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Asymptotic and Pseudo Almost Periodicity

of the Convolution Operator and Applications

to Differential and Integral Equations
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Abstract. We examine conditions which do ensure the asymptotic almost periodicity
(respectively, pseudo almost periodicity) of the convolution function f ∗h of f with h

whenever f is asymptotically almost periodic (respectively, pseudo almost periodic)
and h is a (Lebesgue) measurable function satisfying some additional assumptions.
Next we make extensive use of those results to investigate on the asymptotically
almost periodic (respectively, pseudo almost periodic) solutions to some differential,
functional, and integral equations.
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1. Introduction

Given two functions f, h : R 7→ R, the convolution function, if it exists, of f
with h denoted f ∗ h is defined by

(f ∗ h)(t) :=

∫ +∞

−∞

f(σ)h(t− σ)dσ, ∀t ∈ R. (1)

Several properties of the convolution operation ∗ can be found in most good
books in functional analysis. Among others, setting u = t − σ in Eq. (1) it is
routine to show that the convolution operation is commutative, i.e., f ∗h = h∗f .
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Recall that the convolution operation combined with the Fourier or Laplace
transforms remains a powerful tool which plays an important role in several
fields such as distribution theory, the solvability of some differential equa-
tions, functional-differential equations, integral equations, and partial differ-
ential equations, data processing, and others.

In [5], it was shown that if f : R 7→ R is almost automorphic and if
g : R 7→ R is a (Lebesgue) integrable function, then the convolution func-
tion f ∗ g : R 7→ R of f with g is also almost automorphic. (For the definition
of the concept of the almost automorphy and related applications, we refer the
reader to [11] – [15], [18, 19, 20] and the references therein.)

In this paper we prove similar results for both asymptotically almost pe-
riodic and pseudo almost periodic functions. (properties of asymptotically al-
most periodic and pseudo almost periodic functions can be found in [1], [2], [3],
[10], [22], [23], and [24] and the references therein.) More generally, both the
asymptotic almost periodicity and pseudo almost periodicity of the convolution
operator κf : h 7→ f ∗ h is studied whenever f is asymptotically almost peri-
odic (respectively, pseudo almost periodic) and h is a (Lebesgue) measurable
function satisfying some additional assumptions. Namely, if f is asymptotically
almost periodic (respectively, pseudo almost periodic), we shall examine the fol-
lowing point: under which conditions is the convolution operator κf : h 7→ f ∗h
asymptotically almost periodic (respectively, pseudo almost periodic)?

Let LM(R) denote the collection of Lebesgue measurable functions defined
from R the set of real numbers into itself. If f is asymptotically almost periodic
(respectively, pseudo almost periodic), one sets

Af := {h ∈ LM(R) : f ∗ h is asymptotically almost periodic}

Pf := {h ∈ LM(R) : f ∗ h is pseudo almost periodic}.

As mentioned above, our goal is to describe some of the functions of both Af

and Pf for a fixed function f in the collection of asymptotically almost periodic
(respectively, pseudo almost periodic) functions. In particular, it will be shown
that each function

h ∈ L1(R) (2)

is also an element of both Af and Pg whenever f is asymptotically almost
periodic and g is pseudo almost periodic (Theorem 3.1 and Theorem 3.3). Con-
sequently, L1(R) ⊂ Af ∩ Pg.

As an application, we shall find conditions which do ensure the asymptotic
almost periodicity (respectively, pseudo almost periodicity) of the function de-
fined by

F (t) =

∫ t

−∞

K(t, σ)f(σ)dσ, t ∈ R, (3)
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where K(t, σ) = a(t− σ), for some a ∈ LM(R), f being asymptotically almost
periodic (respectively, pseudo almost periodic). In Section 4, we make exten-
sive use of our results to discuss the existence of asymptotically almost periodic
(respectively, pseudo almost periodic) solutions to some differential, functional,
and integral equations through both the Banach and Zima’s fixed-point theo-
rems.

Let us recall some definitions and notations that we shall use in the sequel.

2. Asymptotically and pseudo almost periodic functions

Let BC(R) denote the collection of bounded continuous functions f : R 7→ R.
It is well-known that BC(R) is a Banach space when it is equipped with the sup
norm defined by ‖f‖∞ := supt∈R

|f(t)| for each f ∈ BC(R). Let f ∈ BC(R).
Define the linear shift operator στ for some τ ∈ R by (στf)(t) := f(t + τ) for
each t ∈ R.

Similarly, BC(R×Ω) where Ω ⊂ R is an open subset denotes the collection
of bounded continuous functions F : R×Ω 7→ R. If F ∈ B(R×Ω), one defines
the function στF (·, x) for each x ∈ Ω by στF (t, x) := F (t+ τ, x) for each t ∈ R.

Definition 2.1. A function f ∈ BC(R) is called almost periodic if for each
ε > 0, there exists lε > 0 such that every interval of length lε contains a
number τ with the property ‖στf − f‖∞ < ε.

The number τ above is called an ε-translation number of f , and the collec-
tion of almost periodic functions will be denoted by AP (R). Similarly,

Definition 2.2. A function F ∈ BC(R× Ω) is called almost periodic in t ∈ R

uniformly in any K ⊂ Ω a bounded subset if for each ε > 0, there exists lε > 0
such that every interval of length lε > 0 contains a number τ with the following
property: ‖στF (·, x)− F (·, x)‖∞ < ε for each x ∈ K.

Here again, the number τ above is called an ε-translation number of F and
the class of those functions will be denoted AP (R × Ω). More details on the
properties of elements of the class AP (R) (respectively, AP (R × Ω)) can be
found in the literature, especially in [9, 19]. Throughout the paper, we set

AP0(R) =

{

f ∈ BC(R) : lim
T→∞

1

2T

∫ T

−T

|f(s)|ds = 0

}

AP0(R× Ω) =

{

F ∈ BC(R× Ω) : lim
T→∞

1

2T

∫ T

−T

|F (t, s)|dt = 0

}

uniformly in s ∈ Ω.
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Definition 2.3. A function f ∈ BC(R) is called pseudo almost periodic if it can
be expressed as f = h + φ, where h ∈ AP (R) and φ ∈ AP0(R). The collection
of pseudo almost periodic functions will be denoted by PAP (R).

Let us mention that the functions h and φ defined in Definition 2.3 are
respectively called the almost periodic and the ergodic perturbation components
of f . Moreover, the decomposition in Definition 2.3 is unique, see, e.g., [22],
[23], and [24].

We now equip PAP (R) the collection of pseudo almost periodic functions
on R with the sup norm. It is well-known that (PAP (R), ‖ · ‖∞) is a Banach
space, see [17] for details. Similarly,

Definition 2.4. A function F ∈ BC(R × Ω) is called pseudo almost periodic
in t ∈ R uniformly in s ∈ Ω if it can be expressed as F = H + Φ, where
H ∈ AP (R×Ω) and Φ ∈ AP0(R×Ω). The collection of such functions will be
denoted by PAP (R× Ω).

We now define asymptotically almost periodic functions. However details
on those functions can be found in [19, 6], or [16]. For our considerations
concerning the convolution operator it is more convenient to reformulate [19,
Definition 2.5.1] or [6, Definition 5.1] in the following way:

Definition 2.5. A function f ∈ BC(R) is called asymptotically almost periodic
if it can be decomposed as f = h + φ, where h ∈ AP (R) and φ ∈ BC(R)
with limt→+∞ |φ(t)| = limt→−∞ |φ(t)| = 0. In this event, h and φ are respectively
called the principal and corrective terms of the function f . The class of such
functions will be denoted by AAP (R).

As in the proof of [19, Theorem 2.5.4] or in the proof of [6, Theorem 5.3]
one can show the following:

Theorem 2.6. The decomposition of an asymptotically almost periodic function
is unique.

As for PAP (R), one equips AAP (R) the collection of asymptotically almost
periodic functions on R with the sup norm on R. As in [16], it can be readily
shown that (AAP (R), ‖ · ‖∞) is a Banach space.

3. Asymptotic and pseudo almost periodicity
of the convolution function

Theorem 3.1. Let f : R 7→ R be a pseudo almost periodic function and let
g ∈ L1(R). Then the convolution function f ∗ g ∈ PAP (R), i.e., g ∈ Pf .
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Proof. Since f is continuous and g ∈ L1(R), it is not hard to see that the
function t 7→ (f ∗ g)(t) is continuous. Moreover, |(f ∗ g)(t)| ≤ ‖f‖∞‖g‖1 for
each t ∈ R, where ‖g‖1 is the L

1-norm of g, and therefore, f ∗ g ∈ BC(R).

It remains to prove that f ∗ g is pseudo almost periodic. First, notice that
when g ≡ 0 there is nothing to prove. From now on, we suppose g 6≡ 0.

Since f is pseudo almost periodic, there exist h ∈ AP (R) and φ ∈ AP0(R)
such that f = h+ φ, and hence f ∗ g = h ∗ g + φ ∗ g. To complete the proof we
first show that h ∗ g ∈ AP (R), and next that φ ∗ g ∈ AP0(R).

Clearly, h ∗ g ∈ BC(R). Now since h ∈ AP (R), for every ε > 0 there exists
lε > 0 such that for all δ ∈ R there exists τ ∈ [δ, δ + lε] with

|h(σ + τ)− h(σ)| ≤
ε

‖g‖1

for each σ ∈ R.

In particular, the following holds:

|h(t− s+ τ)− h(t− s)| ≤
ε

‖g‖1

for each σ = t− s ∈ R. (4)

Since (h ∗ g)(t+ τ)− (h ∗ g)(t) =
∫ +∞

−∞
{h(t− σ+ τ)− h(t− σ)}g(σ)dσ for each

t ∈ R, using Eq. (4) and the the assumption g ∈ L1(R) it readily follows that
‖στ (h ∗ g)− (h ∗ g)‖∞ ≤ ε, and hence h ∗ g ∈ AP (R).

It remains to show that φ ∗ g ∈ AP0(R). To this end, note that since
φ ∈ AP0(R) and g ∈ L1(R), we have that φ ∗ g ∈ BC(R). By assumption,

limT→∞
1

2T

∫ T

−T
|φ(t)| dt = 0. Now setting

J(T ) :=
1

2T

∫ T

−T

∫ +∞

−∞

|φ(t− s)| |g(s)| ds dt

it follows that

1

2T

∫ T

−T

|(φ ∗ g)(t)| dt ≤ J(T )

=
1

2T

∫ T

−T

∫ +∞

−∞

|φ(t− s)| |g(s)| ds dt

=

∫ +∞

−∞

|g(s)|

(

1

2T

∫ T

−T

|φ(t− s)| dt

)

ds

=

∫ +∞

−∞

|g(s)|

(

1

2T

∫ T−s

−T−s

|φ(r)| dr

)

ds

=

∫ +∞

−∞

|g(s)|φT (s) ds,
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where φT (u) = 1
2T

∫ T−u

−T−u
|φ(r)| dr. Clearly, φT (u) 7→ 0 as T 7→ ∞. Next,

since φT is bounded and g ∈ L1(R), using the Lebesgue dominated convergence
theorem, it follows that limT→∞ J(T ) = 0.

In summary, limT→∞
1

2T

∫ T

−T
|(φ∗g)(t)| dt = 0, and hence φ∗g ∈ AP0(R).

Example 3.2. Setting f(t) = cos10(4t) sin4(5t), and g(t) = e−t
2

4+t2
it is clear that

ξ(t) =

∫ +∞

−∞

cos10(4σ) sin4(5σ) e−(t−σ)2

4 + (t− σ)2
dσ

is pseudo almost periodic.

Similarly, for the asymptotic almost periodicity of the convolution function
we have the following:

Theorem 3.3. Let f : R 7→ R be an asymptotically almost periodic function
and let g ∈ L1(R). Then the convolution function f ∗g ∈ AAP (R), i.e., g ∈ Af .

Proof. Let f ∈ AAP (R) and let h and φ be the principal and the corrective
terms of the function f , respectively. Obviously f ∗ g = h ∗ g+φ ∗ g. Moreover,
as in the proof of Theorem 3.1 we infer that f ∗ g ∈ BC(R), and h ∗ g ∈
AP (R). Furthermore, φ ∗ g ∈ BC(R). Since by assumption, limt→+∞ |φ(t)| =
limt→−∞ |φ(t)| = 0 and that g ∈ L1(R), then,

lim
t→+∞

∣

∣

∣

∣

∫ +∞

−∞

φ(t− σ)g(σ) dσ

∣

∣

∣

∣

= lim
t→−∞

∣

∣

∣

∣

∫ +∞

−∞

φ(t− σ)g(σ) dσ

∣

∣

∣

∣

= 0 ,

by the Lebesgue dominated convergence theorem. And hence, φ ∗ g is the
corrective term of f ∗ g, which completes the proof.

Remark 3.4. Consider the function F (t) =
∫ t

−∞
a(t−s)f(s)ds given in Eq. (3),

where f ∈ PAP (R) and a ∈ L1(R). Setting u = t− s one can rewrite it as

F (t) =

∫ +∞

0

a(u)f(t− u)du.

Consequently, F can be seen as the convolution of f with h(u) = I[0,∞) a(u),
where I[0,∞) is the characteristic function of the interval [0,∞). Using The-
orem 3.1 one can readily see that F is pseudo almost periodic. Similarly, if
f : R → R is an asymptotically almost periodic function and if a is integrable
over R, then the function F is asymptotically almost periodic.
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4. Applications to differential and integral equations

4.1. First-order linear differential equations. We shall make use of Re-
mark 3.4 to characterize asymptotically (respectively, pseudo) almost periodic
solutions to the first-order linear differential equations of the form

u′(t) = λu(t) + f(t), t ∈ R, (5)

where f : R 7→ R is a pseudo almost periodic function and λ ∈ R is a (nonzero)
negative real number.

Theorem 4.1. Let f : R 7→ R be a pseudo almost periodic function and let λ
be a negative real number. Then Eq. (5) has a pseudo almost periodic solution
given by

u(t) =

∫ t

−∞

eλ(t−s)f(s)ds, ∀t ∈ R. (6)

Proof. It is clear that u(t) =
∫ t

−∞
eλ(t−s)f(s)ds is a solution to Eq. (5). Now

setting h(t) = I[0,∞) e
λt it is clear that u given above is pseudo almost periodic,

by Remark 3.4.

Similarly,

Theorem 4.2. Let f : R → R be an asymptotically almost periodic function
and let λ be a negative real number. Then Eq. (5) has an asymptotically almost
periodic solution defined by Eq. (6).

Remark 4.3. Theorem 4.2 extends Theorem 4.1.2 from [19] in the case where f
is almost automorphic.

4.2. First-order semilinear equations. In what follows, we consider the
existence of asymptotically (respectively, pseudo) almost periodic solutions to
semilinear differential equations of the form

u′(t) = λu(t) + F (t, u(t)), t ∈ R, (7)

where F : R × Ω 7→ R, (t, s) 7→ F (t, s) is pseudo almost periodic in t ∈ R

for each s ∈ Ω and λ is a (nonzero) negative real number. Throughout this
subsection, we set Ω = R.

To prove the existence of pseudo almost periodic solutions to Eq. (7) we
use the classical Banach fixed-point principle. The following assumptions will
be made:

(H.1) F : R × R 7→ R, (t, s) 7→ F (t, s) is pseudo almost periodic in t ∈ R

uniformly in s ∈ R (F ∈ PAP (R× R));
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(H.2) F : R×R 7→ R, (t, s) 7→ F (t, s) is Lipschitz in s ∈ R uniformly in t ∈ R,
i.e., there exists M > 0 such that

|F (t, s)− F (t, r)| ≤ M |s− r|,

for all t ∈ R and s, r ∈ R.

Theorem 4.4. Let λ be a nonzero negative real number. Under assumptions
(H.1)–(H.2), Eq. (7) has a unique pseudo almost periodic solution whenever
M
|λ|

< 1.

Proof. It is well-known (see [4]) that functions of the form

u(t) =

∫ t

−∞

eλ(t−s)F (s, u(s)) ds, t ∈ R,

are solutions to Eq. (7). Define the nonlinear operator Γ(u) : R 7→ R by

Γ(u)(t) :=

∫ t

−∞

eλ(t−s)F (s, u(s)) ds.

Let u ∈ PAP (R). From (H.1)–(H.2), it is clear that t 7→ F (t, u(t)) is pseudo
almost periodic, by [4]. From Remark 3.4 it follows that Γ maps PAP (R) into
itself. It remains to show that Γ has a unique fixed-point which is a pseudo
almost periodic solution to Eq. (7).

Let u, v ∈ PAP (R), then

|Γu(t)− Γv(t)| ≤

∫ t

−∞

|eλ(t−s)(F (s, u(s))− F (s, v(s)))| ds

≤M

∫ t

−∞

eλ(t−s)|u(s)− v(s)| ds (by (H.2))

≤M ‖u− v‖∞

∫ t

−∞

eλ(t−s) ds (set u = t− s)

=
M

|λ|
‖u− v‖∞ ,

for each t ∈ R. And hence, ‖Γu − Γv‖∞ ≤ M
|λ|
‖u − v‖∞. If

M
|λ|

< 1, then

Γ : (PAP (R), ‖ · ‖∞) 7→ (PAP (R), ‖ · ‖∞) is a strict contraction, and hence
there exists a unique u0 ∈ PAP (R) satisfying

u0(t) :=

∫ t

−∞

eλ(t−s)F (s, u0(s))ds,

by the Banach fixed-point principle.
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Now let pass to asymptotically almost periodic solutions to Eq. (7). Assume
that:

(H.3) F : R × R → R, (t, s) → F (t, s) is asymptotically almost periodic in
t ∈ R, uniformly in s ∈ R (F ∈ AAP (R× R)).

Similarly as above one can prove

Theorem 4.5. Let λ be a nonzero negative real number. Under assumptions
(H.2) and (H.3), Eq. (7) has a unique asymptotically almost periodic solution
whenever M

|λ|
< 1.

Proof. Let Γ be the operator defined in the proof of Theorem 4.4 and let u ∈
AAP (R). From (H.1) and (H.3), it is clear that t→ F (t, u(t)) is asymptotically
almost periodic, by [16, Lemma 2.7 and 2.8]. Now, using Remark 3.4 it follows
that Γ maps AAP (R) into itself. Further, we argue in a similar way as in the
proof of Theorem 4.4.

4.3. First-order semilinear functional-differential equations. In this
subsection we extend Theorem 4.4 and Theorem 4.5 to the case of the functional-
differential equations given by

u′(t) = λu(t) + F (t, u(h(t))), t ∈ R, (8)

where f and λ denote the same as in the previous subsection and h : R → R is
a given function satisfying some additional conditions.

To prove the existence of asymptotically (respectively, pseudo) almost peri-
odic solutions to Eq. (8) we combine Remark 3.4 and an extension of the Banach
contraction principle, the so-called Zima’s fixed-point theorem. We recall this
theorem [7, 21] in an arbitrary Banach space.

Let (Y, ‖ · ‖) be a Banach space equipped with a binary relation ≺ and a
mapping m : Y 7→ Y. Assume that:

(i) the relation ≺ is transitive;

(ii) the norm ‖ · ‖ is monotonic, i.e., θ ≺ u ≺ v, then ‖u‖ ≤ ‖v‖, for all
u, v ∈ Y;

(iii) θ ≺ m(u) and ‖m(u)‖ = ‖u‖ for each u ∈ Y.

We have

Theorem 4.6 ([21]). In the space Banach space (Y, ‖ · ‖,≺,m) above, let Γ :
Y 7→ Y, A : Y 7→ Y be mappings such that:

(iv) A is a bounded linear operator with spectral radius r(A) < 1;

(v) if θ ≺ u ≺ v, then Au ≺ Av for all u, v ∈ Y;

(vi) m(Γu− Γv) ≺ Am(u− v) for all u, v ∈ Y.

Then the equation Γu = u has a unique solution in Y.
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In what follows, one supposes that Y = R. Next, one requires the following
assumptions:

(H.4) (t, s)→ F (t, s) is Lipschitz in s ∈ R in the following sense:

|F (t, s)− F (t, r)| ≤M(t)|s− r|

for all t, s, r ∈ R, where M : R → R+ is a continuous function satisfying
∫ +∞

−∞
M(s) ds < +∞;

(H.5) h is a continuous function such that h(R) = R and u◦h is pseudo almost
periodic for each u ∈ PAP (R);

(H.6) the spectral radius of the bounded linear operator A:

(Au)(t) =

∫ t

−∞

M(s) u(h(s)) ds, t ∈ R, u ∈ PAP (R), (9)

is less then 1.

Now, we prove

Theorem 4.7. Let λ be a nonzero negative real number. Under assumptions
(H.1),(H.4), (H.5), and (H.6), Eq. (8) has a unique pseudo almost periodic so-
lution.

Proof. Define the nonlinear operator

Γ(u)(t) :=

∫ t

−∞

eλ(t−s) f(s, u(h(s))) ds, u ∈ PAP (R), t ∈ R.

Arguing similarly as in the proof of Theorem 4.4 we deduce that Γ maps
PAP (R) into itself.

For u, v ∈ PAP (R) let us define the relation ≺ by

u ≺ v if and only if u(t) ≤ v(t), ∀t ∈ R.

Moreover, let m(u) = |u|, that is, (m(u))(t) = |u(t)| for each t ∈ R. It is then
easy to check that:

(α) the relation is transitive;

(β) θ ≺ m(u) and ‖m(u)‖∞ = ‖u‖∞ for each u ∈ PAP (R);

(γ) the norm ‖ · ‖∞ is monotonic, that is, if θ ≺ u ≺ v, then ‖u‖∞ ≤ ‖v‖∞
for all u, v ∈ PAP (R);

(δ) For u, v ∈ PAP (R) we have

∣

∣Γ(u)(t)− Γ(v)(t)| ≤

∫ t

−∞

∣

∣

∣
eλ(t−s)

(

f(s, u(h(s)))− f(s, v(h(s)))
)

∣

∣

∣
ds

≤

∫ t

−∞

eλ(t−s)M(s)
∣

∣u(h(s))− v(h(s))
∣

∣ ds

≤

∫ t

−∞

M(s)
∣

∣u(h(s))− v(h(s))
∣

∣ ds,
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hence m(Γ(u)− Γ(v)) ≺ Am(u− v);

(ε) A is increasing, that is, if θ ≺ u ≺ v, then Au ≺ Av for u, v ∈ PAP (R).

Thus by Theorem 4.6 above, we infer that the operator Γ has a unique fixed
point in PAP (R) which obviously is the unique pseudo almost periodic solution
to Eq. (8).

Remark 4.8. (1) As an example of a function h which satisfies (H.5) one can
take a composition of a symmetry of center 0 and a translation.

(2) Some examples of calculation of the spectral radius of the operator A
in Eq. (9) within the framework of the space of continuous functions with the
norm sup can be found in [21, pp. 181–183].

(3) It is worth to mention that in many situations, Zima’s fixed-point the-
orem gives better results than a direct application of the Banach fixed-point
principle, see, e.g., [7] and [8].

For the case of asymptotically almost periodic functions we have

Theorem 4.9. Let λ be a nonzero negative real number. Under assumptions
(H.3), (H.4), (H.5), and (H.6) (in which we replace consequently PAP (R) by
AAP (R)), Eq. (8) has a unique asymptotically almost periodic solution.

Proof. Let us consider again the nonlinear operator Γ defined in the proof of
Theorem 4.7, now in the space AAP (R). Arguing similarly as in the proof of
Theorem 4.5 we deduce that Γ maps AAP (R) into itself. To complete the proof,
one follows along the same lines as in the proof of Theorem 4.7.

4.4. A Volterra-type equation. Consider the Volterra-type equation given
by

u(t) = h(t) +

∫ +∞

−∞

a(t− s)Au(s)ds, ∀t ∈ R, (10)

where h : R 7→ R is pseudo almost periodic, a : R 7→ R is in L1(R) and A is
a (nonzero) bounded linear operator which maps the space PAP (R) into itself
(resp, A maps AAP (R) into itself).

Let us require the following assumption:

(H.7)

∫ +∞

−∞

|a(s)|ds <
1

‖A‖
.

Theorem 4.10. Under assumption (H.7), then the Volterra-type equation,
Eq. (10), has a unique pseudo almost periodic solution.
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Proof. It is clear that Au ∈ PAP (R) for u ∈ PAP (R). Then under (H.7) it
is clear that the function t 7→

∫ +∞

−∞
a(t − s)Au(s)ds is pseudo almost periodic

whenever t 7→ u(t) is (see Theorem 3.1). Now, since h is pseudo almost periodic
it follows that the operator defined by

Φ(u)(t) = h(t) +

∫ +∞

−∞

a(t− s)Au(s)ds, ∀t ∈ R

maps PAP (R) into itself. Moreover, for all u, v ∈ PAP (R),

‖Φ(u)− Φ(v)‖∞ ≤ C‖u− v‖∞,

where C = ‖A‖
∫ +∞

−∞
|a(s)|ds.

Clearly Φ : (PAP (R), ‖ · ‖∞) 7→ (PAP (R), ‖ · ‖∞) is a strict contraction,
by (H.7). Using the Banach fixed-point principle it follows that there exists a
unique pseudo almost periodic function u0 : R 7→ R such that Φ(u0) = u0, i.e.,

u0(t) = h(t) +

∫ +∞

−∞

a(t− s)Au0(s)ds.

Similarly, for asymptotically almost periodic solutions we have

Theorem 4.11. Let h : R → R be asymptotically almost periodic and let
a : R → R be Lebesgue measurable. Then under assumption (H.7), the Volterra-
type equation, Eq. (10), has a unique asymptotically almost periodic solution.

Proof. It is enough to apply the same arguments as in the proof of Theorem 4.10
with Theorem 3.3 instead of Theorem 3.1.

Remark 4.12. As examples of bounded operators A which map PAP (R) into
itself, one may consider the projections π, π′ : PAP (R) 7→ PAP (R) defined by
π(f) = g and π′(f) = φ whenever f = g + φ with g ∈ AP (R) and φ ∈ AP0(R).

5. Conclusion

We end this paper with a note on further applications, and some perspectives.

(i) One can also make use of Theorem 3.1 to characterize pseudo almost
periodic solutions to several other types of differential equations through the
Laplace transform (e.g., second-order differential equations with constant coef-
ficients).

(ii) Fix f = h + φ, where h ∈ AP (R) and φ ∈ AP0(R). Consider the
convolution operator defined by κφ : L1(R) 7→ PAP (R), g 7→ φ ∗ g. Clearly
‖κφ‖ ≤ ‖φ‖∞, hence κφ is a bounded linear operator. Thus one may ask
the following questions: Is κφ compact? What is the spectrum σ(κφ) of the
operator κφ? Is 0 ∈ ρ(κφ), where ρ(κφ) is the resolvent of κφ?
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