Non-Compact and Sharp Embeddings of Logarithmic Bessel Potential Spaces into Hölder-Type Spaces

David E. Edmunds, Petr Gurka and Bohumír Opic

Abstract. In our recent paper [Compact and continuous embeddings of logarithmic Bessel potential spaces. Studia Math. 168 (2005), 229 – 250] we have proved an embedding of a logarithmic Bessel potential space with order of smoothness σ less than one into a space of $\lambda(\cdot)$-Hölder-continuous functions. We show that such an embedding is not compact and that it is sharp.

Keywords. Generalized Lorentz-Zygmund spaces, logarithmic Bessel potential spaces, Hölder-continuous functions, embeddings

Mathematics Subject Classification (2000). Primary 46E35, secondary 46E30, 26D15

1. Introduction

In the recent paper [8] we have derived embeddings of Bessel potential spaces with smoothness $\sigma \in (0,1)$, modelled upon generalized Lorentz-Zygmund spaces, into spaces of $\lambda(\cdot)$-Hölder-continuous functions. Here we discuss non-compactness and sharpness of those embeddings.

To be more specific, we need some notation. Given two (quasi-)Banach spaces X and Y, we write $X \hookrightarrow Y$ or $X \hookrightarrow \hookrightarrow Y$ if $X \subset Y$ and the natural embedding is continuous or compact, respectively.

Let $p,q \in (0,\infty], m \in \mathbb{N}, \alpha_1,\ldots,\alpha_m \in \mathbb{R}$ and let Ω be a measurable subset of \mathbb{R}^n (with respect to n-dimensional Lebesgue measure). The generalized
Lorentz-Zygmund (GLZ) space \(L_{p,q;\alpha_1,\ldots,\alpha_m}(\Omega) \) consists of all measurable (real or complex) functions \(f \) on \(\Omega \) such that the quantity
\[
\|f\|_{p,q;\alpha_1,\ldots,\alpha_m} := \left\| t^{\frac{1}{p}-\frac{1}{q}} \left(\prod_{j=1}^{m} \ell_j^*(t) \right) f^*(t) \right\|_{q,(0,\infty)}
\]
is finite. Here \(\ell_1, \ldots, \ell_m \) are (logarithmic) functions defined on \((0,\infty)\) by
\[
\ell_1(t) = \ell(t) = 1 + |\log t|, \quad \ell_j(t) = 1 + \log \ell_{j-1}(t) \quad (j > 1),
\]
\(f^* \) denotes the non-increasing rearrangement of \(f \) given by
\[
f^*(t) = \inf \{ \lambda > 0 : \{ x \in \Omega; |f(x)| > \lambda \} \}_{\infty} \leq t, \quad t \geq 0,
\]
\(|G|_n \) stands for the \(n \)-volume of a measurable subset \(G \) of \(\mathbb{R}^n \) and \(\| \cdot \|_{q,(a,b)} \) is the usual \(L^q \)-quasi-norm on an interval \((a,b) \subseteq \mathbb{R} \). (For more details about the spaces \(L_{p,q;\alpha_1,\ldots,\alpha_m}(\Omega) \) see [2]–[7], [9], and [11].)

The Bessel kernel \(g_\sigma, \sigma > 0, \) is defined to be that function on \(\mathbb{R}^n \) whose Fourier transform \(\widehat{g}_\sigma \) is
\[
\widehat{g}_\sigma(\xi) = (2\pi)^{-\frac{n}{2}} (1 + |\xi|^2)^{-\frac{n}{2}}, \quad \xi \in \mathbb{R}^n,
\]
where by the Fourier transform \(\widehat{f} \) of a function \(f \) we mean
\[
\widehat{f}(x) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-ixy} f(y) \, dy, \quad x \in \mathbb{R}^n.
\]
Let \(\sigma > 0, p \in (1,\infty), q \in [1,\infty], \alpha_1, \ldots, \alpha_m \in \mathbb{R} \). The logarithmic Bessel potential space \(H^\sigma L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \) is defined by
\[
H^\sigma L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) := \{ u = g_\sigma * f ; f \in L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \},
\]
and is equipped with the (quasi-)norm
\[
\|u\|_{\sigma;p,q;\alpha_1,\ldots,\alpha_m} := \|f\|_{p,q;\alpha_1,\ldots,\alpha_m}. \tag{1}
\]
(By \(f * g \) we mean the convolution of functions \(f \) and \(g \).)

Let \(\mathcal{L} \) be the class of all continuous functions \(\lambda : (0,\infty) \to (0,\infty) \) which are increasing on some interval \((0,\delta)\), with \(\delta = \delta(\lambda) > 0 \), and satisfy \(\lim_{\lambda \to 0,\lambda(t) = 0} \). Let \(\lambda \in \mathcal{L} \) and let \(\Omega \) be a domain in \(\mathbb{R}^n \). The space \(C^{0,\lambda(\cdot)}(\Omega) \) of \(\lambda(\cdot) \)-Hölder-continuous functions consists of all those functions \(u \in C(\overline{\Omega}) \) for which the norm
\[
\|u\|_{C^{0,\lambda(\cdot)}(\Omega)} := \sup_{x \in \Omega} |u(x)| + \sup_{\substack{x,y \in \Omega \ x \neq y}} \frac{|u(x) - u(y)|}{\lambda(|x-y|)}
\]
is finite. Here $C(\Omega)$ stands for the family of all functions which are bounded and uniformly continuous on Ω. (For more information about such spaces see [1] or [10].)

We write $A \lesssim B$ (or $A \gtrsim B$) if $A \leq cB$ (or $cA \geq B$) for some positive constant c independent of appropriate quantities involved in the expressions A and B, and $A \approx B$ if $A \lesssim B$ and $A \gtrsim B$. If $p \in [1, \infty]$, the conjugate number p' is defined by $\frac{1}{p} + \frac{1}{p'} = 1$ with the understanding that $1' = \infty$ and $\infty' = 1$.

In [8] we have extended Theorem 4.9 of [5] (to the range $\sigma \in (0, 1)$) and proved the following embedding.

Theorem 1. Let $0 < \sigma < 1$, $\frac{n}{\sigma} < p < \infty$, $1 < q < \infty$, $m \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$ and let

$$\lambda(t) = t^{n-\frac{n}{p}} \prod_{j=1}^{m} t^{-\alpha_j}, \quad t > 0.$$

Then

\[H^\sigma L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \hookrightarrow C^{0,\lambda}(\mathbb{R}^n). \] (2)

The aim of this paper is to show that the embedding of $H^\sigma L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n)$ into $C^{0,\lambda}(\mathbb{R}^n)$, where Ω is a nonempty domain in \mathbb{R}^n, cannot be compact and that the embedding (2) is sharp with respect to the function λ.

2. Main result and proofs

Our main result reads as follows.

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Let $n \geq 2$ and $\Omega \subseteq \mathbb{R}^n$ be a nonempty domain. Then the embedding

\[H^\sigma L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \hookrightarrow C^{0,\lambda}(\mathbb{R}^n) \] (3)

is not compact. Moreover, if a function $\mu \in \mathcal{L}$ satisfies $\frac{\mu}{\lambda} \in \mathcal{L}$, then the embedding

\[H^\sigma L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \hookrightarrow C^{0,\mu}(\mathbb{R}^n) \] (4)

does not hold.

To prove Theorem 2, we need some preliminary work. We modify the idea from [7] to construct suitable test functions. Assume that \mathcal{G} is a function with the following properties:

- \mathcal{G} is positive and continuous on $(0, 1]$; \hspace{1cm} (4)
- $t \mathcal{G}(t)$ is nonincreasing on $(0, r_0]$, where $r_0 \in (0, 1]$ is a fixed number; \hspace{1cm} (5)
- $\mathcal{G}(\frac{t}{2}) \preceq \mathcal{G}(t)$, $t \in (0, 1]$ \hspace{1cm} (6)
(notice that the assumption (5) is stronger than (4.2) of [7]). We use mollifiers to assign to the function \(G \) a family of functions \(\{G_r\} \). Let \(\varphi \in C_0^\infty(\mathbb{R}) \) be a non-negative function such that \(\int_{\mathbb{R}} \varphi = 1 \) and \(\text{supp} \varphi = [-1, 1] \). We define the function \(\varphi_\varepsilon, \varepsilon > 0, \) by

\[
\varphi_\varepsilon(t) := \frac{1}{\varepsilon} \varphi\left(\frac{t}{\varepsilon}\right), \quad t \in \mathbb{R},
\]

and we put

\[
\psi := \chi_{[-2+\frac{1}{\varepsilon}, 1+\frac{1}{\varepsilon}] * \varphi_\varepsilon}.
\]

Now, we extend \(G \) by zero outside the interval \((0, 1]\) and we define functions \(G_r, r \in (0, 1) \), by

\[
G_r(t) := \left((\chi_{[r, \infty]} \psi G) * \varphi_\varepsilon\right)(t), \quad t \in \mathbb{R}. \tag{7}
\]

For any \(r \in (0, \frac{1}{4}) \), let \(a_r \) be a positive number, let

\[
h_r(x) := a_r G_r(|x|), \quad x \in \mathbb{R}^n, \tag{8}
\]

and

\[
u_r(x) := x_1 (g_\sigma * h_r)(x), \quad x = (x_1, \ldots, x_n) \in \mathbb{R}^n. \tag{9}
\]

Our first aim is to show that the functions \(\nu_r \) belong to the source space in (3). To this end, we shall need the following result.

Lemma 1 (cf. Lemma 4.1 of [7]). Let \(r \in (0, \frac{1}{4}) \) and let \(G_r \) be the functions defined by (7), where \(G \) satisfies (4)–(6). Then

\[
G_r \in C_0^\infty(\mathbb{R}), \quad \text{supp}G_r \subset [\frac{r}{2}, 1] \quad \text{and} \quad G_r \geq 0. \tag{10}
\]

Moreover, there are positive constants \(C_1 \) and \(C_2 \) (independent of \(r \) and \(t \)) such that

\[
G_r(t) \leq C_1 G(t) \chi_{[\frac{r}{2}, 1]}(t), \quad t \in (0, 1] \tag{11}
\]

\[
G_r(t) \geq C_2 G(t), \quad t \in [2r, \frac{1}{2}].
\]

We shall make use of the next assertions.

Lemma 2. Let \(h \) belong to the Schwartz space \(\mathcal{S} \), \(\sigma \geq 0, j \in \{1, \ldots, n\} \) and let \(\mathcal{R}_j \) be the Riesz transform. Then there exists a finite measure \(\nu \) on \(\mathbb{R}^n \) such that, for any \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \)

\[
x_j (g_\sigma * h)(x) = -\sigma (2\pi)^{-\frac{n}{2}} \left[g_\sigma * (\mathcal{R}_j (\nu * g_1 * h)) \right](x) + \left[g_\sigma * (y_j h(y)) \right](x).
\]

Proof. The equality can be derived analogously to (4.48) in [7]. \(\square \)
Lemma 3 (cf. Cor. 4.12 of [7]). Let $1 < p < \infty$, $1 \leq q \leq \infty$, $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$ and let ν be the measure from Lemma 2. Then, for all $f \in L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n)$,
\[
\|g_n * f\|_{p,q;\alpha_1,\ldots,\alpha_m} \lesssim \|f\|_{p,q;\alpha_1,\ldots,\alpha_m}, \quad \alpha \geq 0,
\]
\[
\|R_j f\|_{p,q;\alpha_1,\ldots,\alpha_m} \lesssim \|f\|_{p,q;\alpha_1,\ldots,\alpha_m}, \quad j = 1, \ldots, n,
\]
\[
\|\nu * f\|_{p,q;\alpha_1,\ldots,\alpha_m} \lesssim \|f\|_{p,q;\alpha_1,\ldots,\alpha_m}
\]

Proof. The assumption $p > \frac{n}{n-1}$ and the equality $\frac{1}{p} = \frac{1}{\tilde{p}} - \frac{1}{n}$ imply that $\tilde{p} \in (1, n)$. Thus, the result follows on applying Theorem 3.1 of [7].

Lemma 4. Let $n \geq 2$, $p > \frac{n}{n-1}$, $q \in [1, \infty]$, $\frac{1}{p} = \frac{1}{\tilde{p}} - \frac{1}{n}$, $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$. Then, for all $f \in L_{\tilde{p},q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n)$,
\[
\|g_1 * f\|_{p,q;\alpha_1,\ldots,\alpha_m} \lesssim \|f\|_{p,q;\alpha_1,\ldots,\alpha_m}.
\]

Proof. The assumption $p > \frac{n}{n-1}$ and the equality $\frac{1}{p} = \frac{1}{\tilde{p}} - \frac{1}{n}$ imply that $\tilde{p} \in (1, n)$. Thus, the result follows on applying Theorem 3.1 of [7].

Lemma 5. Let $p, q \in (1, \infty)$, $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$. Let g be a positive function which is continuous in $(0, 1]$ and nonincreasing in some interval $(0, r_0) \subset (0, 1]$. Then, for all $r \in (0, r_0)$,
\[
\|g(|y|)\chi_{[r,1]}(|y|)\|_{p,q;\alpha_1,\ldots,\alpha_m} \lesssim \mathcal{V}_1(r) + \mathcal{V}_2(r),
\]

where
\[
\mathcal{V}_1(r) := \left\| t^{\frac{n-1}{p}} \left(\prod_{j=1}^{m} \ell_j^{\alpha_j}(t) \right) g(t) \right\|_{q;r(1)}
\]
\[
\mathcal{V}_2(r) := r^{\frac{n}{\tilde{p}}} \left(\prod_{j=1}^{m} \ell_j^{\alpha_j}(r) \right) g(r).
\]

Proof. The estimate can be proved analogously to the estimate (4.3) in Lemma 4.1 of [4].

The next lemma provides the upper estimate of $\|u_r\|_{\sigma,p,q;\alpha_1,\ldots,\alpha_m}$, where u_r are the functions given by (9).

Lemma 6. Let $n \geq 2$, $p > \frac{n}{n-1}$, $q \in (1, \infty)$, $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$. Then the functions u_r, $r \in (0, r_0)$, defined by (9) (with \mathcal{G} given by (4)--(6)), satisfy
\[
\|u_r\|_{\sigma,p,q;\alpha_1,\ldots,\alpha_m} \lesssim a_r(\mathcal{W}_1(r/2) + \mathcal{W}_2(r/2)),
\]

where
\[
\mathcal{W}_1(r) := \left\| t^{\frac{n+1}{p}} \left(\prod_{j=1}^{m} \ell_j^{\alpha_j}(t) \right) \mathcal{G}(t) \right\|_{q;r(1)}
\]
\[
\mathcal{W}_2(r) := r^{\frac{n+1}{\tilde{p}}} \left(\prod_{j=1}^{m} \ell_j^{\alpha_j}(r) \right) \mathcal{G}(r).
\]
Proof. Since \(u_r \in \mathcal{S} \) (cf. (10) and the fact that \(g_\sigma * f \in \mathcal{S} \) for \(f \in \mathcal{S} \) and \(\sigma > 0 \)), we can use Lemma 2 and the definition in (1) to get

\[
\|u_r\|_{p,q;\alpha_1,\ldots,\alpha_m}
\lesssim \|g_\sigma * \mathcal{R}_1(\nu * g_1 * h_r)\|_{p,q;\alpha_1,\ldots,\alpha_m} + \|g_\sigma * (y_1 h_r(y))\|_{p,q;\alpha_1,\ldots,\alpha_m}
\]

(12)

Applying Lemma 3, Lemma 4, (8) and (11) to the first term, we obtain

\[
\|\mathcal{R}_1(\nu * g_1 * h_r)\|_{p,q;\alpha_1,\ldots,\alpha_m} \lesssim \|g_1 * h_r\|_{p,q;\alpha_1,\ldots,\alpha_m} \leq \|h_r\|_{p,q;\alpha_1,\ldots,\alpha_m} \leq a_r \|\mathcal{G}(\|y\|)\chi_{[\frac{1}{2},1]}(\|y\|)\|_{p,q;\alpha_1,\ldots,\alpha_m}.
\]

Moreover, using Lemma 5 with \(g = \mathcal{G} \) (observe that this function satisfies the assumptions of Lemma 5) and the identity \(\frac{n}{p} = \frac{n}{p} + 1 \), we arrive at

\[
\|\mathcal{G}(\|y\|)\chi_{[\frac{1}{2},1]}(\|y\|)\|_{p,q;\alpha_1,\ldots,\alpha_m} \lesssim \mathcal{W}_1(r/2) + \mathcal{W}_2(r/2).
\]

Consequently,

\[
\|\mathcal{R}_1(\nu * g_1 * h_r)\|_{p,q;\alpha_1,\ldots,\alpha_m} \lesssim a_r \left[\mathcal{W}_1(r/2) + \mathcal{W}_2(r/2) \right].
\]

(13)

Furthermore, we use (8), (11) and Lemma 5 with \(g(t) = t \mathcal{G}(t) \) to get

\[
\|y_1 h_r(y)\|_{p,q;\alpha_1,\ldots,\alpha_m} \leq \|y_1 h_r(y)\|_{p,q;\alpha_1,\ldots,\alpha_m} \leq a_r \|\mathcal{G}(\|y\|)\chi_{[\frac{1}{2},1]}(\|y\|)\|_{p,q;\alpha_1,\ldots,\alpha_m}
\]

(14)

Finally, by (12), (13) and (14) we obtain the result. \(\square \)

To prove the non-compactness of the embedding (3), we shall need the following assertion.

Lemma 7. Let \(\sigma \in (0, n) \), \(R \in (0, \frac{1}{2}) \) and let

\[
a_r \leq C \quad \text{for all } r \in (0, \frac{1}{4}) \text{ with some } C \in (0, \infty). \]

(15)

Moreover, let the function \(\mathcal{G} \) from (4)–(6) and the numbers \(a_r \) satisfy

\[
a_r \int_{2r}^{\frac{R}{2}} t^{\sigma - 1} \mathcal{G}(t) \, dt \to \infty \quad \text{as } \quad r \to 0_+.
\]

(16)

Then there exist \(\varepsilon = \varepsilon(\sigma) \in (0, \frac{1}{2}) \), \(r_1 = r_1(R) \in (0, \frac{R}{4}) \) and a positive constant \(c \) (independent of \(R \) and \(r_1 \)) such that for the functions \(u_r \) defined by (9), (8) and (7),

\[
\left| [u_r(x) - u_R(x)] - [u_r(0) - u_R(0)] \right| \geq c r a_r \int_{2r}^{\frac{R}{2}} t^{\sigma - 1} \mathcal{G}(t) \, dt
\]

(17)

for every \(r \in (0, r_1) \) and \(x = (\varepsilon r, 0, \ldots, 0) \in \mathbb{R}^n \).
Proof. The result immediately follows from Lemma 4.5 of [7].

Now, we are ready to prove the main result.

Proof of Theorem 2. We can suppose without loss of generality that

\[B := \{ x \in \mathbb{R}^n; |x| \leq 1 \} \subset \Omega. \]

(18)

Let \(r \in (0, \frac{1}{4}) \). Take \(\gamma < 0 \) and put

\[G(t) = t^{\gamma_1 - \gamma} - n \prod_{j=1}^{m} \ell_j^{-\alpha_j}(t), \quad t \in (0,1], \quad \text{and} \quad a_r = r^{-\gamma}. \]

The function \(G \) satisfies (4)–(6). Thus, by Lemma 6,

\[\| u_r \|_{\sigma,p,q;\alpha_1,\ldots,\alpha_m} \leq r^{-\gamma} \left[\left(\int_{\frac{1}{2}}^1 \tau^{\gamma_1 - \gamma} - n \prod_{j=1}^{m} \ell_j^{-\alpha_j}(t) dt \right)^{\frac{1}{q}} + r^{\gamma} \right] \leq 1 \quad \text{for all} \quad r \in (0, r_0), \]

(19)

where \(u_r \) are the functions given by (9). (Observe, that the assumptions \(\sigma \in (0, 1) \) and \(n \geq 2 \) yield \(p > n \sigma > n > \frac{n}{n-1} \).)

Taking \(R \in (0, \frac{1}{4}) \), we can see that the conditions (15) and (16) are satisfied and so, by Lemma 7, there exists \(\varepsilon \in (0, \frac{1}{2}) \) and \(r_1 \in (0, R) \) and a positive constant \(c \) (independent of \(R \) and \(r_1 \)) such that

\[\left| u_r(x) - u_R(x) \right| - \left| u_r(0) - u_R(0) \right| \geq c r^{1-\gamma} \int_{2r}^{\frac{3}{2}} t^{1+\gamma - \frac{n}{p}} \prod_{j=1}^{m} \ell_j^{-\alpha_j}(t) dt \approx r^{\alpha - \frac{n}{p}} \prod_{j=1}^{m} \ell_j^{-\alpha_j}(r) = \lambda(r) \]

for every \(r \in (0, r_1) \) and \(x = (\varepsilon r, 0, \ldots, 0) \). Consequently, for any fixed \(R \in (0, \frac{1}{4}) \) and every sufficiently small positive \(r \),

\[\| u_r - u_R \|_{C_0,\lambda(\cdot)(\Omega)} \geq \frac{\| u_r(x) - u_R(x) \| - \| u_r(0) - u_R(0) \|}{\lambda(\varepsilon r)} \geq c \frac{\lambda(r)}{\lambda(\varepsilon r)} \geq c_0, \]

(20)

where \(c \) and \(c_0 \) are positive constants independent of \(R \) and \(r \).

Finally, consider the sequence of functions \(\{ u_{1/k} \}_{k=k_0}^{\infty} \) with \(k_0 \) sufficiently large. By (19), this sequence is bounded in \(H^p L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \) however, in view of (20), it has no Cauchy subsequence in \(C_0,\lambda(\cdot)(\Omega) \). Therefore, the embedding (3) is not compact.

To prove sharpness, suppose that there is a function \(\mu \in \mathcal{L} \) such that \(\frac{\xi}{\lambda} \in \mathcal{L} \) and \(H^p L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \hookrightarrow C_0,\mu(\cdot)(\Omega) \) for some nonempty domain \(\Omega \) in \(\mathbb{R}^n \). Take a ball \(B \subset \Omega \). Then

\[H^p L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \hookrightarrow C_0,\mu(\cdot)(\overline{B}). \]

(21)
Moreover, by Lemma 4.15 (iv) of [5], the condition \(\chi \in \mathcal{L} \) implies that
\[
C^{0,\mu(\cdot)}(\overline{B}) \hookrightarrow C^{0,\lambda(\cdot)}(\overline{B}).
\]
Combining this embedding with (21), we arrive at
\[
H^s L_{p,q;\alpha_1,\ldots,\alpha_m}(\mathbb{R}^n) \hookrightarrow C^{0,\lambda(\cdot)}(\overline{B}),
\]
which contradicts the non-compactness of the embedding (3) with \(\Omega = B \). \(\square \)

References

Received August 9, 2004