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Recurrence Relations for the Lerch Φ Function
and Applications
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Abstract. In this paper we present a simple method for deriving recurrence relations
and we apply it to obtain two equations involving the Lerch Phi function and sums
of Bernoulli and Euler polynomials. Connections between these results and those
obtained by H. M. Srivastava, M. L. Glasser and V. Adamchik [Z. Anal. Anwendungen
19 (2000), 831 – 846] are pointed out, emphasizing the usefulness of this approach
with some meaningful examples.
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1. Introduction

In recent years the properties of the Riemann Zeta function for positive integer
values of its argument have received a lot of attention. Rapidly convergent
series representation such as Euler’s well-known one

ζ(3) = −4π2

7

∞∑
k=0

ζ(2k)

(2k + 1)(2k + 2)22k

have been recently discovered by several authors in many different ways (see [6]
for an exhaustive overview).

In this context, H. M. Srivastava, M. L. Glasser and V. S. Adamchick ([8])
found some interesting series representations of the values ζ(2n + 1), n ∈ N,
studying different possible evaluations of the definite integral

Is(ω) =

∫ π
ω

0

ts csc2 t dt

= −
(π

ω

)s

cot
(π

ω

)
+

∫ π
ω

0

ts−1 cot t dt (<(s) > 1; ω > 1) .
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At the end of their article, the authors demonstrate that every representation
they found can be derived from the unification formula

∞∑
k=0

ζ(2k)

(2k + p)ω2k

=
πi

2(p + 1)ω
− 1

2
log
(
1− e

2πi
ω

)
− p !

2

(
iω

2π

)p

ζ(p + 1)

+
1

2

p∑
k=1

(
p

k

)
k!

(
iω

2π

)k

Lik
(
e

2πi
ω

)
(p ∈ N : ω ∈ R, |ω| > 1).

(1.1)

This paper presents a very simple method for deriving some recurrence
relations and shows how it can be used as a “short cut” to obtain two formulas
that generalize equation (1.1). The usefulness of the obtained results is then
shown by deducting in a simple and unified way many known (or equivalent to
known) evaluations and series representations for the Riemann Zeta function
and the Dirichlet Beta function.

2. Notations

This section presents the notation used in the next sections. The Euler Gamma
function Γ(s) is defined as the analytic continuation of the integral

Γ(s) =

∫ ∞

0

ts−1e−tdt (s > 1)

and, for n ∈ N, satisfies the property Γ(n + 1) = n!. For s ∈ C let <(s) be
the real part of s. The Hurwitz Zeta function ζ(s, b) is defined as the analytic
continuation of the series

ζ(s, b) =
∞∑

k=0

1

(k + b)s
(<(s) > 1, <(b) > 0),

and it reduces to the Riemann Zeta function ζ(s) in the case b = 1. Similarly,
the Dirichlet Beta function β(s) is the analytic continuation of the series

β(s) =
∞∑

k=0

(−1)k

(2k + 1)s
(<(s) > 0).

For a ∈ C with |a| ≤ 1, taken s ∈ C satisfying <(s) > 1 if a = 1 and <(s) > 0
if |a| = 1 ∧ a 6= 1, the Polylogarithm function is defined by

Lis(a) =
∞∑

k=1

ak

ks
(|a| ≤ 1)
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and the Lerch Φ function is defined by

Φ(a, s, b) =
∞∑

k=0

ak

(k + b)s
(<(b) > 0) .

Furthermore we use Bernoulli polynomials Bk(x) defined by

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
(|t| < 2π) (2.1)

and Euler polynomials Ek(x) defined by

2ext

et + 1
=

∞∑
k=0

Ek(x)
tk

k!
(|t| < π). (2.2)

The Bk(0) values, called Bernoulli numbers, are represented as Bk, while Euler
numbers are the 2kEk(

1
2
) values, represented as Ek.

Two important (and well known) results ([1]) that relate Bernoulli and Euler
numbers with the values ζ(2k) and β(2k + 1), where k ∈ N, are the relations

ζ(2k) =
(−1)k−1(2π)2kB2k

2(2k)!
(2.3)

β(2k + 1) =
(−1)k(π

2
)2k+1E2k

2(2k)!
. (2.4)

Finally, the basic notions of complex variable analysis will be used.

3. Holomorphic functions in a strip

In this section some simple propositions used for the results of Section 4 are
given. We start with the following one.

Proposition 3.1. Let α and β be positive real numbers and let f(z) be an
holomorphic function in the strip S = {z ∈ C : <(z) ≥ 0,=(z) ∈ (−α, β)} such
that f(z) = O(zν), where ν < 0, if <(z) →∞. Then:∫ ∞

0

f(t) dt−
∫ ∞

0

f(t + iϕ) dt = i

∫ ϕ

0

f(it) dt, ϕ ∈ (−α, β). (3.1)

Proof. Given ϕ ∈ (−α, β), take R ∈ R, with R > 0, and consider the rect-
angular contour C of vertices 0, R, R + iϕ and iϕ. For Cauchy theorem the
integral of f over C must be zero; taking the limit for R →∞, the integral over
the right vertical side tends to zero and, parameterizing the integrals over the
other three sides, we get (3.1).
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For the sake of clarity and notation compactness we give the following
definition.

Definition 3.2. Given a function g(z), then M(g)(z) is its Mellin transform,
that is

M(g)(z) =

∫ ∞

0

tz−1g(t) dt (3.2)

for those values of z for which the integral exists. Furthermore, we indicate
with gϕ(z) its translated of a value iϕ in the domain, that is

gϕ(z) = g(z + iϕ). (3.3)

We now state the main proposition used in Section 4.

Proposition 3.3. Let α and β be positive real numbers and let g(z) be an
holomorphic function in the strip S = {z ∈ C : <(z) ≥ 0,=(z) ∈ (−α, β)} such
that g(z) = o(z−k) for all k ∈ N if <(z) → ∞. Then, for every integer n ≥ 0
and ϕ ∈ (−α, β)

M(g)(n + 1)−
n∑

k=0

(
n

k

)
(iϕ)n−kM(gϕ)(k + 1) = i

∫ ϕ

0

(it)ng(it) dt (3.4)

Moreover, if g(z) is not holomorphic in z = 0, having a pole of order p, the
equation holds for every n ≥ p.

Proof. Let us consider f(z) defined as f(z) = zng(z), where n is chosen as
specified in the above Proposition. Then f(z) satisfies the hypothesis of Propo-
sition 3.1 and, in view of (3.3),

f(z + iϕ) = (z + iϕ)ngϕ(z).

For the binomial theorem, we have

f(z + iϕ) =
n∑

k=0

(
n

k

)
(iϕ)n−kzkgϕ(z).

Substituting this in (3.1), in view of (3.2), noting that the Mellin transforms
are well defined, we obtain (3.4).

4. Recurrence relations for the Lerch Φ function

In this section the main result of the paper is given; after recalling an important
Mellin transform we present two recurrence relations involving the Lerch Φ
function, generalizing (1.1).
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4.1. An important transform. Given a, b ∈ C such that |a|≤1 and <(b)> 0,
let us consider the function of the complex variable t

η(t) =
e(1−b)t

et − a
.

Its Mellin transform (as defined in (3.2)) is

M(η)(s) =

∫ ∞

0

ts−1e(1−b)t

et − a
dt.

We note that the integral exists if <(s) > 1 when a = 1 and if <(s) > 0 in the
other cases. We can write

M(η)(s) =

∫ ∞

0

ts−1e−bt

1− ae−t
dt

=

∫ ∞

0

ts−1e−bt

∞∑
k=0

(ae−t)k dt

=
∞∑

k=0

ak

∫ ∞

0

ts−1e−(k+b)t dt

=
∞∑

k=0

akΓ(s)

(k + b)s

so that we have (cf., for example, [7, pg. 121, eq. (4)])

M(η)(s) = Γ(s)Φ(a, s, b)

(|a| ≤ 1; <(b) > 0; <(s) >1 when a = 1, <(s) > 0 otherwise).
(4.1)

4.2. Lerch Φ and Bernoulli polynomials series. Referring to equation (3.4)
let us consider, for b ∈ C with <(b) > 0, the function of the complex variable z

g(z) =
e(1−b)z

ez − 1
,

for which we have

gϕ(z) = e−ibϕ e(1−b)z

ez − e−iϕ
.

Using (4.1), considering that Φ(1, s, b) = ζ(s, b), we easily find that

M(g)(n + 1) = n! ζ(n + 1, b) for n ≥ 1

M(gϕ)(k + 1) = e−ibϕk! Φ(e−iϕ, k + 1, b) for k ≥ 0 and 0 < |ϕ| < 2π .



900 M. Dalai

Furthermore, from (2.1) we have

i

∫ ϕ

0

(it)ng(it) dt = i

∫ ϕ

0

(it)n−1

∞∑
k=0

Bk(1− b)(it)k

k!
dt

= (iϕ)n

∞∑
k=0

Bk(1− b)(iϕ)k

k! (k + n)
(n ≥ 1, |ϕ| < 2π) ,

so that (3.4) becomes (multiplying both sides by (iϕ)−n)

n! (iϕ)−nζ(n + 1, b)− e−ibϕ

n∑
k=0

(
n

k

)
(iϕ)−kk! Φ(e−iϕ, k + 1, b)

=
∞∑

k=0

Bk(1− b)(iϕ)k

k! (k + n)
(n ≥ 1, 0 < |ϕ| < 2π,<(b) > 0)

(4.2)

Some applications of this result, as well as its connection with (1.1), will be
discussed in Section 5.

4.3. Lerch Φ and Euler polynomials series. For <(b) > 0, let us now
consider the function of the complex variable z

g(z) =
e(1−b)z

ez + 1
,

so that we have

gϕ(z) = e−ibϕ e(1−b)z

ez + e−iϕ
.

In view of (4.1),

M(g)(n + 1) = n! Φ(−1, n + 1, b) for n ≥ 0

M(gϕ)(k + 1) = e−ibϕk! Φ(−e−iϕ, k + 1, b) for k ≥ 0 and |ϕ| < π.

Moreover, from (2.2) we have

i

∫ ϕ

0

(it)ng(it) dt = i

∫ ϕ

0

(it)n

2

∞∑
k=0

Ek(1− b)(it)k

k!
dt

=
(iϕ)n+1

2

∞∑
k=0

Ek(1− b)(iϕ)k

k! (k + n + 1)
(n ≥ 0, |ϕ| < π).

Substituting in (3.4) and multiplying both sides by (iϕ)−n we obtain

n! (iϕ)−nΦ(−1, n + 1, b)− e−ibϕ

n∑
k=0

(
n

k

)
(iϕ)−kk! Φ(−e−iϕ, k + 1, b)

=
1

2

∞∑
k=0

Ek(1− b)(iϕ)k+1

k! (k + n + 1)
(n ≥ 0, 0 < |ϕ| < π,<(b) > 0).

(4.3)
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5. Applications of (4.2)

In this section some applications of (4.2) as well as its connection with (1.1) are
presented.

5.1. Deduction of (1.1). Suppose b = 1 in (4.2). It can be easily shown
that ζ(n, 1) = ζ(n) and, if k ≥ 0 and 0 < |ϕ| < 2π, then Φ(e−iϕ, k + 1, 1) =
eiϕ Lik+1(e

−iϕ). So, equation (4.2) reduces to

n! (iϕ)−nζ(n + 1)−
n∑

k=0

(
n

k

)
(iϕ)−kk! Lik+1(e

−iϕ)

=
∞∑

k=0

(iϕ)kBk

k! (k + n)
(n ≥ 1, 0 < |ϕ| < 2π).

(5.1)

Moreover, it is well known (see [1]) that B1 = −1
2
, B2k+1 = 0 for k > 0 and,

if ϕ 6= 0, Li1(e
−iϕ) = − log(1 − e−iϕ). Thus, taking ϕ = −2π

ω
, equation (5.1)

becomes

n!

(
iω

2π

)n

ζ(n + 1) + log(1− e
2πi
ω )−

n∑
k=1

(
n

k

)(
iω

2π

)k

k! Lik+1(e
2πi
ω )

=
∞∑

k=0

(−1)k(2π)2kB2k

(2k)! (2k + n)ω2k
+

πi

(n + 1)ω
(n ≥ 1, |ω| > 1).

Using (2.3) to express B2k in terms of ζ(2k), multiplying by −1
2

and rearranging
terms, we obtain

∞∑
k=0

ζ(2k)

(2k + n)ω2k

=
πi

2(n + 1)ω
− 1

2
log
(
1− e

2πi
ω

)
− n!

2

(
iω

2π

)n

ζ(n + 1)

+
1

2

n∑
k=1

(
n

k

)
k!

(
iω

2π

)k

Lik+1

(
e

2πi
ω

)
(n ≥ 1, |ω| > 1) ,

(5.2)

which is (1.1) (and thus [8, eq. (5.11)]) with the correction of the index of the
PolyLogarithm.

As explained by the authors in [8], equation (5.2) can be used to obtain
several series representation for the ζ for odd integer values of its arguments.
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Some interesting examples, obtained for ω = 2, are ([8, eqs. (3.4) and (3.5)])

ζ(3) =
2π2

9

(
log 2 + 2

∞∑
k=0

ζ(2k)

22k(2k + 3)

)
ζ(3) =

2π2

7

(
log 2 + 2

∞∑
k=0

ζ(2k)

22k(2k + 2)

)
.

Combining these two equations we have ([3, eq. (2.19)] and [5, eq. (3.32) with
n = 1])

ζ(3) = −2π2

∞∑
k=0

ζ(2k)

22k(2k + 2)(2k + 3)

log 2 = −
∞∑

k=0

ζ(2k)(4k + 13)

22k(2k + 2)(2k + 3)
.

On the other hand, when ω = 4, more interesting results can be obtained. It is
easy to see that

Lik(i) =

(
1− 2k−1

22k−1

)
ζ(k) + iβ(k) (k ≥ 2).

Substituting this in (5.2), taking the real part of both sides (paying attention
on the parity of n), it is possible to obtain the following results (calculations
are omitted for brevity):

n∑
k=0

(
2n + 1

2k + 1

)
22k+1(−1)k(2k + 1)!

π2k+1
β(2k + 2)

+
n∑

k=1

(
2n + 1

2k

)
22k(22k − 1)(−1)k(2k)!

24k+1π2k
ζ(2k + 1)

=− log 2

2
− 2

∞∑
k=0

ζ(2k)

24k(2k + 2n + 1)
(n ≥ 0)

(5.3)

and

(−1)n

(
2

π

)2n

(2n)! ζ(2n + 1)

+
n∑

k=1

(
2n

2k − 1

)
π1−2k(−1)1−k(2k − 1)!

21−2k
β(2k)

+
n∑

k=1

(
2n

2k

)
22k(22k − 1)(−1)k(2k)!

24k+1π2k
ζ(2k + 1)

=− log 2

2
− 2

∞∑
k=0

ζ(2k)

24k(2k + 2n)
(n ≥ 1),

(5.4)
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which are equivalent to [8, eqs. (3.26) and (3.27)] but where we have isolated
the β function terms (which corresponds to express the Clausen’s functions of
[8, eqs. (2.18) and (2.19)], when ω = 4, in terms of the β function instead of
using [8, eqs. (3.7) and (3.16)]).

If n = 0 in (5.3), then we have ([8, eq. (2.23)])

β(2) = Catalan = −π

4

(
log(2) + 4

∞∑
k=0

ζ(2k)

24k(2k + 1)

)
, (5.5)

and substituting this representation in (5.4) with n = 1 we get

ζ(3) = −2π2

35

(
log(2) + 4

∞∑
k=0

ζ(2k)(2k + 3)

24k(2k + 1)(2k + 2)

)
. (5.6)

The formula (5.6) is essentially the same as a known result [3, p. 192, eq. (3.21)].
Applying alternatively (5.3) and (5.4) with increasing values of n and using the
representations found at every step we get, e.g.,

β(4) = − π3

10080

(
183 log(2) + 12

∞∑
k=0

ζ(2k)(244k2 + 732k + 479)

24k(2k + 1)(2k + 2)(2k + 3)

)
ζ(5) = − π4

166005

(
942 log(2) + 48

∞∑
k=0

ζ(2k)(628k3 + 3140k2 + 5111k + 2581)

24k(2k + 1)(2k + 2)(2k + 3)(2k + 4)

)
.

5.2. Another application: case b = 1
2
. We present here another possible

use of equation (4.2) when b = 1
2

and ϕ = π.

It is easy to verify that ζ(n, 1
2
) = (2n − 1)ζ(n), and Φ(e−iπ, k + 1, 1

2
) =

2k+1β(k + 1) if k ≥ 0.

It is also easy to demonstrate that Bk(
1
2
) = (21−k−1)Bk; thus equation (4.2)

reduces to

n! (iπ)−n(2n+1 − 1)ζ(n + 1) + i
n∑

k=0

(
n

k

)
(iπ)−kk! 2k+1β(k + 1)

=
∞∑

k=0

(21−2k − 1)B2k (−1)kπ2k

(2k)! (2k + n)
(n ≥ 1),

and using (2.3) we have

n! (iπ)−n(2n+1 − 1)ζ(n + 1) + i
n∑

k=0

(
n

k

)
(iπ)−kk! 2k+1β(k + 1)

=
∞∑

k=0

(22k−1 − 1)ζ(2k)

24k−2(2k + n)
(n ≥ 1).

(5.7)
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This equation allows us to obtain some relations. Taking the imaginary part of
both side we have the formulas

n∑
k=0

22k(−1)k

(2n− 2k)! π2k
β(2k + 1) = 0 (n ≥ 1) (5.8)

and

ζ(2n + 2) =
(−1)nπ2n+1

(22n+2 − 1)

n∑
k=0

22k+1(−1)k

(2n− 2k + 1)! π2k
β(2k + 1) (n ≥ 0), (5.9)

which, in view of (2.3) and (2.4), show to be equivalent to (cf., for example, [7,
p. 64, eq. (48)])

n∑
k=0

(
2n

2k

)
E2k = 0 (n ≥ 1) (5.10)

and

n−1∑
k=0

(
2n− 1

2k

)
E2k =

22n(22n − 1)

2n
B2n (n ≥ 1), (5.11)

respectively, (or, viceversa, known (5.10) and (5.11), (5.8) and (5.9) are equiv-
alent to (2.3) and (2.4)).

Now, taking the real part of both sides of (5.7) we have for n ≥ 0

n∑
k=0

(
2n + 1

2k + 1

)
22k+1(2k + 1)!

π2k+1
(−1)kβ(2k + 2) =

∞∑
k=0

(22k−1 − 1)ζ(2k)

24k−1(2k + 2n + 1)
(5.12)

and for n ≥ 1

ζ(2n + 1) =
(−1)nπ2n

(2n)!(22n+1 − 1)

(
∞∑

k=0

(22k−1 − 1)ζ(2k)

24k−2(2k + 2n)

−
n−1∑
k=0

(
2n

2k + 1

)
22k+2(2k + 1)!

π2k+1
(−1)kβ(2k + 2)

)
.

(5.13)

From equation (5.12), some interesting series representations for β(2m), m ∈ N
can be derived. When n = 0, for example, we have

β(2) = π
∞∑

k=0

(22k−1 − 1)ζ(2k)

24k(2k + 1)
, (5.14)
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which can also be obtained by combining 5.5 and the known (see [6, eq. (4.11),
p. 586]) sum (6.4), while for n = 1 we have

β(4) =
π3

6

∞∑
k=0

(22k−1 − 1)(k + 2)ζ(2k)

24k(2k + 1)(2k + 3)
.

Using (5.13), similar series representations for the values ζ(2m+1), m ∈ N, can
be obtained, for example

ζ(3) =
2π2

7

∞∑
k=0

(22k−1 − 1)(2k + 3)ζ(2k)

24k(2k + 1)(2k + 2)
(5.15)

ζ(5) =
π4

186

∞∑
k=0

(22k−1 − 1)(20k2 + 80k + 83)ζ(2k)

24k(2k + 1)(2k + 3)(2k + 4)
.

In view of (5.14), the formula (5.15) is equivalent to a known result [3, p. 191,
eq. (3.13)].

6. Applications of (4.3)

As a counterpart to Section 5 we now give some examples of application of (4.3).

6.1. Series of β: companion of (5.2). From equation (4.3), if b = 1
2
, a

companion of equation (5.2) can be derived, in which the rule of the ζ function
is played by the β function.

It is easy to see that Φ(−1, n + 1, 1
2
) = 2n+1β(n + 1). Now, taking ϕ = −π

ω
,

using (2.4) and remembering that Ek = 2kEk(
1
2
), we can rewrite the right hand

side of (4.3) as

−2i
∞∑

k=0

β(2k + 1)

ω2k+1(2k + n + 1)
,

where we have used the fact that E2k+1 = 0. Thus, multiplying both sides
by −1

2
, equation (4.3) can be rewritten as

i
∞∑

k=0

β(2k + 1)

ω2k+1(2k + n + 1)

= −n!

(
2ωi

π

)n

β(n + 1)

+
1

2
e

iπ
(2ω)

n∑
k=0

(
n

k

)(
iω

π

)k

k! Φ
(
− ei π

ω , k + 1,
1

2

)
(n ≥ 1, |ω| < 1).

(6.1)
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6.2. Case ω = −2 and Dirichlet L-series. As an example of application of
equation (6.1), let us set ω = −2 so that, multiplying both sides by −2, the left
hand side becomes

i

∞∑
k=0

β(2k + 1)

22k(2k + n + 1)
.

With some further calculations, it is possible to demonstrate that for every
s > 1

Φ
(
i, s,

1

2

)
= 2−2s

(
ζ
(
s,

1

8

)
− ζ
(
s,

5

8

)
+ iζ

(
s,

3

8

)
− iζ

(
s,

7

8

))
so that we have

e−i π
4 Φ
(
i, s,

1

2

)
= 2s− 1

2

(
L(s, χ1)− iL(s, χ2)

)
, (6.2)

where χ1 and χ2 are characters on Z/8 satisfying

χ1(n) =

{
1 if n = 1, 3

−1 if n = 5, 7
, χ2(n) =

{
1 if n = 1, 7

−1 if n = 3, 5
.

Considering the convergence of the L-series, we can say that equation (6.2)
holds for every integer s = k with k ≥ 1. As a result, equation (6.1) becomes

n! (iπ)−n 22n+1β(n + 1)

−
n∑

k=0

(
n

k

)
k! (iπ)−k22k+ 1

2

(
L(k + 1, χ1)− iL(k + 1, χ2)

)
=i

∞∑
k=0

β(2k + 1)

22k(2k + n + 1)
(n ≥ 0).

Taking the imaginary part of both sides we get the two relations

n−1∑
k=0

(
2n

2k + 1

)
(−1)k24k+ 5

2 (2k + 1)!

π2k+1
L(2k + 2, χ1)

+
n∑

k=0

(
2n

2k

)
(−1)k24k+ 1

2 (2k)!

π2k
L(2k + 1, χ2)

=
∞∑

k=0

β(2k + 1)

22k(2k + 2n + 1)
(n ≥ 0),

(6.3)



Recurrence Relations 907

and

(−1)n−124n+3(2n + 1)!

π2n+1
β(2n + 2)

+
n∑

k=0

(
2n + 1

2k + 1

)
(−1)k24k+5/2(2k + 1)!

π2k+1
L(2k + 2, χ1)

+
n∑

k=0

(
2n + 1

2k

)
(−1)k24k+ 1

2 (2k)!

π2k
L(2k + 1, χ2)

=
∞∑

k=0

β(2k + 1)

22k(2k + 2n + 2)
(n ≥ 0)

(see [9] for interesting more general, but not equivalent, recursions and series
representation for Dirichlet L-series). If, for example, n = 0 in equation (6.3),
we have

√
2 L(1, χ2) =

∞∑
k=0

β(2k + 1)

22k(2k + 1)
.

On the other hand one may verify that

L(1, χ2) =

√
2

2

∞∑
n=1

1− (−1)n

n
cos
(nπ

4

)
so that, writing the cosines in exponential form, we can sum the series to obtain
L(1, χ2) = log(1 +

√
2)/
√

2. This gives us the result

∞∑
k=0

β(2k + 1)

22k(2k + 1)
= log(1 +

√
2) ,

which is an interesting (presumably new) counterpart of the known sum ([6,
eq. (4.11), p. 586])

∞∑
k=0

ζ(2k)

22k(2k + 1)
= −1

2
log(2) . (6.4)

These examples show some possible uses of equations (4.2) and (4.3), and it
is clear that other chooses of the parameters b and ϕ will give more complicated,
but maybe interesting, equalities and recurrence relations.

7. Reflection properties

It is well known that Bernoulli and Euler polynomials satisfy the property

Bk(1− x) = (−1)kBk(x)

Ek(1− x) = (−1)kEk(x).
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So, calling S1(n, ϕ, b) the left hand side of (4.2), we have

S1(n, ϕ, b) = S1(n, ϕ, 1− b) = S1(n,−ϕ, 1− b)

(n ≥ 1, 0 < |ϕ| < 2π, 0 < <(b) < 1)

and, calling S2(n, ϕ, b) the left hand side of (4.3), we have

S2(n, ϕ, b) = −S2(n, ϕ, 1− b) = −S2(n,−ϕ, 1− b)

(n ≥1, 0 < |ϕ| < 2π, 0 < <(b) < 1)

We have found a relation between the values Φ(eiϕ, k, b) and Φ(eiϕ, k, 1 − b),
k = 1 . . . n, that does not include any infinite sum.
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Alessandro Languasco for helping me.
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