
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal for Analysis and its Applications
Volume 25 (2006), 467–477

Colombeau Generalized Functions

and Solvability of Differential Operators
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Abstract. The aim of this paper is to prove that the well known non solvable Mizo-
hata type partial differential equations have Colombeau generalized solutions which
are distributions if and only if they are solvable in the space of Schwartz distributions.
Therefore the Colombeau generalized solvability includes both a new solution concept
and new mathematical objects as solutions.
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1. Introduction

Colombeau generalized functions were introduced , see [4], in connection with
the so-called problem of multiplication of Schwartz distributions [15]. They
were developed and applied in important nonlinear problems, see [2, 5] and [14].
General methods of construction of such generalized functions were given in [1]
and [11]. The authors of [12] have tackled the linear counterpart of this theory.

The theory of Colombeau generalized functions provides new solutions of
partial differential equations; these new solutions can be divided into two cate-
gories:

1) there are classical functions or distributions which are solutions (in one of
the new senses provided by this theory) of partial differential equations without
solution in the sense of distributions, e.g., see [2, 5, 6, 7] and [10].

2) there are also new objects (such as the square of the Dirac delta distri-
bution,. . . ) which can be solutions of equations.
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C. Bouzar: Department of Mathematics, University of Oran Essenia, Algeria;
bouzar@yahoo.com
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In [6] the fundamental concept of regularized derivatives was studied and
results on global solvability, in the framework of this theory, of the Cauchy prob-
lem for large classes of regularized partial differential equations have been given.
In particular, the well-known non solvable Mizohata differential equations with
regularized derivatives become solvable in the Colombeau algebra. It is then
interesting to show the relation between Colombeau generalized solutions and
distributional solutions if they exist.

The paper deals, in the framework of the simplified Colombeau algebra, with
a class of differential operators non solvable in distributions theory. We show
that their Colombeau generalized solutions as regularized differential equations
are in relations with distributional solutions if and only if they are solvable in
the space of Schwartz distributions. Therefore in the general case in which there
are no distributional solution, the new solutions from [6] are not associated with
classical objects, even if they are solutions in a new sense: an enlargement of
the reservoir of mathematical objects that could be solutions is really needed.

Acknowledgement. The authors thank the referee for the suggested amelio-
rations of the paper.

2. Simplified algebra of Colombeau

In this section we recall the simplified Colombeau algebra of generalized func-
tions and some needed notions of this theory, for a deep study see [4, 5] and [14].
Let Ω be a non void open subset of R

d and I = ]0, 1[ , define χM (Ω) as the space
of elements (uε)ε of χ (Ω) = (C∞ (Ω))I such that, for every compact set K ⊂ Ω,
for all α ∈ Z

d
+, there exists m > 0,

sup
x∈K

|∂αuε| ≤ O
(
ε−m

)
, as ε→ 0.

By N (Ω) we denote the elements (uε)ε ∈ χM (Ω) satisfying for all K ⊂ Ω, for
all α ∈ Z

d
+, for all q > 0,

sup
x∈K

|∂αuε| ≤ O (εq) , as ε→ 0.

An element of χM (Ω) is called moderate and an element of N (Ω) is called null.
It is easy to prove that χM (Ω) is an algebra and N (Ω) is an ideal of χM (Ω) .

Definition 2.1. The simplified algebra of Colombeau defined on Ω, denoted
Gs (Ω) , is the quotient algebra

Gs (Ω) =
χM (Ω)

N (Ω)
.
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The algebra of Colombeau Gs (Ω) is a commutative and associative differ-
ential algebra containing D′ (Ω) as a subspace and C∞ (Ω) as subalgebra, see
for details [4, 5] and [14], where others important properties of this algebra are
studied.

Recall the notion of association relation in the Colombeau algebra Gs (Ω),
a generalized function u ∈ Gs (Ω) and a distribution T ∈ D′ (Ω) are called
associated, denoted u ≈ T , if there exists (uε)ε a representative of u such that,
for all φ ∈ C∞0 (Ω) ,

lim
ε→0

∫
uε (x)φ (x) = 〈T, φ〉 .

We introduce, for our need, an association relation less stronger than the
classical association.

Definition 2.2. A generalized function u ∈ Gs (Ω) and a distribution T ∈
D′ (Ω) are called locally associated at x0 ∈ Ω, denoted u ≈x0

T , if there exists
(uε)ε a representative of u and ω ⊂ Ω an open neighborhood of x0, such that,
for all φ ∈ C∞0 (ω) ,

lim
ε→0

∫
uε (x)φ (x) = 〈T, φ〉 .

The proof of the following result is easy.

Proposition 2.3. Let u ∈ Gs (Ω) and T ∈ D
′ (Ω) , then u ≈x0

T , for all x0 ∈ Ω,
if and only if u ≈ T.

3. Regularized partial differential equations

For the concept of regularized derivatives of Colombeau generalized functions
and its application to general Cauchy problems see [6]. Denote by H the set of
non-decreasing functions h : I → I, such that limε→0 h (ε) = 0. Let ρ ∈ C∞0 (Rd)
and

∫
ρ (x) dx = 1, we define the sequence (ρε)ε by ρε(x) =

1
εdρ

(
x
ε

)
, ε ∈ I.

Definition 3.1. Let u ∈ Gs

(
R

d
)
and h ∈ H, the partial regularized derivative

of u with respect to xj, denoted
(
∂̃xj

)
h
u, is defined by

(
∂̃xj

)
h
u = cl

(
∂xj

uε ∗ ρh(ε)
)
ε∈I

,

where (uε)ε is a representative of u.

Remark 3.2. We have
(
∂̃xj

)0
h
u = u and for α ∈ Z

d
+,

∂̃α
hu =

(
∂̃x1

)α1

h
◦
(
∂̃x2

)α2

h
◦ . . . ◦

(
∂̃xd

)αd

h
u .
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It is clear that ∂̃α
hu may be defined by the representative (∂αuε ∗ ρ

[α]
h(ε))ε, where

ρ
[α]
h(ε) = ρh(ε) ∗ ρh(ε) ∗ . . . ∗ ρh(ε), the convolution is taken |α| times. The notion of

regularized derivative is well defined and its class is independent of the choice
of the representative (u)ε.

In order to study the existence and uniqueness of Colombeau generalized so-
lutions of Cauchy problems with partial regularized derivatives, one introduces
the algebra of generalized functions suitable to this context.

We denote by DL∞

(
Ω
)
the algebra of restrictions to Ω of smooth functions

defined on R
d with all derivatives bounded. With the same method of construc-

tion of the simplified algebra of Colombeau, we define the simplified algebra of
global generalized functions, denoted Gs,g

(
Ω
)
, by the quotient algebra

Gs,g

(
Ω
)
=
EM,s,g

[
Ω
]

Ns,g

[
Ω
] ,

where

EM,s,g

[
Ω
]
=
{
(uε)ε ∈ Es,g

[
Ω
]
: ∀α ∈ Z

d
+,∃p > 0, ‖∂αuε‖L∞(Ω) ≤ O

(
ε−p

)}

Ns,g

[
Ω
]
=
{
(uε)ε ∈ Es,g

[
Ω
]
: ∀α ∈ Z

d
+,∀q > 0, ‖∂αuε‖L∞(Ω) ≤ O (εq)

}

and Es,g[Ω] = (DL∞(Ω))
I . It is easy to see that EM,s,g[Ω] is a differential subal-

gebra of Es,g[Ω] and Ns,g[Ω] is an ideal of EM,s,g[Ω].

Proposition 3.3. Let u ∈ DL∞(R
d), α ∈ Z

d
+ and h ∈ H, if h(ε) = O(ε), ε→ 0,

then

∂̃α
hu = ∂αu in Gs,g

(
R

d
)
.

Remark 3.4. In general if u ∈ Gs(R
d), ∂̃α

hu 6= ∂αu in Gs,g(R
d). For example,

denote H the Heaviside function on R, then

∂̃hH 6= H ′ in Gs,g (R) .

Let T > 0, h ∈ H and W = [−T, T ]× R
d , the regularized derivative of an

element u of Gs,g (W ) with respect to xj is defined as

(
∂̃xj

)
h
u = cl

(
∂xj

uε (t, .) ∗ ρh(ε)
)
ε∈I

,

where (uε)ε∈I is a representative of u and ρ ∈ S(Rd) satisfies

i)
∫
ρ (x) dx = 1

ii)
∫
xαρ (x) dx = 0,∀α ∈ N

d.
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Now we consider in Gs,g (W ) the following linear Cauchy problem




∂tu+
∑

|α|≤m

aα∂̃
α
hu = f

u (0, x) = u0(x),

(1)

where aα ∈ DL∞(W ), f ∈ Gs,g(W ) and u0 ∈ Gs,g(R
d).

One of the main results of the paper [6] is the following.

Theorem 3.5. The linear Cauchy problem (1) admits a global unique solution
u ∈ Gs,g (W ) if there exists p ∈ Z+ such that

eC.h(ε)−m

= O
(
ε−p

)
,

where cα =
∥∥∂αρ[α]

∥∥
L1(Rd)

and C =
∑
|α|≤m cα‖aα‖L∞(W ).

4. Non solvable differential operators

The differential operators

M =
∂

∂t
+ ib (t)

∂

∂x
, (2)

where b ∈ C∞ (R) satisfies the condition

tb (t) > 0, ∀t ∈ R
∗, (3)

are called differential operators of Mizohata type. We know, see [13], that such
operators M are not locally solvable at the origin in the framework of Schwartz
distributions. A construction of a function f ∈ C∞0 (R2) such that there is no
locally distributional solution at the origin of the equation Mu = f is given
in [3].

Remark 4.1. It is well known that the operator (2) with the condition (3) is
reduced to the Mitzohata operator ∂

∂t
+it ∂

∂x
if and only if b (0) = 0 and b′(0) 6= 0,

see Trèves [16]. In our case the function b(t) may have a zero at the origin of
infinite order.

In this section we give a necessary and sufficient condition for local solv-
ability of the equation

Mu (t, x) = f (t, x) , (4)

where f ∈ C∞0 (R2) . Let B (t) =
∫ t

0
b (s) ds and define the function Kf by

Kf (x) =

∫ +∞

0

∫ +∞

−∞

ei(x+iB(s))ξf̂ (s, ξ) dsdξ,

where f̂ (t, ξ) is the Fourier transform of f (t, x) with respect to the variable x.
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Theorem 4.2. The equation (4) admits a local distributional solution at the

origin of R
2 if and only if the function Kf is real analytic at the origin of R.

Proof. To solve the equation (4) we formally apply the Fourier transformation
with respect to x, then

∂û

∂t
(t, ξ)− b (t) ξû (t, ξ) = f̂ (t, ξ) ,

hence

û (t, ξ) =

∫ t

t0

e(B(t)−B(s))ξf̂ (s, ξ) ds. (5)

To recover u we must apply the inverse Fourier transformation to û, so the choice
of t0 is important. In (5), we choose t0 such that (B(t)−B(s)) ξ ≤ 0, ∀ξ ∈ R.

By the condition (3) the function B is increasing for t > 0 and decreasing for
t < 0.
For ξ < 0, we choose t0 = 0, and we define u by

û (t, ξ) =

∫ t

0

e(B(t)−B(s))ξf̂ (s, ξ) ds.

For ξ > 0, we take

û (t, ξ) =

{
−
∫ +∞
t

e(B(t)−B(s))ξf̂ (s, ξ) ds, t > 0
∫ t

−∞
e(B(t)−B(s))ξf̂ (s, ξ) ds, t < 0 .

In this case the function û admits a jump at t = 0 given by

û (+0, ξ)− û (−0, ξ) = −

∫ +∞

−∞

e−B(s)ξf̂ (s, ξ) ds.

Consequently, we obtain in the distributional sense

∂û

∂t
(t, ξ)− b (t) ξû (t, ξ) = f̂ (t, ξ) + [û (0+, ξ)− û (0−, ξ)] δ (t) , (6)

where δ is the Dirac measure at 0. The inverse Fourier transform of (6) with
respect to ξ gives

Mu (t, x) = f (t, x)− δ (t)Kf (x) .

Let H (t) be the Heaviside function, then

M (u (t, x) +H (t)Kf (x)) = f (t, x) + ib (t)H (t) (Kf (x))′ .

The term ib (t)H (t) (Kf (x))′ in the last equation is eliminated thanks to the
following function:

v (t, x) =

{
i
∫ t

0
b (s) (Kf)′

(
x− i(B(t)−B(s))

)
ds, t ≥ 0

0, t < 0
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which is well defined as Kf (x) is assumed to be real analytic at the origin.
Therefore the function v admits an holomorphic extension to a neighborhood ω
of the origin of C. Further the function v satisfies the equation Mv(t, x) =
ib(t)H(t) (Kf)′ (x). Define

w (t, x) = u (t, x) +H (t)Kf (x)− v (t, x) ,

then Mw (t, x) = f (t, x), i.e., w (t, x) is a solution of the equation (4).

The constructed solution w is of class C∞ in a neighborhood of the origin.
Indeed, we remark that, if t 6= 0, the operator M is elliptic so w is C∞ when
t 6= 0. To show that w is C∞ we study the case t = 0. We have

w (t, x) = H (t)A (t, x) +H (−t)B (t, x) ,

where

A (t, x) =

∫ 0

−∞

∫ t

0

e(ix+B(t)−B(s))ξf̂ (s, ξ) ds dξ

−

∫ +∞

0

∫ +∞

t

e(ix+B(t)−B(s))ξf̂ (s, ξ) ds dξ

+

∫ +∞

0

∫ +∞

−∞

ei(x+iB(s))ξf̂ (s, ξ) ds dξ

− i

∫ t

0

b (s) (Kf)′
(
x− i (B (t)−B (s))

)
ds

and

B(t, x) =

∫ 0

−∞

∫ t

0

e(ix+B(t)−B(s))ξ f̂ (s, ξ) dsdξ+

∫ +∞

0

∫ t

−∞

e(ix+B(t)−B(s))ξf̂ (s, ξ) dsdξ.

It is clear that w (t, x) is C∞ with respect to the variable x. Moreover we have

∂
j
t ∂

k
xw (t, x) = H (t) ∂j

t ∂
k
xA (t, x) +H (−t) ∂j

x∂
k
t B (t, x)

+

j−1∑

i=0

δ(i) (t)
(
∂
j−1−i
t ∂k

xw (0+, x)− ∂
j−1−i
t ∂k

xw (0−, x)
)

= H (t) ∂j
t ∂

k
xA (t, x) +H (−t) ∂j

x∂
k
t B (t, x)

+

j−1∑

i=0

δ(i) (t)
(
∂
j−1−i
t ∂k

xA (0+, x)− ∂
j−1−i
t ∂k

xB (0−, x)
)

.

We also have

B (t, x)− A (t, x) =

∫ +∞

0

∫ +∞

−∞

e(ix+B(t)−B(s))ξ f̂ (s, ξ) ds dξ −Kf (x)+

+ i

∫ t

0

b (s) (Kf)′
(
x− i (B (t)−B (s))

)
ds,
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then for all l, k ∈ Z+, ∂
l
t∂

k
x (B (t, x)− A (t, x)) is a finite sum of the following

terms:

b(l1) (t) bl2 (t)

[
ik
∫ +∞

0

∫ +∞

−∞

ξl3+ke(ix+B(t)−B(s))ξf̂ (s, ξ) dsdξ

− (−i)l3
(
Kf (l3+k) (x)− i

∫ t

0

b (s) (Kf)(l3+1) (x− i (B (t)−B (s))) ds

)]
,

where l1, l2 and l3 depend only on l. It is clear that these terms equal all zero
when t = 0, then

∂
j
t ∂

k
xw (t, x) = H (t) ∂j

t ∂
k
xA (t, x) +H (−t) ∂j

x∂
k
t B (t, x)

which give w ∈ C∞.

The proof of the necessity of the analyticity of Kf . Let us suppose that
there is u ∈ C1 such that Mu = f in a neighborhood Ω of the origin and let
χ ∈ C∞0 (R2) , χ ≡ 1 in a neighborhood of the origin and suppχ ⊂ Ω. So (χf)
satisfies locally Mu = χf and therefore the function Kf(x) can be written in
the form

Kf(x) = lim
ε→0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ei(x−y+iB(s))ξ−εξ2

(χf) (s, y)
dξ

2π
dy ds .

Consider the integral

Kεf(x) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ei(x−y+iB(s))ξ−εξ2

(χf) (s, y)
dξ

2π
dy ds ,

then

Kεf(x) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ei(x−y+iB(s))ξ−εξ2

M(χu) (s, y)
dξ

2π
dy ds

−

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ei(x−y+iB(s))ξ−εξ2

u(Mχ) (s, y)
dξ

2π
dy ds .

(7)

An integration by parts of the first term of the second member gives

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ei(x−y+iB(s))ξ−εξ2

M(χu) (s, y)
dξ

2π
dy ds = 0,

hence

Kεf(x) = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ei(x−y+iB(s))ξ−εξ2 dξ

2π
u(s, y)Mχ (s, y) dy ds .
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Consider now the deformation of the path of integration with respect to ξ in
Kεf(x) by taking the contour Γ defined by

ζ = ρ

(
1 +

i

2

x− y

|x− y|

)
, ρ > 0.

Hence, for any ε > 0 fixed, we have

Kεf(x) = −

∫ +∞

−∞

∫ +∞

−∞

∫

Γ

ei(x−y+iB(s))ζ−εζ2 dζ

2π
u(s, y)Mχ (s, y) dy ds. (8)

The function Kεf(x) is analytic in x for each fixed ε. It remains to show that
limε→0Kεf(x) is analytic at the origin. For this need, we have to estimate
uniformly the expression Kεf(x). Since Mχ = 0 in a neighborhood of the
origin, as χ ≡ 1 in this neighborhood, so in (8) the integral with respect to s
and y is taken outside a rectangle, i.e., either |s| > c1 or |y| > c2. Consequently,
B(s) > c3 or |x − y| > c4, where (cj)

4
j=1 are positive constants not depending

on s, y , x. Then

Im
(
(x− y + iB(s)) ζ − iεζ2

)
≥ cρ+

3

4
ερ2,

from this estimate we conclude that limε→0Kεf(x) is analytic with respect to
x in a neighborhood of the origin.

Now suppose that u ∈ D′\C1 and u is a solution ofMu = f , then u is a C∞

function of t with values in D′ (R) , see [9, Theorem 4.4.8]. By the local structure
of a distribution, we can assume that, there exists a function v ∈ C1 (R2) such
that u = ∂N

x v. As M
(
∂N
x v

)
= ∂N

x (Mv) , we may substitute ∂N
x v for u in (7)

and proceed in a same way to obtain the general result.

5. Differential operators of Mizohata type in Gs,g

Consider in Gs,g (W ) ,W = [−T, T ]× R, the following equation

∂tU + ib (t) ∂̃xhU = f in Gs,g (W ) , (9)

where f ∈ C∞0 (R2), b ∈ DL∞ (R) and tb (t) > 0, t ∈ R
∗. Let h ∈ H such that

h (ε) = O (ε) , ε→ 0, then we have the following results.

Theorem 5.1. Let U = cl (uε)ε ∈ Gs,g(W ) be a solution of (9) which is locally
associated to a distribution v ∈ D′(ω) at the origin, then the function Kf is

analytic in a neighborhood of the origin of R.
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Proof. Let us suppose that a solution U = cl (uε)ε of (9) is locally associated to
a distribution v at the origin, then there is a neighborhood ω̃ of the origin such
that, for all φ ∈ C∞0 (ω̃) ,

lim
ε→0

∫
uε (t, x)φ (t, x) = 〈v, φ〉 .

We have
(∂tuε)ε + ib (t)

(
∂xuε ∗ ρh(ε)

)
ε
− f ∈ Ns,g [W ] ,

where the convolution takes place in the x-variable at fixed t, so

lim
ε→0

(
(∂tuε)ε + ib (t)

(
∂xuε ∗ ρh(ε)

)
ε
− f

)
= 0 in D′ (ω̃) .

Since for all h ∈ H, the sequence (ρh(ε))ε converges to the Dirac measure, as
ε→ 0, then for all φ ∈ C∞0 (ω̃) we have

lim
ε→0

∫ (
∂xuε ∗ ρh(ε)

)
ε
(t, x)φ (t, x) = 〈∂xv, φ〉 ,

hence ∂tv + ib (t) ∂xv = f in D′ (ω̃) , i.e., v is a solution of the equation

Mu = f in D′ (ω̃) ,

consequently, by Theorem 4.2, the function Kf is analytic in neighborhood of
the origin of R.

Theorem 5.2. If Kf is analytic in a neighborhood of the origin of R, then

(9) admits a solution U = cl (uε)ε ∈ Gs,g (W ) which is locally associated to a

distribution v ∈ D′ (ω) at the origin.

Proof. Let us suppose that the function Kf is analytic in a neighborhood of the
origin, then there exists v ∈ D′(ω) such that Mv = f in D′(ω). Moreover, see
the proof of the Theorem 4.2, v is of class C∞ in ω. Let Ω b ω, then v ∈ DL∞(Ω)
and by Proposition 3.3 we have

∂tv + ib (t)
(
∂̃x
)
h
v = f in Gs,g

(
Ω
)
.

Let U be a solution of the equation (9) in Gs,g (W ) with the initial data given
by U (0, x) = [v (0, x)] , then in Gs,g

(
Ω
)
we have

{
∂t (U − v) + ib (t)

(
∂̃x
)
h
(U − v) = 0

(U − v) (0, x) = 0.

The uniqueness of the generalized solution in the Theorem 3.5 gives U − v = 0
in Gs,g(Ω), hence U ≈0 v.

For the Mizohata equations under consideration, the new generalized solu-
tions from the method in [6] can be associated with distributions only in the case
these equations are solvable in the sense of distributions theory. This follows at
once from Theorems 4.2, 5.1 and 5.2.



Generalized Functions and Differential Operators 477

References

[1] Antonevich, A. B. and Radyno, Ya. V., A general method for constructing
algebras of generalized functions (Russian). Doklad. Akad. Nauk SSSR 318
(1991)(2), 267 – 270; transl.: Soviet. Math. Dokl. 43 (1991)(3), 680 – 684.

[2] Biagioni, H. A., A Nonlinear Theory of Generalized Functions. Lecture Notes
1421. Berlin: Springer 1990.

[3] Bouzar, C. and Ouyekene, F., On differential operators of Mizohata type. In:
Proc. Int. Conf. Diff. Equations (Berlin, Equadiff ’99; eds.: B. Fiedler et al.)
Vol. 2. Singapore: World Scientific 2000, 1449 – 1451.

[4] Colombeau, J. F., New Generalized Functions and Multiplication of Distribu-

tions. Math. Studies 84. Amsterdam: North Holland 1984.

[5] Colombeau, J. F., Multiplication of Distributions: A Tool in Mathematics,

Numerical Engineering and Theorical Physics. Lecture Notes 1532. Berlin:
Springer 1990.

[6] Colombeau, J. F., Heibig, A. and Oberguggenberger, M., Generalized solu-
tion to partial differential equations of evolution type. Acta Appl. Math. 45
(1996)(2), 115 – 142.

[7] Colombeau, J. F. and Oberguggenberger, M., On a hyperbolic system with a
compatible quadratic term : generalized solution, delta waves, and multiplica-
tion of distributions. Comm. Partial Diff. Equations 15 (1990), 905 – 938.

[8] Hanges, N., Almost Mizohata operators. Trans. Amer. Math. Soc. 293
(1986)(2), 663 – 675.
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