Extreme Points and Strong U-Points in Musielak-Orlicz Sequence Spaces Equipped with the Orlicz Norm

Yunan Cui, Henryk Hudzik, Marek Wista and Mingxia Zou

Abstract

We give some criteria for extreme points and strong U-points in MusielakOrlicz sequence spaces equipped with the Orlicz norm. It follows from these results that the notion of the strong U-point is essentially stronger than the notion of the extreme point in these spaces.

Keywords. Musielak-Orlicz sequence space, extreme point, strong U-point, Orlicz norm.
Mathematics Subject Classification (2000). Primary 46B20, 46E30, secondary 46A45

1. Introduction

Let $(X,\|\cdot\|)$ be a real Banach space and $S(X)$ be the unit sphere of X. By X^{*} denote the dual space of X. For any $x \in S(X)$, we denote by $\operatorname{Grad}(x)$ the set of all support functionals at x, that is, $\operatorname{Grad}(x)=\left\{f \in S\left(X^{*}\right): f(x)=\|x\|\right\}$.

A point $x \in S(X)$ is called an extreme point if for every $y, z \in S(X)$ with $x=\frac{y+z}{2}$, we have $y=z=x$. A Banach space X is said to be rotund if every point of $S(X)$ is an extreme point.

A point $x \in S(X)$ is said to be a strong U-point (SU-point for short) if for any $y \in S(X)$ with $\|x+y\|=2$, we have $x=y$. It is obvious that a Banach space X is rotund if and only if every $x \in S(X)$ is an SU-point.

Recall that the nature of SU-points is such that a point $x \in S(X)$ is a point of local uniform rotundity if and only if x is a point of compact local uniform rotundity and an SU-point (see [4]).

[^0]Extreme points and strongly extreme points in Orlicz sequence spaces have been investigated in [5] and [11]. The criteria for extreme points and strong U-points in Orlicz sequence space were obtained in $[2,3,4]$ and criteria for rotundity of Musielak-Orlicz spaces were presented in [7]. In this paper, we will give criteria for extreme points and SU-points in Musielak-Orlicz sequence space equipped with the Orlicz norm. As it has been noted in [4], the notions of extreme point and SU-point are different and the second notion is much stronger than the first one. As it follows from criteria presented in this paper the situation in Musielak-Orlicz sequence spaces equipped with the Orlicz norm is similar.

The sequence $M=\left(M_{i}\right)_{i=1}^{\infty}$ is called a Musielak-Orlicz function provided that for any $i \in \mathcal{N}, M_{i}:(-\infty,+\infty) \rightarrow[0,+\infty]$ is even, convex, left continuous on $[0,+\infty), M_{i}(0)=0$, and there exists $u_{i}>0$ such that $M_{i}\left(u_{i}\right)<\infty$ (see [10]). By $N=\left(N_{i}\right)_{i=1}^{\infty}$ we denote the Musielak-Orlicz function complementary to $M=\left(M_{i}\right)$ in the sense of Young, i.e.,

$$
N_{i}(v)=\sup _{u \geq 0}\left\{u|v|-M_{i}(u)\right\}
$$

for each $v \in \mathcal{R}$ and $i \in \mathcal{N}$.
Define $b(i)=\sup \left\{u \geq 0: M_{i}(u)=0\right\}, B(i)=\sup \left\{u \geq 0: M_{i}(u)<\infty\right\}$, $\widetilde{b}(i)=\sup \left\{v \geq 0: N_{i}(v)=0\right\}$ and $\widetilde{B}(i)=\sup \left\{v \geq 0: N_{i}(v)<\infty\right\}$ for each $i \in \mathcal{N}$. Let $p_{i}(u)$ and $p_{i}^{-}(u)\left(q_{i}(v)\right.$ and $\left.q_{i}^{-}(v)\right)$ stand for the right and left derivatives of M_{i} (of N_{i}) at $u \in \mathcal{R}$ with $0 \leq u<B(i)$ (at $v \in \mathcal{R}$ with $0 \leq v<\widetilde{B}(i))$, respectively. Here we define $p_{i}(B(i))=\infty, p_{i}^{-}(u)=p_{i}(u)=\infty$ for $u>B(i), q_{i}(\widetilde{B}(i))=\infty$ and $q_{i}^{-}(v)=q_{i}(v)=\infty$ for $v>\widetilde{B}(i)$.

Moreover, for every $u, v \in \mathcal{R}$, we have the following Young inequality:

$$
|u v| \leq M_{i}(u)+N_{i}(v) .
$$

Further, $|u v|=M_{i}(u)+N_{i}(v)$ if and only if $p_{i}^{-}(|u|) \leq|v| \leq p_{i}(|u|)$, when u is fixed, or $q_{i}^{-}(|v|) \leq|u| \leq q_{i}(|v|)$, when v is fixed (cf. [2], p. 5).

Let l^{0} denote the space of all real sequences $x=(x(i))$. Given any Musielak-Orlicz function $M=\left(M_{i}\right)$, we define on l^{0} the convex modular ρ_{M} by

$$
\rho_{M}(x)=\sum_{i=1}^{\infty} M_{i}(x(i)) \quad \text { for any } x=(x(i)) \in l^{0} .
$$

The space $\left\{x \in l^{0}: \rho_{M}(\lambda x)<\infty\right.$ for some $\left.\lambda>0\right\}$ equipped with the Luxemburg norm

$$
\|x\|=\inf \left\{\lambda>0: \rho_{M}\left(\frac{x}{\lambda}\right) \leq 1\right\}
$$

or the Orlicz norm

$$
\|x\|^{0}=\sup \left\{\sum_{i} x(i) y(i): \rho_{N}(y) \leq 1\right\}
$$

is a Banach space, denoted according to the norm by l_{M} or l_{M}^{0} respectively, and it is called the Musielak-Orlicz sequence space (see [2, 8, 10]). The subspace

$$
\left\{x \in l_{M}: \text { for any } \lambda>0, \text { there exists } i_{0} \text { such that } \sum_{i>i_{0}} M_{i}(\lambda x(i))<\infty\right\}
$$

equipped with the norm $\|\cdot\|$ (or $\|\cdot\|^{0}$) is also a Banach space, and it is denoted by $h_{M}\left(\right.$ resp. $\left.h_{M}^{0}\right)$. For Orlicz spaces, i.e. the spaces that are generated by the Musielak-Orlicz function $\left(M_{i}\right)_{i=1}^{\infty}$ with all M_{i} being the same, we refer to [9].

We say that $\phi \in\left(l_{M}^{0}\right)^{*}$ is a singular functional ($\phi \in F$ for short), if $\phi(x)=0$ for any $x \in h_{M}^{0}$. The dual space of l_{M}^{0} is represented in the form $\left(l_{M}^{0}\right)^{*}=l_{N} \oplus F$, i.e., every $f \in\left(l_{M}^{0}\right)^{*}$ has the unique representation $f=y+\phi$, where $\phi \in F$ and $y \in l_{N}$ is the regular functional defined by the formula $\langle x, y\rangle=\sum_{i=1}^{\infty} x(i) y(i)$ (for any $\left.x=(x(i)) \in l_{M}^{0}\right)$.

For any $i \in \mathcal{N}$, we say that a point $w \in \mathcal{R}$ is a strict convexity point of M_{i}, if $M_{i}\left(\frac{u+v}{2}\right)<\frac{1}{2}\left(M_{i}(u)+M_{i}(v)\right)$ whenever $w=\frac{u+v}{2}$ and $u \neq v$. We write then $w \in S C_{M_{i}}$. An interval $[a, b]$ is called a structurally affine interval of M_{i} (or simply $S A I$ of M_{i}) provided that M_{i} is affine on $[a, b]$ and it is not affine either on $[a-\varepsilon, b]$ or on $[a, b+\varepsilon]$ for any $\varepsilon>0$. It is obvious that $S C_{M_{i}}=\mathcal{R} \backslash\left(\bigcup_{n}\left(a_{n}, b_{n}\right)\right)$, where $\left[a_{n}, b_{n}\right] \in S A I\left(M_{i}\right), n=1,2, \ldots$.

For any $i \in \mathcal{N}$, denote

$$
\begin{aligned}
S C_{M_{i}}^{-} & =\left\{u \in S C_{M_{i}}: \exists \varepsilon>0 \text { such that } M_{i} \text { is affine on }[u, u+\varepsilon]\right\} \\
S C_{M_{i}}^{+} & =\left\{u \in S C_{M_{i}}: \exists \varepsilon>0 \text { such that } M_{i} \text { is affine on }[u-\varepsilon, u]\right\}, \\
S C_{M_{i}}^{0} & =S C_{M_{i}} \backslash\left(S C_{M_{i}}^{+} \cup S C_{M_{i}}^{-}\right) .
\end{aligned}
$$

For any $x \in l_{M}^{0}$, we put:

$$
\begin{aligned}
\operatorname{supp} x & =\{i \in \mathcal{N}: x(i) \neq 0\}, \\
\theta(x) & =\inf \left\{\lambda>0: \text { there exists } i_{0} \text { such that } \sum_{i>i_{0}} M_{i}\left(\frac{x(i)}{\lambda}\right)<\infty\right\} .
\end{aligned}
$$

Let $p \circ k x$ denote the sequence $\left\{p_{i}(k x(i))\right\}$ and let

$$
\begin{aligned}
k_{x}^{*} & =\inf \left\{k>0: \rho_{N}(p \circ k x)=\sum_{i=1}^{\infty} N_{i}\left(p_{i}(k x(i))\right) \geq 1\right\} \\
k_{x}^{* *} & =\sup \left\{k>0: \rho_{N}(p \circ k x)=\sum_{i=1}^{\infty} N_{i}\left(p_{i}(k x(i))\right) \leq 1\right\} \\
k(x) & = \begin{cases}{\left[k_{x}^{*}, k_{x}^{* *}\right],} & \text { if } k_{x}^{* *}<\infty \\
{\left[k_{x}^{*}, \infty\right),} & \text { if } k_{x}^{*}<\infty\end{cases}
\end{aligned}
$$

and $k_{x}^{* *}=\infty$, and $k(x)=\emptyset$, if $k_{x}^{*}=\infty$.
For the convenience of reading, we first list some known results.

Lemma 1.1 (see [12]). If $x \in l_{M}^{0} \backslash\{0\}$, then $k(x) \neq \emptyset$ if and only if $\sum_{i \in \operatorname{supp} x} N_{i}(\widetilde{B}(i))>1$ or $\sum_{i \in \operatorname{supp} x} N_{i}(\widetilde{B}(i))=1$ and $\sup _{i \in \operatorname{supp} x} \frac{q_{i}^{-}(\widetilde{B}(i))}{|x(i)|}<\infty$.

Lemma 1.2 (see [1]). Let $x \in l_{M}^{0} \backslash\{0\}$. If $\sum_{i \in \operatorname{supp} x} N_{i}(\widetilde{B}(i))>1$, then $\|x\|^{0}=\frac{1}{k}\left(1+\rho_{M}(k x)\right)$ if and only if $k \in k(x)$, and if $\sum_{i \in \operatorname{supp} x} N_{i}(\widetilde{B}(i)) \leq 1$, then $\|x\|^{0}=\sum_{i \in \operatorname{supp} x}|x(i)|(\widetilde{B}(i))$.

Lemma 1.3. If $1=\|x\|_{M}^{0}=\frac{1}{k}\left(1+\rho_{M}(k x)\right)$, then $f=y+\phi$ is a support functional of x if and only if

1. $\rho_{N}(y)+\|\phi\|=1$,
2. $\|\phi\|=\phi(k x)$,
3. $x(i) y(i) \geq 0$ and $p_{i}^{-}(k|x(i)|) \leq|y(i)| \leq p_{i}(k|x(i)|)$ for any $i \in \mathcal{N}$.

Proof. The proof of this lemma is similar to that of Theorem 1.77 in [12] and [6], so we omit it here.

Lemma 1.4 (see [6]). For any $\phi \in F$, we have

$$
\|\phi\|=\sup \left\{\phi(x): \rho_{M}(x)<\infty\right\}=\sup _{\theta(x) \neq 0} \frac{\phi(x)}{\theta(x)}
$$

Lemma 1.5. Let $x \in S\left(l_{M}^{0}\right)$. If $\theta(k x)<1$ for some $k \in k(x)$, then all support functionals of x are in l_{N}.

Proof. If $\theta(k x)=0$, then the implication is obvious. Let us suppose that $0<\theta(k x)<1$. Take any support functional $f=y+\phi$ of x. By Lemma 1.4, we have $\|\phi\|=\sup _{\theta(y) \neq 0} \frac{\phi(y)}{\theta(y)} \geq \frac{\phi(k x)}{\theta(k x)}>\phi(k x)$. From Lemma 1.3, it follows that $\phi=0$, which completes the proof of the lemma.

2. Main results

We start with a criterion for extreme points of $S\left(l_{M}^{0}\right)$.
Theorem 2.1. A point $x=(x(i)) \in S\left(l_{M}^{0}\right)$ is an extreme point of $S\left(l_{M}^{0}\right)$ if and only if:
(i) $k(x)=\emptyset$ and $\operatorname{card}(\operatorname{supp} x)=1$, or
(ii) $k(x) \neq \emptyset$ and
(ii-a) $\operatorname{card}(\operatorname{supp} x)=1$ and $b(i)=0$ for any $i \notin \operatorname{supp} x$, or
(ii-b) $\operatorname{card}(\operatorname{supp} x)>1$ and $k x(i) \in S C_{M_{i}}$ for any $k \in k(x)$ and any $i \in \mathcal{N}$.

Proof. Necessity. If (i) does not hold, without loss of generality we may assume that $x(1)>0, x(2)>0$ and $k(x)=\emptyset$. By Lemma 1.1 and Lemma 1.2, we have $1=\|x\|^{0}=\sum_{i=1}^{\infty}|x(i)| \widetilde{B}(i)$.

Take $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$ satisfying $\varepsilon_{1} \widetilde{B}(1)=\varepsilon_{2} \widetilde{B}(2)$ and $x(1)-\varepsilon_{1}>0$, $x(2)-\varepsilon_{2}>0$. Define

$$
\begin{aligned}
& y=\left(x(1)-\varepsilon_{1}, x(2)+\varepsilon_{2}, x(3), x(4), \ldots\right) \\
& z=\left(x(1)+\varepsilon_{1}, x(2)-\varepsilon_{2}, x(3), x(4), \ldots\right) .
\end{aligned}
$$

It is obvious that $y+z=2 x$ and $y \neq z$. Moreover, by the definitions of the Orlicz norm and of $\widetilde{B}(i)$, we can easily obtain that $\|y\|^{0} \leq \sum_{i=1}^{\infty}|y(i)| \widetilde{B}(i)=$ $\sum_{i=1}^{\infty}|x(i)| \widetilde{B}(i)=1$. In fact, for any $v \in l_{N}$ with $\rho_{N}(v) \leq 1$, by the definition of $\widetilde{B}(i)$, we have $|v(i)| \leq \widetilde{B}(i)$ for all $i \in \mathcal{N}$ and hence $\sum_{i=1}^{\infty} y(i) v(i) \leq$ $\sum_{i=1}^{\infty}|y(i)| \widetilde{B}(i)$. From the definition of the Orlicz norm, it follows that $\|y\|^{0}=$ $\sup \left\{\sum_{i=1}^{\infty} y(i) v(i): \rho_{N}(y) \leq 1\right\} \leq \sum_{i=1}^{\infty}|y(i)| \widetilde{B}(i)$. Similarly, we have $\|z\|^{0} \leq 1$. Using $\|x+y\|^{0}=2$, we get $\|y\|^{0}=\|z\|^{0}=1$, which contradicts the fact that x is an extreme point.

Suppose (ii-a) fails. Then we may assume without loss of generality that $x=(x(1), 0,0, \ldots)$ and $b\left(i_{0}\right)>0$ for some $i_{0}>1$. Take $k \in k(x)$ and put

$$
y(i)=\left\{\begin{array}{ll}
x(i), & i \neq i_{0} \\
\frac{b\left(i_{0}\right)}{k}, & i=i_{0}
\end{array} \quad \text { and } \quad z(i)=\left\{\begin{aligned}
x(i), & i \neq i_{0} \\
-\frac{b\left(i_{0}\right)}{k}, & i=i_{0} .
\end{aligned}\right.\right.
$$

Then $y+z=2 x$ and $y \neq z$. We can get a contradiction with the assumption that x is an extreme point by showing that $\|y\|^{0} \leq 1$ and $\|z\|^{0} \leq 1$. Note that from the definition of $b\left(i_{0}\right)$ we get

$$
\|y\|^{0} \leq \frac{1}{k}\left(1+\rho_{M}(k y)\right)=\frac{1}{k}\left(1+\rho_{M}(k x)\right)=\|x\|^{0}=1 .
$$

Similarly, we have $\|z\|^{0} \leq 1$.
Now we verify the necessity of (ii-b). Otherwise, without loss of generality, we may assume that $x(1)>0, x(2)>0$, and there exists $k \in k(x)$ such that $k x(1) \in\left(a_{1}, b_{1}\right)$, where $\left[a_{1}, b_{1}\right] \in S A I\left(M_{1}\right)$ and $M_{1}(u)=A u+B$ for $u \in\left[a_{1}, b_{1}\right]$. Take $u_{0}>0$ such that $k x(1) \pm u_{0} \in\left(a_{1}, b_{1}\right)$. By $1=\|x\|^{0}=\frac{1}{k}\left(1+\rho_{M}(k x)\right)$, we have $k=1+A k x(1)+B+\sum_{i \neq 1} M_{i}(k x(i))$. Put

$$
\begin{array}{r}
h=1+A\left(k x(1)+u_{0}\right)+B+\sum_{i \neq 1} M_{i}(k x(i)) \\
l=1+A\left(k x(1)-u_{0}\right)+B+\sum_{i \neq 1} M_{i}(k x(i)),
\end{array}
$$

and $y=\frac{k}{h}\left(x(1)+\frac{u_{0}}{k}, x(2), x(3), \ldots\right), z=\frac{k}{l}\left(x(1)-\frac{u_{0}}{k}, x(2), x(3), \ldots\right)$. Then $h+l=2 k$ and $h y+l z=2 k x$, i.e., $x=\frac{h}{2 k} y+\frac{l}{2 k} z$. Moreover, by the left continuity of p_{i}^{-}, right continuity of p_{i} and the fact that $k(x)=\left[k_{x}^{*}, k_{x}^{* *}\right]$, we have

$$
\begin{aligned}
\rho_{N}\left(p^{-} \circ h y\right) & =N_{1}\left(p_{1}^{-}\left(k x(1)+u_{0}\right)\right)+\sum_{i \neq 1} N_{i}\left(p_{i}^{-}(k x(i))\right) \\
& =N_{1}\left(p_{1}^{-}(k x(1))\right)+\sum_{i \neq 1} N_{i}\left(p_{i}^{-}(k x(i))\right) \\
& =\rho_{N}\left(p^{-} \circ k x\right) \leq 1
\end{aligned}
$$

and for any $\eta>0$

$$
\begin{aligned}
\rho_{N}(p \circ(1+\eta) h y) & =N_{1}\left(p_{1}\left((1+\eta)\left(k x(1)+u_{0}\right)\right)\right)+\sum_{i \neq 1} N_{i}\left(p_{i}((1+\eta) k x(i))\right) \\
& =N_{1}\left(p_{1}((1+\eta) k x(1))\right)+\sum_{i \neq 1} N_{i}\left(p_{i}((1+\eta) k x(i))\right) \\
& =\rho_{N}(p \circ(1+\eta) k x) \geq 1 .
\end{aligned}
$$

Hence $h \in k(y)$, and so

$$
\|y\|^{0}=\frac{1}{h}\left(1+\rho_{M}(h y)\right)=\frac{1}{h}\left(1+A\left(k x(1)+u_{0}\right)+B+\sum_{i \neq 1} M_{i}(k x(i))\right)=1
$$

Similarly we can prove that $\|z\|^{0}=1$. Noticing that $y \neq z$, we conclude that x is not an extreme point. This contradiction shows that condition (ii-b) is necessary.

Sufficiency. Let $y+z=2 x, y, z \in S\left(l_{M}^{0}\right)$. We should show that $y=z=x$. First, we assume that $k(x)=\emptyset$. By (i), without loss of generality, we assume that $x=(x(1), 0,0, \cdots)$ and $x(1)>0$. Then by Lemma 1.1 and Lemma 1.2 , we have $1=\|x\|^{0}=x(1) \widetilde{B}(1)$. Hence, by $\|x\|^{0}=x(1)\left\|e_{1}\right\|^{0}$, we get $\left\|e_{1}\right\|^{0}=\widetilde{B}(1)$, where $e_{1}=(1,0,0, \ldots)$.

Now, we are going to prove that $y(1)=x(1)$. In fact, if $y(1)>x(1)$, then there exist $a>0$ such that $y(1)>x(1)+a$. Therefore

$$
1=\|y\|^{0} \geq\left\|y(1) e_{1}\right\|^{0}=y(1) \widetilde{B}(1)>(x(1)+a) \widetilde{B}(1)>1 .
$$

This contradiction shows that $y(1) \leq x(1)$. If we suppose that $y(1)<x(1)-b$ for some $b>0$, then $z(1)>x(1)+b$. Using similar arguments as above we get a contradiction. So $y(1)=x(1)$.

Next, we shall show that $k(y)=\emptyset$. Otherwise, there exists $k_{0}>0$ such that $\|y\|^{0}=\frac{1}{k_{0}}\left(1+\rho_{M}\left(k_{0} y\right)\right)$. Since $k(x)=\emptyset$, we have

$$
1=\|y\|^{0}=\frac{1}{k_{0}}\left(1+\sum_{i=1}^{\infty} M_{i}\left(k_{0} y(i)\right)\right) \geq \frac{1}{k_{0}}\left(1+M_{1}\left(k_{0} y(1)\right)\right)>\|x\|^{0}=1
$$

a contradiction. Therefore

$$
1=\|y\|^{0}=\sum_{i=1}^{\infty}|y(i)| \widetilde{B}(i)=x(1) \widetilde{B}(1)+\sum_{i=2}^{\infty}|y(i)| \widetilde{B}(i)=1+\sum_{i=2}^{\infty}|y(i)| \widetilde{B}(i),
$$

which yields that $\sum_{i=2}^{\infty}|y(i)| \widetilde{B}(i)=0$. This means that $y(i)=0=x(i)$ for any $i>1$. Using the equality $y+z=2 x$, we get that $y=z=x$.

Assume now that $k(x) \neq \emptyset$ and $k \in k(x)$. We will consider the following three cases.

Case I. $k(y) \neq \emptyset, k(z) \neq \emptyset, k_{1} \in k(y)$ and $k_{2} \in k(z)$. In this case, by the same method as in the proof of Theorem 2.8 in [2], we can prove that x is an extreme point.

Case II. $k(y)=\emptyset$ and $k(z) \neq \emptyset$. Since $\left\|\frac{y+z}{2}\right\|^{0}=1$ and $\|\cdot\|_{M}$ is a convex function, we have $\left\|\frac{x+y}{2}\right\|^{0}=\left\|\frac{3}{4} y+\frac{1}{4} z\right\|^{0}=1$ and $\left\|\frac{x+z}{2}\right\|^{0}=1$.

Take a sequence $\left\{k_{n}\right\}_{n=1}^{\infty}$ of positive numbers such that $\frac{1}{k_{n}}\left(1+\rho_{M}\left(k_{n} y\right)\right)<$ $\|y\|^{0}+\frac{1}{n}$ and put $h_{n}=\frac{2 k k_{n}}{k+k_{n}}$. Then we have

$$
\begin{aligned}
1=\left\|\frac{x+y}{2}\right\|^{0} & \leq \frac{1}{h_{n}}\left(1+\rho_{M}\left(h_{n} \frac{x+y}{2}\right)\right) \\
& =\frac{k+k_{n}}{2 k k_{n}}\left(1+\rho_{M}\left(\frac{2 k k_{n}}{k+k_{n}} \cdot \frac{x+y}{2}\right)\right) \\
& \leq \frac{k+k_{n}}{2 k k_{n}}\left(1+\frac{k_{n}}{k+k_{n}} \rho_{M}(k x)+\frac{k}{k+k_{n}} \rho_{M}\left(k_{n} y\right)\right) \\
& \leq \frac{1}{2}\left(\frac{1}{k}\left(1+\rho_{M}(k x)\right)+\frac{1}{k_{n}}\left(1+\rho_{M}\left(k_{n} y\right)\right)\right) \\
& <\frac{1}{2}\left(\|x\|^{0}+\|y\|^{0}+\frac{1}{n}\right) \rightarrow 1 \quad(\text { as } n \rightarrow \infty) .
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty} \frac{1}{h_{n}}\left(1+\rho_{M}\left(h_{n} \frac{x+y}{2}\right)\right)=1$. Since the sequence $\left\{h_{n}\right\}$ is bounded, we may assume (passing to a subsequence if necessary) that $\lim _{n \rightarrow \infty} h_{n}=h$. If we assume that $k\left(\frac{x+y}{2}\right)=\emptyset$, then $1=\frac{\|x+y\|^{0}}{2}<\frac{1}{h}\left(1+\rho_{M}\left(h \frac{x+y}{2}\right)\right)$. Next, we take $i_{0} \in \mathcal{N}$ such that $1<\frac{1}{h}\left(1+\sum_{i=1}^{i_{0}} M_{i}\left(h \frac{x(i)+y(i)}{2}\right)\right)$, whence

$$
\begin{aligned}
1 & <\frac{1}{h}\left(1+\sum_{i=1}^{i_{0}} M_{i}\left(h \frac{x(i)+y(i)}{2}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{h_{n}}\left(1+\sum_{i=1}^{i_{0}} M_{i}\left(h_{n} \frac{x(i)+y(i)}{2}\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{h_{n}}\left(1+\rho_{M}\left(h_{n} \frac{x+y}{2}\right)\right)=1 .
\end{aligned}
$$

This is a contradiction, which shows that $k\left(\frac{x+y}{2}\right) \neq \emptyset$.
Taking $h \in k(z)$, the condition

$$
\begin{aligned}
0 & =\frac{\|x\|^{0}+\|z\|^{0}}{2}-\left\|\frac{x+z}{2}\right\|^{0} \\
& \geq \frac{1}{2 k}\left(1+\rho_{M}(k x)\right)+\frac{1}{2 h}\left(1+\rho_{M}(h z)\right)-\frac{k+h}{2 k h}\left(1+\rho_{M}\left(\frac{2 k h}{k+h}\left(\frac{x+z}{2}\right)\right)\right) \geq 0
\end{aligned}
$$

implies that $\left\|\frac{x+z}{2}\right\|^{0}=\frac{k+h}{2 k h}\left(1+\rho_{M}\left(\frac{2 k h}{k+h}\left(\frac{x+z}{2}\right)\right)\right)$, i.e., $k\left(\frac{x+z}{2}\right) \neq \emptyset$.
Put $y^{\prime}=\frac{x+y}{2}$ and $z^{\prime}=\frac{x+z}{2}$. Then, by Case I, we have $y^{\prime}=z^{\prime}$, i.e., $y=z$. So, Case II can not occur if $y \neq z$.

Case III. $k(y)=\emptyset$ and $k(z)=\emptyset$. Put $y^{\prime}=\frac{x+y}{2}$ and $z^{\prime}=\frac{x+z}{2}$. Clearly $y^{\prime}+$ $z^{\prime}=2 x$. Similarly as in Case II, we can prove that $\left\|y^{\prime}\right\|^{0}=\left\|z^{\prime}\right\|^{0}=1, k\left(y^{\prime}\right) \neq \emptyset$ and $k\left(z^{\prime}\right) \neq \emptyset$. By Case I, we conclude that $y^{\prime}=z^{\prime}$. Consequently $y=z$, and the result follows.
Theorem 2.2. A point $x \in S\left(l_{M}^{0}\right)$ with $k(x)=\emptyset$ is an $S U$-point of $S\left(l_{M}^{0}\right)$ if and only if:
(1) $\operatorname{card}(\operatorname{supp} x)=1$, say $\operatorname{supp} x=\{j\}$,
(2) for any $i \neq j$, we have $N_{j}(\widetilde{B}(j))+N_{i}(\widetilde{B}(i))>1$,
(3) $q_{j}^{-}(\widetilde{B}(j))=\infty$ if $N_{j}(\widetilde{B}(j))<1$.

If $x \in S\left(\ell_{M}^{0}\right)$ and $k(x) \neq \emptyset$, then x is an SU-point of $S\left(l_{M}^{0}\right)$ if and only if:
(I) $\operatorname{card}(\operatorname{supp} x)=1$ and $b(i)=0$ for any $i \notin \operatorname{supp} x$, or
(II) $\operatorname{card}(\operatorname{supp} x)>1$, and for any $k \in k(x)$ we have
(i) $k x(i) \in S C_{M_{i}}$ for all $i \in \mathcal{N}$,
(ii) $\left\{i \in \mathcal{N}: k|x(i)| \in S C_{M_{i}}^{+}\right\}=\emptyset$ if $\theta_{M}(k x)=1$,
(iii) $\sum_{i \neq j} N_{i}\left(p_{i}(k|x(i)|)\right)+N_{j}\left(p_{j}^{-}(k|x(j)|)\right)<1$ if $k|x(j)| \in S C_{M_{j}}^{+}$for some $j \in \mathcal{N}$,
(iv) $\sum_{i \neq j} N_{i}\left(p_{i}^{-}(k|x(i)|)\right)+N_{j}\left(p_{j}(k|x(j)|)\right)>1$ if $k|x(j)| \in S C_{M_{j}}^{-}$for some $j \in \mathcal{N}$.
Proof. Without loss of generality, we may assume that $x(i) \geq 0$ for all $i \in \mathcal{N}$.
At first, we suppose that $k(x)=\emptyset$.
Necessity. Since any SU-point is an extreme point, by Theorem 2.1, condition (1) holds and we assume, without loss of generality, that $j=1$.

Let us suppose that (2) fails. Then there exists an $i_{0}>1$ such that $N_{1}(\widetilde{B}(1))+N_{i_{0}}\left(\widetilde{B}\left(i_{0}\right)\right) \leq 1$. Put

$$
y(i)= \begin{cases}\frac{1}{\hat{B}\left(i_{0}\right)}, & i=i_{0} \\ 0, & i \neq i_{0}\end{cases}
$$

Then, by Lemma 1.2, we have $\|y\|^{0}=\frac{1}{\widetilde{B}\left(i_{0}\right)} \widetilde{B}\left(i_{0}\right)=1$ and $\|x+y\|^{0}=x(1) \widetilde{B}(1)+$ $\frac{1}{\widetilde{B}\left(i_{0}\right)} \widetilde{B}\left(i_{0}\right)=2$. But it is obvious that $x \neq y$, which means that x is not an SUpoint.

If (3) does not hold, then $N_{1}(\widetilde{B}(1))<1$ and $q_{1}^{-}(\widetilde{B}(1))<\infty$. Since $N_{1}(\widetilde{B}(1))+N_{2}(\widetilde{B}(2))>1$, there exists $\beta_{2} \in(\widetilde{b}(2), \widetilde{B}(2))$ such that

$$
\begin{equation*}
N_{1}(\widetilde{B}(1))+N_{2}\left(\beta_{2}\right)=1 . \tag{*}
\end{equation*}
$$

We have $0<q_{1}^{-}(\widetilde{B}(1))<\infty$ and $0<q_{2}^{-}\left(\beta_{2}\right)<\infty$. Consider the following system of equations:

$$
\left\{\begin{aligned}
w_{1} \widetilde{B}(1)+w_{2} \beta_{2} & =1 \\
w_{1} q_{2}^{-}\left(\beta_{2}\right)-w_{2} q_{1}^{-}(\widetilde{B}(1)) & =0
\end{aligned}\right.
$$

where we are looking for w_{1} and w_{2}. Denoting the solution of this system of equations by $\left(x_{1}, x_{2}\right)$, we have $x_{1}>0$ and $x_{2}>0$. Let $y=\left(x_{1}, x_{2}, 0,0, \ldots\right)$. It was already proved in Theorem 9 in [7] that $\|y\|^{0}=x_{1} \widetilde{B}(1)+x_{2} \beta_{2}=1$. Therefore, by ($*$), we have

$$
1=\frac{x_{1} \widetilde{B}(1)+x_{2} \beta_{2}+x(1) \widetilde{B}(1)}{2}=\frac{x_{1}+x(1)}{2} \widetilde{B}(1)+\frac{x_{2}}{2} \beta_{2} \leq\left\|\frac{x+y}{2}\right\|^{0} \leq 1,
$$

i.e., $\|x+y\|^{0}=2$. But it is obvious that $x \neq y$, which means that x is not an SU-point.

Sufficiency. For convenience, let $x=(x(1), 0,0, \cdots), y \in S\left(l_{M}^{0}\right)$ and $\|x+y\|^{0}=2$. Choose $f \in\left(l_{M}^{0}\right)$ such that $\|f\|=1$ and $f(x+y)=\|x+y\|^{0}=2$. Hence we obtain $f(x)=f(y)=1$. Notice that $x \in h_{M}^{0}$, so we have by $k(x)=\emptyset$ that $f \in S\left(l_{N}\right)$ and $f(1)=\frac{1}{x(1)}=\widetilde{B}(1)$.

Now, we shall prove that $|f(i)|<\widetilde{B}(i)$ for any $i>1$. Otherwise, there exists $i_{0}>1$ such that $\left|f\left(i_{0}\right)\right|=\widetilde{B}\left(i_{0}\right)$. Hence, by (2), we have

$$
1 \geq \rho_{N}(f) \geq N_{1}(f(1))+N_{i_{0}}\left(f\left(i_{0}\right)\right)=N_{1}(\widetilde{B}(1))+N_{i_{0}}\left(\widetilde{B}\left(i_{0}\right)\right)>1,
$$

which is a contradiction, proving the claim.
Next, we are going to show that $y(i)=0$ for any $i>1$. Indeed, if we suppose that $y\left(i_{0}\right) \neq 0$ for some $i_{0}>1$, then

$$
\begin{aligned}
\sum_{i=1}^{\infty}|y(i)| \widetilde{B}(i) & =\left|y\left(i_{0}\right)\right| \widetilde{B}\left(i_{0}\right)+\sum_{i \neq i_{0}}|y(i)| \widetilde{B}(i) \\
& >\left|y\left(i_{0}\right)\right|\left|f\left(i_{0}\right)\right|+\sum_{i \neq i_{0}}|y(i)||f(i)| \\
& \geq \sum_{i=1}^{\infty} y(i) f(i)=f(y)=1 .
\end{aligned}
$$

By Lemma 1.1 and Lemma 1.2, we conclude that $k(y) \neq \emptyset$. Take $k>0$ satisfying $\frac{1}{k}\left(1+\rho_{M}(k y)\right)=\|y\|^{0}=1$. Then, by the Young inequality, we get

$$
k=k \sum_{i=1}^{\infty} f(i) y(i) \leq \rho_{M}(k y)+\rho_{N}(f) \leq \rho_{M}(k y)+1=k .
$$

Therefore, the above inequalities are equalities in fact, whence $q_{i}^{-}(|f(i)|) \leq$ $k|y(i)| \leq q_{i}(|f(i)|), i=1,2, \ldots$. In particular, we have the inequality

$$
\begin{equation*}
q_{1}^{-}(\widetilde{B}(1)) \leq k|y(1)| \leq q_{1}(\widetilde{B}(1)) . \tag{**}
\end{equation*}
$$

By $k(x)=\emptyset$, if $N_{1}(\widetilde{B}(1))=1$, then by Lemma 1.1, we have $q_{1}^{-}(\widetilde{B}(1))=\infty$; if $N_{1}(\widetilde{B}(1))<1$, then by condition (3), we also have $q_{1}^{-}(\widetilde{B}(1))=\infty$. So we always have $q_{1}^{-}(\widetilde{B}(1))=\infty$, which contradicts the inequality $(* *)$. This contradiction shows that $y(i)=0$ for any $i>1$.

Therefore, from $\|y\|^{0}=\|x\|^{0}=\left\|\frac{x+y}{2}\right\|^{0}=1$, it follows that $x(1)=y(1)$. Consequently, we have $x=y$, which means that x is an SU-point.

Now, we shall consider the case when $k(x) \neq \emptyset$.
Necessity. Clearly x is an extreme point. So, from Theorem 2.1, we get that conditions (I) and (II)-(i) are necessary.

We are going to prove that (ii) in condition (II) holds. If not we may assume, without loss of generality, that $k x(1)=b_{1} \in S C_{M_{1}}^{+}$and $\theta(k x)=1$ for some $k \in k(x)$. Take $c_{1}<b_{1}$ satisfying $p_{1}^{-}\left(c_{1}\right)=p_{1}\left(c_{1}\right)=p_{1}^{-}\left(b_{1}\right)$ and let $y=\left(\frac{c_{1}}{k}\right.$, $x(2), x(3), \ldots)$. Then we have $\rho_{N}\left(p^{-}(k y)\right)=\rho_{N}\left(p^{-}(k x)\right) \leq 1$. Moreover, for any $\eta>0$, by $\theta_{M}(k x)=1$, we get $\sum_{i>1} M_{i}((1+\eta) k x(i))=\infty$. From the Young inequality, it follows that $\sum_{i>1} N_{i}\left(p_{i}((1+\eta) k x(i))\right)=\infty$. Thus, for any $\eta>0$, we have

$$
\rho_{N}(p \circ(1+\eta) k y) \geq \sum_{i>1} N_{i}\left(p_{i}((1+\eta) k x(i))\right)=\infty .
$$

So $k \in k(y)$. Take $h=k\|y\|^{0} \in k\left(\frac{y}{\|y\|^{0}}\right)$. Then

$$
\begin{aligned}
\rho_{N}\left(p^{-} \circ \frac{k h}{k+h}\left(x+\frac{y}{\|y\|^{0}}\right)\right) & =\sum_{i>1} N_{i}\left(p_{i}^{-}(k x(i))\right)+N_{1}\left(p_{1}^{-}\left(\frac{h}{k+h} b_{1}+\frac{k}{k+h} c_{1}\right)\right) \\
& =\sum_{i>1} N_{i}\left(p_{i}^{-}(k x(i))\right)+N_{1}\left(p_{1}^{-}\left(b_{1}\right)\right) \\
& =\rho_{N}\left(p^{-} \circ k x\right) \leq 1
\end{aligned}
$$

and for any $\eta>0$

$$
\rho_{N}\left(p \circ(1+\eta) \frac{k h}{k+h}\left(x+\frac{y}{\|y\|^{0}}\right)\right) \geq \sum_{i>1} N_{i}\left(p_{i}((1+\eta) k x(i))\right)=\infty
$$

i.e., $\frac{k h}{k+h} \in k\left(x+\frac{y}{\|y\|^{0}}\right)$. Therefore

$$
\begin{aligned}
\left\|x+\frac{y}{\|y\|^{0}}\right\|^{0} & =\frac{k+h}{k h}\left(1+\rho_{M}\left(\frac{k h}{k+h}\left(x+\frac{y}{\|y\|^{0}}\right)\right)\right) \\
& =\frac{k+h}{k h}\left(1+\sum_{i \neq 1} M_{i}(k x(i))+M_{1}\left(\frac{h}{k+h} b_{1}+\frac{k}{k+h} c_{1}\right)\right) \\
& =\frac{k+h}{k h}\left(1+\sum_{i \neq 1} M_{i}(k x(i))+\frac{h}{k+h} M_{1}\left(b_{1}\right)+\frac{k}{k+h} M_{1}\left(c_{1}\right)\right) \\
& =\frac{1}{k}\left(1+\rho_{M}(k x)\right)+\frac{1}{h}\left(1+\rho_{M}(k y)\right) \\
& =2 .
\end{aligned}
$$

But it obvious that $x \neq \frac{y}{\|y\|^{0}}$. This shows that x is not an SU -point if (ii) does not hold.

If (iii) does not hold, we may assume, without loss of generality, that $k x(1)=b_{1} \in S C_{M_{i}}^{+}$and $\sum_{i \neq 1} N_{i}\left(p_{i}(k x(i))\right)+N_{1}\left(p_{1}^{-}\left(b_{1}\right)\right) \geq 1$ for some $k \in k(x)$. In view of $\sum_{i \neq 1} N_{i}\left(p_{i}^{-}(k x(i))+N_{1}\left(p_{1}^{-}\left(b_{1}\right)\right) \leq 1\right.$, there exists $v \in l_{N}$ such that $\rho_{N}(v)=1$ and $v(1)=p_{1}^{-}\left(b_{1}\right), p_{i}^{-}(k x(i)) \leq v(i) \leq p_{i}(k x(i))$ for any $i>1$. From Lemma 1.3, it follows that $v \in \operatorname{Grad}(x)$. Pick $c_{1}<b_{1}$ such that $p_{1}^{-}\left(c_{1}\right)=p_{1}\left(c_{1}\right)=p_{1}^{-}\left(b_{1}\right)$ and put $y=\left(\frac{c_{1}}{k}, x(2), x(3), \ldots\right)$. Then $\rho_{N}\left(p_{-}(k y)\right)=$ $\rho_{N}\left(p_{-}(k x)\right) \leq 1$ and $\rho_{N}(p(k y))=\sum_{i \neq 1} N_{i}\left(p_{i} k x(i)\right)+N_{1}\left(p_{1}^{-}\left(b_{1}\right)\right) \geq 1$. So $k \in k(y)$. Thus, by Lemma 1.3, we get that $v \in \operatorname{Grad}(y)$. Therefore

$$
2 \geq\left\|x+\frac{y}{\|y\|^{0}}\right\|^{0} \geq\left\langle x+\frac{y}{\|y\|^{0}}, v\right\rangle=\langle v, x\rangle+\frac{1}{\|y\|^{0}}\langle v, y\rangle=2
$$

i.e., $\left\|x+\frac{y}{\|y\|^{0}}\right\|^{0}=2$. This leads to the conclusion that x is not an SU-point.

Suppose (iv) fails. Then we may assume that $k x(1)=a_{1} \in S C_{M_{i}}^{-}$and $\sum_{i \neq 1} N_{i}\left(p_{i}^{-}(k x(i))\right)+N_{1}\left(p_{1}\left(a_{1}\right)\right) \leq 1$ for some $k \in k(x)$. Take $c_{1}>a_{1}$ satisfying $p_{1}^{-}\left(c_{1}\right)=p_{1}\left(c_{1}\right)=p_{1}\left(a_{1}\right)$ and put $y=\left(\frac{c_{1}}{k}, x(2), x(3), \ldots\right)$. Then
$\rho_{N}\left(p^{-} \circ k y\right)=\sum_{i \neq 1} N_{i}\left(p_{i}^{-} k x(i)\right)+N_{1}\left(p_{1}^{-}\left(c_{1}\right)\right)=\sum_{i \neq 1} N_{i}\left(p_{i}^{-}(k x(i))\right)+N_{1}\left(p_{1}\left(a_{1}\right)\right) \leq 1$
and, for any $\eta>0$, we have $\rho_{N}(p \circ(1+\eta) k y)=\rho_{N}(p \circ(1+\eta) k x) \geq 1$, i.e., $k \in k(y)$. Put $h=k\|y\|^{0} \in k\left(\frac{y}{\|y\|^{0}}\right)$. By the argumentation as above, we can finish the proof of (iv), so we omit the remaining procedure of the proof.

Sufficiency. Let $y \in S\left(l_{M}^{0}\right),\|x+y\|^{0}=2$ and $k \in k(x)$. In the following we will investigate two cases.

Case 1: $k(y) \neq \emptyset, h \in k(y)$. In order to show that $x=y$, we only need to prove that $k x=k y$. From the inequalities

$$
\begin{aligned}
0= & \|x\|^{0}+\|x\|^{0}-\|x+y\|^{0} \\
\geq & \frac{1}{k}\left(1+\rho_{M}(k x)\right)+\frac{1}{h}\left(1+\rho_{M}(h y)\right)-\frac{k+h}{k h}\left(1+\rho_{M}\left(\frac{k h}{k+h}(x+y)\right)\right) \\
= & \frac{k+h}{k h}\left(\frac{h}{k+h} \rho_{M}(k x)+\frac{k}{k+h} \rho_{M}(h y)-\rho_{M}\left(\frac{k h}{k+h}(x+y)\right)\right) \\
= & \frac{k+h}{k h} \sum_{i=1}^{\infty}\left(\frac{h}{k+h} M_{i}(k x(i))+\frac{k}{k+h} M_{i}(h y(i))\right. \\
& \left.-M_{i}\left(\frac{h}{k+h} k x(i)+\frac{k}{k+h} h y(i)\right)\right) \geq 0,
\end{aligned}
$$

we obtain that $k x(i)=h y(i)$ or $k x(i)$ and $h y(i)$ belong to the same affine interval of M_{i} for all $i \in \mathcal{N}$ and $\frac{k h}{k+h} \in k(x+y)$.

If $\operatorname{card}(\operatorname{supp} x)=1$, without loss of generality, we may assume that $x(1) \neq 0$. Then by (I), we have $b(i)=0$ for all $i>1$, i.e., $0 \in S C_{M_{i}}^{0}$ for all $i>1$. Therefore, $y(i)=0$ for any $i>1$. Using $\|x\|^{0}=\|y\|^{0}=\left\|\frac{x+y}{2}\right\|^{0}=1$, we get that $x(1)=y(1)$.

If $\operatorname{card}(\operatorname{supp} x)>1$, we will consider again two cases.
(A). $\theta(k x)<1$. Since $\theta(k x)<1$, there exist $\tau>0$ and $i_{0} \in \mathcal{N}$ such that $\sum_{i>i_{0}} M_{i}((1+\tau) k x(i))<\infty$. Take $\varepsilon>0$ small enough so that $\frac{1+\varepsilon}{1-\frac{\varepsilon k}{h}}<1+\tau$. Then

$$
\begin{aligned}
\sum_{i>i_{0}} M_{i}((1+\varepsilon) & \left.\frac{k h}{k+h}(x(i)+y(i))\right) \\
& =\sum_{i>i_{0}} M_{i}\left(\frac{(1+\varepsilon) k}{k+h} h y(i)+\frac{\left(1-\frac{\varepsilon k}{h}\right) h}{k+h} \frac{1+\varepsilon}{1-\frac{\varepsilon k}{h}} k x(i)\right) \\
& \leq \frac{(1+\varepsilon) k}{k+h} \sum_{i>i_{0}} M_{i}(h y(i))+\frac{\left(1-\frac{\varepsilon k}{h}\right) h}{k+h} \sum_{i>i_{0}} M_{i}\left(\frac{1+\varepsilon}{1-\frac{\varepsilon k}{h}} k x(i)\right) \\
& \leq \frac{(1+\varepsilon) k}{k+h} \rho_{M}(h y)+\frac{h-\varepsilon k}{k+h} \sum_{i>i_{0}} M_{i}((1+\tau) k x(i))<\infty
\end{aligned}
$$

This means that $\theta\left(\frac{k h}{k+h}(x+y)\right) \leq \frac{1}{1+\varepsilon}<1$. Then, by Lemma 1.5 and Lemma 1.3, we have $\rho_{N}\left(p \circ \frac{k h}{k+h}(x+y)\right) \geq 1$.

For any $i \in \mathcal{N}$, if $k x(i) \in S C_{M_{i}}^{0}$, then it is obvious that $h y(i)=k x(i)$. Now we want to prove that if $k x(i)=b_{i} \in S C_{M_{i}}^{+} \backslash S C_{M_{i}}^{-}$(that is $b_{i} \in S C_{M_{i}}^{+}$ and $b_{i} \notin S C_{M_{i}}^{-}$), then $h y(i)=b_{i}$. Otherwise, there exists $i_{0} \in \mathcal{N}$ such that
$k x\left(i_{0}\right)=b_{i_{0}} \in S C_{M_{i_{0}}}^{+} \backslash S C_{M_{i_{0}}}^{-}$and $h y\left(i_{0}\right)<b_{i_{0}}$. Then $\frac{k h}{k+h}\left(x\left(i_{0}\right)+y\left(i_{0}\right)\right)<b_{i_{0}}$. Therefore, by (iii), we have

$$
\begin{aligned}
1 & \leq \rho_{N}\left(p \circ \frac{k h}{k+h}(x+y)\right) \\
& =\sum_{i \neq i_{0}} N_{i}\left(p_{i}\left(\frac{k h}{k+h}(x(i)+y(i))\right)\right)+N_{i_{0}}\left(p_{i_{0}}\left(\frac{k h}{k+h} x\left(i_{0}\right)+y\left(i_{0}\right)\right)\right) \\
& \leq \sum_{i \neq i_{0}} N_{i}\left(p_{i}(k x(i))\right)+N_{i_{0}}\left(p_{i_{0}}^{-}\left(b_{i_{0}}\right)\right)<1 .
\end{aligned}
$$

This is a contradiction, proving the claim.
By a similar argumentation, we can deduce that for any $i \in \mathcal{N}$, if $k x(i)=$ $a_{i} \in S C_{M_{i}}^{-} \backslash S C_{M_{i}}^{+}$, then $h y(i)=a_{i}$.

For each $i \in \mathcal{N}$, if $k x(i)=a_{i} \in S C_{M_{i}}^{-} \backslash S C_{M_{i}}^{+}$, then by the same way as above, we can obtain that $h y(i)=a_{i}$.
(B). $\theta(k x)=1$. ¿From (ii), it follows that $\left\{i \in \mathcal{N}: k x(i) \in S C_{M_{i}}^{+}\right\}=\emptyset$. So, it is enough to prove that if $k x(i)=a_{i} \in S C_{M_{i}}^{-} \backslash S C_{M_{i}}^{+}$, then $h y(i)=a_{i}$. In fact, if there exists $i_{0} \in \mathcal{N}$ satisfying $k x\left(i_{0}\right)=a_{i_{0}}<h y\left(i_{0}\right)$, then $\frac{k h}{k+h}\left(x\left(i_{0}\right)+y\left(i_{0}\right)\right)>$ $a_{i_{0}}$. Hence

$$
\begin{aligned}
1 & \geq \rho_{N}\left(p^{-} \circ \frac{k h}{k+h}(x+y)\right) \\
& =\sum_{i \neq i_{0}} N_{i}\left(p_{i}^{-}\left(\frac{k h}{k+h}(x(i)+y(i))\right)\right)+N_{i_{0}}\left(p_{i_{0}}^{-}\left(\frac{k h}{k+h}\left(x\left(i_{0}\right)+y\left(i_{0}\right)\right)\right)\right) \\
& \geq \sum_{i \neq i_{0}} N_{i}\left(p_{i}^{-}(k x(i))\right)+N_{i_{0}}\left(p_{i_{0}}\left(a_{i_{0}}\right)\right)>1,
\end{aligned}
$$

a contradiction.
Case 2: $k(y)=\emptyset$. Using the same argumentation as in the proof of Case II in Theorem 2.1, we can deduce that $k\left(\frac{x+y}{2}\right) \neq \emptyset$ and $\left\|\frac{x+\frac{x+y}{2}}{2}\right\|^{0}=1$. Thus, by case 1 above, we obtain $\frac{x+y}{2}=x$. Consequently $x=y$. But $x \neq y$, so Case 2 can not take place. Thus, we finished the proof of Theorem 2.2.

Remark 2.3. By comparing the criterion for extreme points with the criterion for SU-points in Musielak-Orlicz sequence spaces equipped with the Orlicz norm, we conclude that strong U-points are essentially stronger than extreme points in this class of spaces what is illustrated by the following example.

Let $M_{i}(u)=0$ if $|u| \leq 1$ and $M_{i}(u)=\infty$ if $|u|>1$ for any $i \in \mathcal{N}$ and $M=\left(M_{i}\right)_{i=1}^{\infty}$. Then it is easy to see that $l_{M}^{0}=l_{\infty}$. Notice that $\|x\|^{0}=$ $\sup _{i \in \mathcal{N}}|x(i)|=\|x\|_{\infty}$ for any $x \in l_{M}^{0}$. This follows by the fact that for $x \neq 0$ and $k_{0}=\|x\|_{\infty}^{-1}$ we have $I_{M}\left(k_{0} x\right)=0$, whence $\frac{1}{k_{0}}\left(1+I_{M}\left(k_{0} x\right)\right)=\|x\|_{\infty}$. Moreover,
for any $k<\|x\|_{\infty}^{-1}$, we have $\frac{1}{k}\left(1+I_{M}(k x)\right) \geq \frac{1}{k}>\|x\|_{\infty}$. Finally, for any $k>\|x\|_{\infty}^{-1}$, there exists $i \in \mathcal{N}$ such that $k|x(i)|>1$, whence $I_{M}(k x)=\infty$ and so $k^{-1}\left(1+I_{M}(k x)\right)=\infty$. Since, for the function M, we can apply to the Orlicz norm $\|x\|^{0}$ the Amemiya formula (cf. [9]), we get

$$
\|x\|^{0}=\inf _{k>0} \frac{1}{k}\left(1+I_{M}(k x)\right)=\|x\|_{\infty}
$$

Define $x=(1,1, \ldots)$. Then $x \in l_{M}^{0}$ and $\|x\|^{0}=\|x\|_{\infty}=1$. Notice that $k(x)=\{1\}$. This follows by the fact that $I_{M}(x)=0$, whence $1+I_{M}(x)=1$ and for all $k>0$ with $k \neq 1$ we have $k^{-1}\left(1+I_{M}(k x)\right)>1$. Evidently $\operatorname{card}(\operatorname{supp} x)=$ ∞, so applying Theorem 2.1 (ii-b) we see that x is an extreme point of the unit ball of l_{M}^{0}.

Notice that x is not an SU-point of the unit ball of l_{M}^{0} because taking $y=(1,0,0, \ldots)$ we get $\|x+y\|^{0}=\|x\|_{\infty}=2$ and $\|y\|^{0}=\|y\|_{\infty}=1$ and $x \neq y$. This fact follows also from our Theorem 2.2. Since $k \in k(x)$ only if $k=1$ and $\operatorname{card}(\operatorname{supp} x)=\infty$, we should apply Case II of Theorem 2.2. Since the functions M_{j} are affine to the left of $k x_{j}=k\left|x_{j}\right|=1$, we have $k x(j) \in$ $S C_{M_{j}} \cap S C_{M_{j}}^{+}$for any $j \in \mathcal{N}$. However condition (iii) of Case (II) does not hold, since $p_{i}(k|x(i)|)=p_{i}(1)=\infty$ for any $i \in \mathcal{N}$ and, for any $j \in \mathcal{N}$,

$$
\sum_{i \neq j} N_{i}\left(p_{i}(k|x(i)|)\right)+N_{j}\left(p_{j}^{-}(k|x(j)|)\right)=\infty .
$$

Acknowledgment. In case of Prof. Cui Yunan this paper was supported by NSF of CHINA, Grant number: 10251017.

References

[1] Cao, L. and Wang, T., Some notes on $k(x) \neq \emptyset$ in Musielak-Orlicz spaces (in Chinese). Natur. Sci. J. Harbin Normal Univ. 16 (2000)(4), 1 - 4.
[2] Chen, S., Geometry of Orlicz spaces. Dissertationes Math. 356, Warsaw 1996.
[3] Cui, Y., Yan, L. and Meng, C., Strong U-point of Orlicz spaces equipped with Orlicz norm (in Chinese). Banyan J. Math. 4 (1997), $45-58$.
[4] Cui, Y., Hudzik, H. and Meng, C., On some local geometry of Orlicz sequence spaces equipped with the Luxemburg norm. Acta Math. Hungar. 80 (1998)(12), 143 - 154.
[5] Cui Y., Hudzik H. and Pluciennik R., Extreme points and strongly extreme points, in Orlicz spaces equipped with the Orlicz norm. Z. Anal. Anwendungen 22 (2003)(4), 789 - 817.
[6] Hudzik, H. and Zba̧szyniak, Z., Smoothness of Musielak-Orlicz spaces equipped with the Orlicz norm. Fourth International Conference on Function Spaces (Zielona Góra 1995). Collect Math. 48 (1997)(4-6), 543-561.
[7] Kamińska, A., Strict convexity of sequence Orlicz-Musielak spaces with Orlicz norm. J. Funct. Anal. 50 (1983), 285 - 305.
[8] Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces I. Ergeb. Math. Grenzgeb., Vol. 92. Berlin: Springer 1977.
[9] Maligranda, L., Orlicz Spaces and Interpolation. Seminars in Math. 5. Universidade Estadual de Campinas 1989.
[10] Musielak, J., Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Berlin: Springer 1983.
[11] Wisła, M., Strongly extreme points in Orlicz sequence spaces. Ann. Sci. Math. Polon., Comm. Math. 41 (2001), $241-255$.
[12] Wu, C. X. and Sun, H. Y., Norm calculation and complex convexity of the Musielak-Orlicz sequence space. Chinese Ann. Math. A12 (1991), 98-102.

Received April 9, 2005

[^0]: Yunan Cui: Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, P. R. China; cuiya@mail.hrbust.edu.cn
 H. Hudzik: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland; hudzik@amu.edu.pl
 M. Wisła: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland; mwisla@amu.edu.pl
 Mingxia Zou: Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, P. R. China; zuomxhust@yahoo.com.cn

