounded open set with Lipschitz boundary or let

Ω = R
n. Then for every f ∈ W 1,1

loc (Ω) and almost all x, y ∈ Ω there holds

|f(x)− f(y)| ≤ c

[
|x− y|1−λ

1− λ
Mλ

Ω(|∇f |)(x) +
|x− y|1−µ

1− µ
Mµ

Ω(|∇f |)(y)

]
, (5)

where λ, µ ∈ [0, 1) and the constant c > 0 does not depend on f, x, y, λ, µ and

Ω, and it is admitted that λ and µ may depend on x and y.

Proof. For bounded domains estimate (5) can be proved as in [20, Lemma 4].
For Ω = R

n the arguments are similar: we observe that for all x, y ∈ R
n, x 6= y,

there exists a ball Bx,y containing these points such that diam(Bx,y) ≤ 2 |x−y|.
Then we write |f(x)− f(y)| ≤ |f(x)− fBx,y |+ |f(y)− fBx,y | and it remains to
make use of Lemma 3.1 and afterwards Lemma 3.2 with α = 1.

4. Sobolev embeddings with variable exponent

The main statement of this section is Theorem 4.4, which shows that functions
in W 1,p(·)(Ω) are Hölder continuous everywhere where p(x) > n. First we need
some auxiliary statements.
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Lemma 4.1 ([10]). Let p : R
n → [1,∞) be a continuous exponent. Then p(·)

satisfies the log-Hölder condition (2) if and only if there exists a constant C > 0
such that

|B|
inf
z∈B

1
p(z)

−sup
z∈B

1
p(z)
≤ C,

for all open balls B in R
n.

Let B be a ball in R
n and let p(·) be a bounded exponent. For simplicity,

we will denote by 1
pB

the average of the function 1
p
over B, that is

1

pB
:=

1

|B|

∫

B

dz

p(z)
.

Lemma 4.2 ([10]). Let p(·) ∈ P(Rn). Then for every ball B there holds

‖χB‖p(·) ≤ C(p) |B|
1
pB . (6)

We will also make use of the following statement in which

Πp,Ω := {x ∈ Ω : p(x) > n}.

Lemma 4.3. Let Ω be a bounded domain and let f ∈ Lp(·)(Ω), where p(·)
satisfies condition (2). Assume also that the set Πp,Ω is non-empty. Then

M
n

p(x)

Ω f(x) ≤ c ‖f‖p(·),Ω, x ∈ Πp,Ω, (7)

with c > 0 not depending on x nor f .

Proof. First we observe that the exponent p(·) may be extended to the whole
space R

n with the preservation of its continuity modulus. In fact, since p(·) is
uniformly continuous (and bounded) on Ω, then it extends to a continuous func-
tion on Ω. By a known extension result described in [39], Chapter 6, Section 2,
there exists an extension p̃ : R

n → [1,∞) satisfying a corresponding condition
to (2) on R

n (possibly with a different constant). From p̃(·) we may construct
another extension ˜̃p(·) : R

n → [1,∞), also preserving the continuity modulus,
in such a way that ˜̃p(·) is constant outside some large ball (see [10], Theorem 4.2
and Corollary 4.3, for details). In particular, we have ˜̃p(·) ∈ P(Rn).

Let B = B(x, r) be any ball centered at x ∈ Πp,Ω. By the Hölder inequality
we obtain

1

|B|1−
1

p(x)

∫

B∩Ω

|f(z)| dz ≤
c(p)

|B|1−
1

p(x)

‖f‖˜̃p(·) ‖χB‖˜̃p′(·),

where ˜̃p′(·) is the usual conjugate exponent, 1
˜̃p(·) +

1
˜̃p′(·)

= 1, and it is assumed

that f is continued as zero beyond Ω.
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Since ˜̃p(·) ∈ P(Rn), then the maximal operator is also bounded in L
˜̃p′(·)(Rn)

(see [9, Lemma 8.1]). Therefore, Lemma 4.2 is applicable which yields ‖χB‖˜̃p′(·)≤

c1(p) |B|
1

˜̃p′B . Hence,

1

|B|1−
1

p(x)

∫

B∩Ω

|f(z)| dz ≤ c ‖f‖p(·),Ω |B|
1

p(x)
− 1

˜̃pB . (8)

If |B| ≤ 1 then Lemma 4.1 provides the estimate |B|
1

p(x)
− 1

˜̃pB ≤ C, for some
C > 0 independent of B. Suppose now that |B| > 1. Notice that if r > diam(Ω)
then |B| > |Ω|, so that

1

|B|1−
1

p(x)

∫

B∩Ω

|f(z)| dz ≤
1

|Ω|1−
1

p(x)

∫

Ω

|f(z)| dz ≤ c(Ω) ‖f‖p(·),Ω.

Hence, only the case r ≤ diam(Ω) is of interest according to our purposes. In
that case, the right-hand side in (8) may be estimated as follows:

|B|
1

p(x)
− 1

˜̃pB ≤ |B|
1−

(
˜̃p
)−1
≤ C diam(Ω)n.

This completes the proof of (7).

Now we are able to give an important pointwise inequality.

Theorem 4.4. Let Ω be a bounded open set with Lipschitz boundary and suppose

that p(·) satisfies the local logarithmic condition (2) and has a non-empty set

Πp,Ω. If f ∈W 1,p(·)(Ω), then

|f(x)− f(y)| ≤ C(x, y) ‖|∇f |‖p(·),Ω |x− y|1−
n

min[p(x),p(y)] (9)

for all x, y ∈ Πp,Ω such that |x− y| ≤ 1, where

C(x, y) =
c

min[p(x), p(y)]− n

with c > 0 not depending on f, x and y.

Proof. After modifying f on a set of zero measure, we make use of (5) with
λ = n

p(x)
∈ (0, 1) and µ = n

p(y)
∈ (0, 1) and get

|f(x)− f(y)|

≤
c |x− y|1−

n
min[p(x),p(y)]

min[p(x)− n, p(y)− n]

[
M

n
p(x)

Ω (|∇f |)(x) +M
n

p(y)

Ω (|∇f |)(y)
]

for all x, y ∈ Πp,Ω. Hence, (9) immediately follows from (7).
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Remark 4.5. LetD be a subset in Πp,Ω. Under the assumption infx∈D p(x) > n,
one may take a constant in (9) not depending on x, y when x and y run the
set D. In particular, if p

Ω
> n, estimate (9) is valid for the whole Ω with an

absolute constant.

Corollary 4.6. Let Ω be a bounded open set with Lipschitz boundary and let

p(·) be under the assumptions of Theorem 4.4. If f ∈ W 1,p(·)(Ω), then the

estimate (9) may be written in the form

|f(x)− f(x+ h)| ≤
c

min[p(x), p(x+ h)]− n
‖|∇f |‖p(·),Ω |h|

1− n
p(x) , (10)

where x, x+ h ∈ Πp,Ω and |h| ≤ 1, with c > 0 not depending on x, h, and f .

Proof. Indeed, it suffices to observe that for x and y belonging to a bounded
set we have

|x− y|
n

p(x) ∼ |x− y|
n

p(y)

thanks to the log-condition for p(·).

Theorem 4.4 suggests that functions inW 1,p(·)(Ω) admit a Hölder continuous
representative of variable order.

Theorem 4.7. Let Ω be a bounded open set and suppose that p(·) satisfies the

logarithmic condition (2). If infx∈Ω p(x) > n, then the estimate

|f(x)| ≤ C

[
‖f‖p(·),Ω

[dist(x, ∂Ω)]
n

p(x)

+ ‖|∇f |‖p(·),Ω

]
(11)

is valid, with C > 0 independent of x ∈ Ω and f ∈ W 1,p(·)(Ω). If, in addition,

Ω has Lipschitzian boundary, then we have

W 1,p(·)(Ω) ↪→ C
0,1− n

p(·) (Ω), (12)

where “↪→” means continuous embedding.

Proof. Fix x ∈ Ω and let Bx be a ball containing x. According to Lemma 3.1,
estimate (4) with α = 1 and λ = n

p(x)
, and inequality (7), for f ∈ W 1,p(·)(Ω) we

have

|f(x)− fBx | ≤ c diam(Bx)
1− n

p(x) M
n

p(x)

Ω (|∇f |)(x)

≤ c diam(Bx)
1− n

p(x) ‖|∇f |‖p(·),Ω,
(13)

where it is assumed that the radius r of the ball Bx is sufficiently small, say
r = 1

2
dist(x, ∂Ω). For fBx we may proceed as in the proof of Lemma 4.3. Hence,

the Hölder inequality combined with (6) yield the estimate

|fBx | ≤ c(p) |Bx|
− 1
pBx ‖f‖p(·),Ω.
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Since |Bx|
− 1
pBx ≤ c |Bx|

− 1
p(x) , we also have

|fBx | ≤ c(p) |Bx|
− 1
p(x) ‖f‖p(·),Ω. (14)

Thus, having in mind the value of r above, we arrive at (11) from (13) and (14).

If Ω has Lipschitz boundary, then we may derive the embedding

W 1,p(·)(Ω) ↪→ L∞(Ω). (15)

In fact, in that case, it is known (see [10]) that there exists a bounded linear
extension operator

E : W 1,p(·)(Ω)→ W 1,˜̃p(·)(Rn)

such that Ef |Ω = f almost everywhere, where ˜̃p(·) is the extension of p(·) used
in the proof of Lemma 4.3. Similarly to (13), there holds

|f(x)− EfBx | ≤ c diam(Bx)
1− n

p(x) ‖|∇f |‖p(·),Ω,

where now we suppose that the ball Bx is arbitrary (containing x). Moreover,
we have

|EfBx | ≤ c |Bx|
− 1

˜̃pBx ‖Ef‖˜̃p(·) ≤ c1 |Bx|
− 1

˜̃pBx ‖f‖p(·),Ω.

Taking a ball such that |Bx| = 1, we get

|f(x)| ≤ |f(x)− fBx |+ |fBx | ≤ C(p) ‖f‖1,p(·),Ω,

which implies (15). The embedding (12) follows then from (10) and (15).

In the particular case when the exponent is constant, p(x) ≡ p > n, we
recover the classical Sobolev embedding.

5. Hypersingular operators on spaces W1,p(·)(Ω)

We consider hypersingular integral operators of variable order α = α(x),
0 < α(x) < 1, x ∈ Ω, given by

Dα(·)f(x) =

∫

Ω

f(x)− f(y)

|x− y|n+α(x)
dy, x ∈ Ω.

A detailed information about hypersingular integrals of functions defined in R
n

can be found in [36].
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Theorem 5.1. Let 0 < α0 ≤ α(x) ≤ α1 < 1 and let Ω be a bounded open set

with Lipschitz boundary. Assume also that p(·) satisfies (2) and

sup
x∈Ω

p(x)[1− α(x)] < n. (16)

Then the operator Dα(·) is bounded from W 1,p(·)(Ω) into Lq(·)(Ω) for any expo-

nent q(·), 1 < q
Ω
≤ qΩ <∞, such that

sup
x∈Ω

[
1

p(x)
−

1

q(x)
+
α(x)

n

]
<

1

n
, (17)

the latter being equivalent to

1

q(x)
=

1

p(x)
−
λ(x)

n
, where sup

x∈Ω
[λ(x) + α(x)] < 1. (18)

Proof. We may assume that q(x) ≥ p(x) since Ω is bounded and one has the
imbedding ‖f‖q(·),Ω ≤ c ‖f‖q∗(·),Ω where q∗(x) = max{q(x), p(x)}.

By Proposition 3.3, we have

∣∣Dα(·)f(x)
∣∣ ≤

∫

Ω

|f(x)− f(y)|

|x− y|n+α(x)
dy

≤
c

1− λ(x)

∫

Ω

M
λ(·)
Ω (|∇f |)(x) +M

λ(·)
Ω (|∇f |)(y)

|x− y|n+α(x)+λ(x)−1
dy

for almost all x ∈ Ω, with c > 0 not depending on x and f , where λ(x) may be
an arbitrary function such that 0 ≤ λ(x) < 1.

Put β(x) = 1 − α(x) − λ(x). Then 0 < β(x) < 1 under the choice λ(x) <
1− α(x). We choose λ(x) so that

λ(x) ≥ 0 and sup
x∈Ω

[λ(x) + α(x)] < 1, (19)

which is possible, since supx∈Ω α(x) ≤ α1 < 1. Then

inf
x∈Ω

β(x) > 0. (20)

We have

∣∣Dα(·)f(x)
∣∣ ≤ c

∫

Ω

M
λ(·)
Ω (|∇f |)(x)

|x− y|n−β(x)
dy + c

∫

Ω

M
λ(·)
Ω (|∇f |)(y)

|x− y|n−β(x)
dy

≤ c |Ω|
β(x)
n M

λ(·)
Ω (|∇f |)(x) + c I

β(·)
Ω

[
M

λ(·)
Ω (|∇f |)

]
(x),
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where the first term in the last sum follows from the estimation of the Riesz
potential of a constant density. Hence

∥∥Dα(·)f
∥∥
q(·),Ω

≤ c
∥∥∥Mλ(·)

Ω (|∇f |)
∥∥∥
q(·),Ω

+ c
∥∥∥Iβ(·)Ω

[
M

λ(·)
Ω (|∇f |)

]∥∥∥
q(·),Ω

.

By condition (20) and boundedness of Ω, the operator I
β(·)
Ω is bounded in

the space Lq(·)(Ω) so that

∥∥Dα(·)f
∥∥
q(·),Ω

≤ c
∥∥∥Mλ(·)

Ω (|∇f |)
∥∥∥
q(·),Ω

.

By Theorem 2.2 we then have

∥∥Dα(·)f
∥∥
q(·),Ω

≤ c ‖|∇f |‖p(·),Ω ≤ c ‖f‖1,p(·),Ω,
1

q(x)
=

1

p(x)
−
λ(x)

n
,

that theorem being applicable since

sup
x∈Ω

λ(x)p(x) < sup
x∈Ω

[1− α(x)]p(x) < n

according to (19) and (16).

Thus the boundedness of Dα(·) fromW 1,p(·)(Ω) into Lq(·)(Ω) has been proved
for q(x) of the form (18). The equivalence of (18) to (17) may be directly
verified.

For constant exponents the following statement holds.

Corollary 5.2. Let α and Ω be as in Theorem 5.1 and suppose that 1 < p <
n
1−α

. Then there exists c > 0 such that

‖Dαf‖q,Ω ≤ c ‖f‖1,p,Ω, f ∈W 1,p(Ω),

for any exponent q fulfilling

p ≤ q <
np

n− (1− α)p
.

Theorem 4.4 allow us to conclude about the pointwise convergence of the
hypersingular integral. More precisely, the following statement may be derived.

Proposition 5.3. Let Ω be a bounded open set with Lipschitz boundary. Under

the assumption (2) on p(·), the hypersingular integral Dα(·), with 0 < α0 ≤
α(x) < 1, x ∈ Ω, of functions in W 1,p(·)(Ω) converges at all those points x ∈ Ω
for which p(x)(1− α(x)) > n.

Proof. The pointwise convergence of the hypersingular integral is an immediate
consequence of (9). We only observe that the assumption p(x)(1 − α(x)) > n

implies infx∈Ω p(x) > n.



Pointwise Inequalities 191

Acknowledgement. The first author has been partially supported by Unidade
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