
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 24 (2005), No. 3, 497–521

Lp-Theory for Elliptic Operators on Rd

with Singular Coefficients
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Abstract. We study the generation of an analytic semigroup in Lp(Rd) and the
determination of the domain for a class of second order elliptic operators with un-
bounded coefficients in Rd. We also establish the maximal regularity of type Lq–Lp

for the corresponding inhomogeneous parabolic equation. In contrast to the previ-
ous literature the coefficients of the second derivatives are not required to be strictly
elliptic or bounded. Interior singularities of the lower order terms are also discussed.
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1. Introduction

Regularity properties of elliptic operators

Au(x) = div(a(x)∇u(x)) + F (x) · ∇u(x)− V (x)u(x), x ∈ Rd,

(at first defined on the test function space C∞
0 (Rd)) with unbounded coefficients

on Rd have intensively been investigated in recent years. Besides the tradi-
tional applications to Schrödinger equations, this line of research is motivated
by the fact that such operators A arise as generators of transition semigroups
in stochastic analysis (possibly after some transformations, [9], [25]). In this
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paper we establish Lp–estimates for the elliptic and parabolic problems associ-
ated with A. These estimates are closely related to the property that A with
the domain

Dp = {u ∈ W 2,p
loc (Rd) : u, div(a∇u), V u ∈ Lp(Rd)}

generates a positive, contractive, and analytic C0–semigroup on Lp(Rd), 1 <
p < ∞.

Since we do not assume that the coefficients of A are bounded in Rd, the
classical theory of elliptic equations does not apply. Nevertheless, nowadays
many generation results are available for elliptic operators with unbounded
coefficients in Lp(Rd), including the enormous literature on Schrödinger oper-
ators, corresponding to aij = δij and F = 0. In particular, it is known that
an extension of (A, C∞

0 (Rd)) generates a C0–semigroup on Lp(Rd) (which is not
necessarily analytic) if the dissipativity condition pV +div F ≥ 0 holds. Recent
and quite general results in this direction are presented in [23] and [28] using
form methods; see also [3] for a different approach based on an approximation
procedure.

However, the determination of the domain is a quite different question which
requires more assumptions on the coefficients. This problem has been treated
supposing that the diffusion coefficients aij belong to C1

b (Rd) and are strictly
elliptic. In this case the diffusion part

A0u(x) = div(a(x)∇u(x)), x ∈ Rd,

satisfies the classical Calderón–Zygmund estimates, so that D(A0) = W 2,p(Rd)
and A0 can be controlled by the Laplacian. In this setting the domain of A
was computed, e.g., in [4], [5], [7], [9], [25] under similar assumptions as in the
present paper; see also the references therein and in particular [8] for further
results. In these papers it was also assumed that the lower order coefficients
have no singularities inside Rd.

In the case of unbounded and non–strictly elliptic aij, we are only aware
of the domain characterizations given in [18] and [19]. In these papers it was
supposed that the coefficients aij have a special structure. In the present paper
we study diffusion coefficients which may be unbounded or degenerate at ∞
without restrictions on their structure, and we also allow for singularities of the
lower order coefficients inside Rd. In order to facilitate the understanding, we
first treat the case where F and V have no singularities in Rd in Sections 2
and 3. In contrast to our previous work [25], now the diffusion part A0 cannot
be controlled by the Laplacian anymore. In order to overcome this difficulty, we
had to develop various new arguments and to treat the cases p ≤ 2 and p > 2
separately. The case of singular F and V poses further technical problems and



Lp-Theory for Elliptic Operators 499

requires additional approximation procedures which are presented in the last
section.

We first introduce our assumptions for the case without singularities of V
and F . We assume that the coefficients of A satisfy the following hypotheses,
where 1 < p < ∞ is given and the scalar products corresponding to the matrices
a(x) are denoted by

a0(ξ, η) =
d∑

k,l=1

akl(x)ξkηl and a0[ξ] := a0(ξ, ξ) (x ∈ Rd, ξ, η ∈ Cd).

(H1) The real-valued functions akl ∈ C1(Rd) satisfy akl = alk for k, l = 1, · · · , d
and

a0[ξ] =
d∑

k,l=1

akl(x)ξkξl > 0

for all x, ξ ∈ Rd with ξ 6= 0.

(H2) The function V : Rd → R is measurable, and there is a function U ∈
C1(Rd) such that c0 ≤ U ≤ V ≤ c1U and a0[∇U ]

1
2 ≤ γU

3
2 + Cγ for some

constants c1, c0, γ > 0 and Cγ ≥ 0.

(H3) The function F ∈ C1(Rd, Rd) satisfies |F · ξ| ≤ κU
1
2 a0[ξ]

1
2 for some

constant κ > 0.

(H4) There is a constant θ < p such that θU + div F ≥ 0.

Condition (H1) already implies that an extension of (A0, C
∞
0 (Rd)) in Lp(Rd)

generates a contractive (and analytic) C0–semigroup on Lp(Rd), for all 1 < p <
∞; see, e.g., the form-method approach in [10]. Under further assumptions,
the closure of (A0, C

∞
0 (Rd)) generates a contractive C0–semigroup on Lp(Rd),

1 < p < ∞. The closure is again denoted by A0. It is not difficult to see that in
this case the closure is the only generator extending (A0, C

∞
0 (Rd)). Moreover,

the domain of the closure is given by

D(A0) = {u ∈ Lp(Rd) ∩W 2,p
loc (Rd) : div(a∇u) ∈ Lp(Rd)}

(see Lemma 2.1 below). In our paper we will assume a rather sharp condition
for the property that test functions are a core for A0 (see Theorem 2.3 and
Section 2.b.1 of [15], and the Remark after Lemma 2.1):

(H5) There is a constant τ > 0 such that

d∑
k,l=1

akl(x)xkxl ≤ τ |x|4(log |x|)2, |x| ≥ 1.
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To state our main results, we introduce the subspace

Dp := D(A0) ∩D(V ) = {u ∈ W 2,p
loc (Rd) : u, A0u, V u ∈ Lp(Rd)}

for 1 < p < ∞. Since A0 and V are closed operators, Dp is a Banach space
endowed with the norm

‖u‖Dp = ‖u‖p + ‖A0u‖p + ‖V u‖p.

Let us first suppose that either F = 0 (and 1 < p < ∞) or 1 < p ≤ 2. For
these cases we show in Section 2 that (A, Dp) generates an analytic semigroup
in Lp(Rd), under assumptions (H1), (H2), (H3), (H4), (H5), and (2.4).

As mentioned above, (H1) and (H5) take care of the diffusion part, and
(H4) implies the dissipativity of A. Hypothesis (H3) allows to control the drift
term F ·∇u by A0u and V u, due to the interpolation Lemma 2.5. But we point
out that the drift is not a small perturbation of A0 or A0 − V , cf. Remark 3.6
in [25].

The oscillation condition (H2) (together with the bound (2.4) on γ) plays a
the central role in the identification of the domain of A. It was already used in
[12] and [13] to show that the domain of the Schrödinger operator −∆ + V in
L2(Rd) coincides with W 2,2(Rd)∩D(V ) both for smooth and singular potentials.
There are counterexamples where this domain characterization fails and (H2) is
true with a too large γ, see [11, Note 22], [25, Example 3.7]. The operator ∆−V
was studied in Lp(Rd) in the papers [26] and [27] also under assumption (H2).

We remark that in (H2) the auxiliary potential U is introduced to obtain
more flexible assumptions for V . In Section 7 of [25] we have used this freedom
to treat a class of Ornstein–Uhlenbeck type operators on an Lp–space with a
weighted measure. Changing the measure to the usual Lebesgue measure, we
obtained an operator with nonzero potential V which in fact dominates the
resulting new drift term, as required by (H3).

The arguments used in Section 2 are based on variational estimates com-
bined with methods from semigroup theory. In the case p > 2, the variational
estimates are not sufficient anymore to control the drift term by the diffusion
part and the potential as in Lemma 2.5. This problem is solved in Propo-
sition 3.3 with considerable efforts, employing a lengthy localization/covering
procedure. Unfortunately, this method requires a stronger version of (H2) and
additional estimates which control the growth and the oscillation of the matrix
a by means of the potential U :

(H2’) The function V : Rd → R is measurable, and there is a function U ∈
C1(Rd) such that, setting

ρ(x) =
|a(x)| 12
U(x)

1
2

and ν(x) = inf
ξ∈Rd, |ξ|=1

d∑
k,l=1

akl(x)ξkξl for x ∈ Rd,
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the conditions

c0 ≤ U ≤ V ≤ c1U, |a(x)|
1
2 |∇U(x)| ≤ γU(x)

3
2 + Cγ, (1.1)

|a(x)| ≤ c2U(x), sup
|y−x|≤ρ(x)

|∇a(y)| ≤ c2 ν(x) |a(x)|−
1
2 U(x)

1
2 (1.2)

hold for x ∈ Rd and some constants cj, γ, Cγ ≥ 0.

Condition (H2’) again allows to interpolate the term F · ∇u between A0u and
V u. So we can adopt the arguments from Section 2 in order to establish in
Theorem 3.5 that A with domain Dp generates an analytic semigroup also if p >
2 provided (H1), (H2’), (H3), (H4), (H5) and (2.4) hold. If a is strictly elliptic,
in addition, then the domain Dp is continuously embedded into W 2,p(Rd), 1 <
p < ∞, see Proposition 3.6.

Using certain regularizations of V and F , we can modify our approach to
obtain essentially the same theorems if V and F are singular at 0 and satisfy
the hypotheses on Rd \ {0}, see Section 4. However, in the case p > 2 the
regularization procedure is rather involved, since the regularized coefficients do
not satisfy (1.2), in general.

The result that A with domain D(A) = Dp generates an analytic emigroup
on Lp(Rd) has many immediate consequences for the regularity properties of
the parabolic problem{

∂tu(t, x) = Au(t, x) + f(t, x), t > 0, x ∈ Rd

u(0, x) = ϕ(x), x ∈ Rd,
(1.3)

see, e.g., [24]. For instance, the solution u belongs to W 1,q([0, T ], Lp(Rd)) and
A0u, V u ∈ Lq([0, T ], Lp(Rd)) for all T > 0, if f = 0 and ϕ belongs to the real
interpolation space (Lp(Rd), Dp)1−1/q,q for some q ∈ (1,∞). If ϕ ∈ Dp, then
u ∈ C1(R+, Lp(Rd)) and A0u, V u ∈ C(R+, Lp(Rd)). In Lunardi’s monograph
[24] one finds plenty of regularity results for u if f is, e.g., Hölder continuous
in time. In addition, our results yield maximal regularity of type Lq–Lp for A,
i.e., for all f ∈ Lq([0, T ], Lp(Rd)) and ϕ = 0, we have u ∈ W 1,q([0, T ], Lp(Rd))
and A0u, V u ∈ Lq([0, T ], Lp(Rd)), see Theorems 3.7 and 4.4. We refer to [2],
[14], and [22] for comprehensive accounts of the theory of maximal regularity,
though we will not need the (quite involved) recent theorems presented in [14]
and [22].

Finally, let us point out that for p > 2 the operators satisfying our hy-
potheses with bounded V must have bounded coefficients, because of (1.2). For
1 < p ≤ 2, we present a simple example of an operator satisfying (H1) – (H5)
with unbounded diffusion matrix and drift coefficients but bounded potential:

Au(x) =
N∑

k=1

Dk

(
(1 + x2

k)Dku(x)
)

+
N∑

k,l=1

bklxlDku(x)− cu(x)
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with real constants bkl and c (where c is sufficiently large).

2. The cases F = 0 and 1 < p ≤ 2

In this section we prove our generation theorem in the cases F = 0 and 1 < p <
∞ or for any F and 1 < p ≤ 2. However, some of the auxiliary results will be
also valid for p > 2 and F 6= 0.

We first show that C∞
0 (Rd) is a core for the Schrödinger operator A0− V if

(H1) and (H5) hold. Observe that V = 0 is allowed in the next lemma.

Lemma 2.1. Assume that (H1) and (H5) hold, 1 < p < ∞, and that 0 ≤
V ∈ L∞

loc(Rd). Then the operator A0 − V defined on D(A0 − V ) = {u ∈
Lp(Rd)∩W 2,p

loc (Rd) : (A0−V )u ∈ Lp(Rd)} generates a contractive C0–semigroup
on Lp(Rd). Moreover, C∞

0 (Rd) is a core for A0 − V .

Proof. One verifies as in the proof of Theorem 2.3 of [15] that (A0−V, C∞
0 (Rd))

possesses a closure (denoted by A0 − V ) which generates a contractive C0–
semigroup on Lp(Rd) for 1 < p < ∞. (In fact, at this point in [15] it is assumed
that V = 0 and 1 < p ≤ 2, but the proof can be modified in a straightforward
way if V 6= 0 and/or p > 2.) It is clear that A0 − V is a restriction of the part
Amax in Lp(Rd) of the distributional operator div a∇− V . By standard elliptic
regularity, see [1], the domain of Amax is given by

D(Amax) = {u ∈ Lp(Rd) ∩W 2,p
loc (Rd) : div(a∇u)− V u ∈ Lp(Rd)}.

If (I −Amax)u = 0 for some u ∈ D(Amax), then 〈u, v− div(a∇v) + V v〉 = 0 for
all test functions v, where the brackets denote the duality of Lp and Lp′ . Since
the closure of (A0 − V, C∞

0 (Rd)) also generates a contractive C0–semigroup on
Lp′(Rd), the set of the functions v − div(a∇v) + V v with v ∈ C∞

0 (Rd) is dense
in Lp′(Rd). So we obtain that u = 0; hence, I − Amax is injective on D(Amax).
This fact implies that D(A0 − V ) = D(Amax).

Remark. We refer the reader to [21] for more general conditions under which
(A0 − V, C∞

0 (Rd)) is essentially self-adjoint in L2(Rd). It is not difficult to
generalize these results to 1 < p < ∞. So one obtains weaker conditions
than (H5) under which the above lemma holds. However, these more general
assumptions require a control of the growth of a through the potential V and
reduce to (H5) if V is bounded. Since we need Lemma 2.1 also when V = 0,
i.e., for the operator A0, we are forced to retain (H5). We note that (H5) is
almost optimal for the case V = 0, see [11, Example 3.5] or [15, Section 2.b.1].

We next want to show that A is regularly dissipative, that is, for some φ ∈
(0, π/2) the operators e±iφA are dissipative. This property is clearly equivalent
to the estimate (2.3) below (with δ = cot φ).
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Proposition 2.2. Let 1 < p < ∞ and assume that (H1), (H3), and (H4) are
satisfied with U replaced by V ∈ Lp

loc(Rd). Then the operator A defined on
C∞

0 (Rd) is regularly dissipative in Lp(Rd), with angle φp > 0 only depending on
p and the constants in (H3) and (H4).

Proof. Let u ∈ C∞
0 (Rd) and, at first, 2 ≤ p < ∞. Set u∗ = u |u|p−2. Observe

that ∇u∗ = u |u|p−4 ((p − 1) Re[u∇u] − i Im[u∇u]) and u∗∇u = 1
p
(∇|u|p) +

i Im(u∇u)|u|p−2. Integrating by parts and using (H4), we calculate

−Re

∫
Rd

(Au) u∗ dx

= (p− 1)

∫
Rd

|u|p−4 a0[Re u∇u] dx

+

∫
Rd

|u|p−4 a0[Im u∇u] dx +

∫
Rd

(V + 1
p
div F )|u|p dx

≥ (p− 1)b2 + c2 + (1− θ
p
)d2,

(2.1)

where we define b2 =
∫
|u|p−4 a0[Re u∇u] dx, c2 =

∫
|u|p−4 a0[Im u∇u] dx, and

d2 =
∫

V |u|p dx. Similarly, employing the Cauchy–Schwarz inequality and (H3),
we estimate∣∣∣∣Im ∫

Rd

(Au)u∗ dx

∣∣∣∣ ≤ |p− 2|
∫

Rd

|u|p−4 |a0(Re(u∇u), Im(u∇u))| dx

+

∫
Rd

|F · Im(u∇u)| |u|p−2 dx

≤ |p− 2| bc + κ

∫
Rd

V
1
2 |u|

p
2 a0[Im u∇u]

1
2 |u|

p
2
−2 dx

≤ |p− 2| bc + κcd.

(2.2)

Taking δp = δ such that δ2 = |p−2|2
4(p−1)

+ κ2

4(1−θ/p)
, we see that∣∣∣∣Im ∫

Rd

(Au)u∗ dx

∣∣∣∣ ≤ −δ Re

∫
Rd

(Au)u∗ dx. (2.3)

This shows the assertion for p ≥ 2. If p ∈ (1, 2), we replace |u| by uε =
√
|u|2 + ε

for ε > 0 in the calculations involving A0. Passing to the limit as ε → 0 and
using Fatou’s lemma, one then establishes (2.1) and (2.2) (in particular, all
integrands are integrable). Thus one can deduce (2.3) as above.

Lemma 2.3. Let 1 < p < ∞. Assume that (H1)–(H4) hold with

θ

p
+ (p− 1)γ

[
κ

p
+

γ

4

]
< 1. (2.4)
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Then, for a test function u, we have∫
Rd

Up|u|p dx +

∫
{u 6=0}

Up−1|u|p−2a0[∇u] dx ≤ c ‖u− Au‖p
p .

The constants c only depend on p and the constants in (H2)–(H4).

Proof. We assume preliminarily that (H2) is satisfied with Cγ = 0. Observe
that we can fix an α ∈ (0, 4) (depending on p, γ, κ, and θ) such that

θ

p
+ (p− 1)γ

[
κ

p
+

γ

α

]
< 1. (2.5)

We first consider the case p ≥ 2. For a fixed real u ∈ C∞
0 (Rd) we set

f := −Au = −A0u− F · ∇u + V u. (2.6)

If we multiply (2.6) by Up−1u|u|p−2 and integrate by parts, we obtain as in the
proof of Proposition 2.2 the identity∫

Rd

(V + 1
p
div F ) Up−1|u|p dx + (p− 1)

∫
Rd

Up−1|u|p−2a0[∇u] dx

= (1− p)

∫
Rd

u |u|p−2Up−2a0(∇u,∇U)dx

+
(1

p
− 1

) ∫
Rd

Up−2|u|p F · ∇Udx +

∫
Rd

fUp−1u |u|p−2 dx.

(2.7)

We introduce the quantities b2 =
∫

Up|u|p dx and d2 =
∫

Up−1|u|p−2a0[∇u] dx.
The left hand side of (2.7) is greater than (1 − θ

p
)b2 + (p − 1)d2 by (H2) and

(H4). Employing (H2), (H3), Hölder’s and Young’s inequalities, we estimate
the right hand side of (2.7) by

(p− 1)γ

∫
Rd

|u|p−1Up−2a0[∇u]
1
2 U

3
2 dx +

(
1− 1

p

)
γκ

∫
Rd

Up−2|u|pU
1
2 U

3
2 dx

+
( ∫

Rd

|f |p dx
) 1

p
( ∫

Rd

Up|u|p dx
)1− 1

p

≤ (p− 1)γbd +
(
1− 1

p

)
γκb2 + ‖f‖p b2− 2

p

≤ (p− 1)γbd +
(
1− 1

p

)
γκb2 + εb2 + cε‖f‖p

p.

Combining these facts, we arrive at[
1− θ

p
− κγ(p− 1)

p
− ε

]
b2 + (p− 1)d2 ≤ (p− 1)γbd + cε‖f‖p

p.
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If we use Young’s inequality and (2.5) and take a sufficiently small ε > 0, then
we deduce∫

Rd

Up|u|p dx +

∫
Rd

Up−1|u|p−2a0[∇u] dx ≤ c ‖f‖p
p = c ‖Au‖p

p (2.8)

for some constant c > 0. In order to remove the assumption Cγ = 0, we fix a
large λ (depending on γ and Cγ) such that U +λ+1 and V +λ+1 satisfy (H2)
with Cγ = 0 and apply the previous estimates to the operator A− λ− 1. Then∫

Rd

Up|u|p dx +

∫
Rd

Up−1|u|p−2a0[∇u] dx

≤ c ‖(λ + 1)u− Au‖p
p ≤ c

(
‖u− Au‖p + λ‖u‖p

)p ≤ c (1 + λ)p ‖u− Au‖p
p,

by the dissipativity of A.

If p < 2, then one can verify as in the proof of Proposition 2.2 that d2 is a
finite number (taking the integral over {x ∈ Rd : u(x) 6= 0}). The claim then
follows as for p ≥ 2.

The above results allow us to treat the case F = 0, i.e., the Schrödinger
operator A0 − V , on Lp(Rd) for 1 < p < ∞.

Theorem 2.4. Let 1 < p < ∞. Assume that (H1), (H2) with γ2 < 4(p− 1)−1,
and (H5) hold. Then A0 − V with domain Dp generates a positive, analytic
C0–semigroup T (·) in Lp(Rd) such that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp and some
φp > 0. Test functions are a core of A0 − V , i.e., C∞

0 (Rd) is dense in Dp.

Proof. Lemma 2.3 (with F = 0, θ = κ = 0) shows that

‖V u‖p ≤ c ‖u− (A0 − V )u‖p (2.9)

for all test functions u, where the constant c only depends on p and the constants
in (H2). Let u ∈ Dp = D(A0)∩D(V ). Due to Lemma 2.1 there are test functions
approximating u in the graph norm of A0 − V . Thus Proposition 2.2 is valid
for A0 − V defined on Dp. Moreover, (2.9) holds for u ∈ Dp thanks to Fatou’s
lemma. We introduce the approximating potentials Uε = U

1+εU
and Vε = V

1+εV
,

where ε > 0. Then we have

c0

1 + εc0

≤ Uε ≤ Vε ≤ c1Uε ≤
c1

ε
and a0[∇Uε]

1
2 ≤ γU

3
2
ε + Cγ. (2.10)

Let f ∈ Lp(Rd). Lemma 2.1 implies that A0 − Vε with domain D(A0 − Vε) =
D(A0) generates a contraction semigroup on Lp(Rd). Therefore there is a unique
uε ∈ D(A0) satisfying

uε − A0uε + Vεuε = f, ‖uε‖p ≤ ‖f‖p , ‖Vεuε‖p ≤ C‖f‖p .



506 G. Metafune et al.

Here the constant C does not depend on ε due to (2.9) and (2.10). Using
standard elliptic regularity on balls B(0, r), [17, Theorem 9.11], we see that

‖uε‖W 2,p(B(0,r)) ≤ C ′
p,r ‖f‖p.

Thus there exists a sequence εn → 0 such that the functions (uεn) converge
weakly to a function u ∈ W 2,p

loc (Rd) as n →∞. The Rellich–Kondrachov theorem
implies that a subsequence of (uεn) tends strongly to u in W 1,p

loc (Rd); hence we
may assume that uεn(x) → u(x) a.e. in Rd. Fatou’s lemma now yields

‖u‖p ≤ ‖f‖p and ‖V u‖p ≤ C‖f‖p.

Let ϕ be a test function. Then we have∫
Rd

fϕ dx =

∫
Rd

uεn(ϕ− A0ϕ + Vεnϕ) dx −→
∫

Rd

u(ϕ− A0ϕ + V ϕ) dx,

as n →∞, and hence∫
Rd

fϕ dx =

∫
Rd

(u− A0u + V u)ϕ dx. (2.11)

So we derive
u− A0u + V u = f.

This means that u ∈ Dp since A0u = u + V u − f ∈ Lp(Rd). As a result,
I− (A0−V ) : Dp → Lp(Rd) is surjective. The operator A0−V with domain Dp

thus generates a contraction semigroup T (·) on Lp(Rd) in view of Lemma 2.1 and
the Lumer–Phillips theorem. Proposition 2.2 and the Lumer–Phillips theorem
then imply that e±iφpA also generate contractive C0–semigroups for some φp >
0. Hence T (·) is analytic due to [16, Theorem II.4.9].

The last assertion immediately follows from Lemma 2.1. The positivity of
A0 − V is essentially known: One can argue as in Theorems 3.1 and 3.3 of
[3] to obtain an extension Ã of (A0 − V, C∞

0 (Rd)) which generates a positive
C0–semigroup. Since test functions are a core of our generator A, we have
A = Ã, and the positivity of T (t) follows. (We note that in [3] it was assumed
that the coefficients akl are uniformly elliptic, but this does not matter in this
argument.)

In the case 1 < p ≤ 2 the above generation result can be extended to the
operator A with F 6= 0 using the complete estimate proved in Lemma 2.3. This
estimate leads to the following weighted Gagliardo–Nirenberg estimate.

Lemma 2.5. Let 1 < p ≤ 2. Assume that the hypotheses (H1) and (H2) are
satisfied and γ2 < 4(p− 1)−1 holds. Then for each ε > 0 there is a constant cε

(depending only on ε, p, and the constants in (H2)) such that

‖U
1
2 a0[∇u]

1
2‖p ≤ ε‖A0u‖p + cε‖V u‖p

for every test function u.
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Proof. Again we first suppose that (H2) holds with Cγ = 0. The estimate (2.8)
for the case F = 0 shows that∫

{u 6=0}
Up−1|u|p−2a0[∇u] dx ≤ c (‖A0u‖p + ‖V u‖p)

p.

Let uε =
√
|u|2 + ε for ε > 0 and denote by K the support of u. Assume that

1 < p < 2 for a moment. Hölder’s inequality with the conjugate exponents 2
p

and 2
2−p

yields∫
Rd

U
p
2 a0[∇u]

p
2 dx =

∫
K

(Up−1up−2
ε a0[∇u])

p
2 (Up up

ε)
2−p
2 dx

≤
( ∫

K

Up−1up−2
ε a0[∇u] dx

) p
2

( ∫
K

Up up
ε dx

)1− p
2
.

Clearly, this estimate also holds for p = 2. Using the theorem of dominated
convergence, we obtain for 1 < p ≤ 2∫

Rd

U
p
2 a0[∇u]

p
2 dx ≤

( ∫
{u 6=0}

Up−1|u|p−2a0[∇u] dx
) p

2
( ∫

Rd

Up |u|p dx
)1− p

2
.

Combining the above estimates with (H2) and Young’s inequality, we deduce

‖U
1
2 a0[∇u]

1
2‖p ≤ c (‖A0u‖p + ‖V u‖p)

p
2 ‖V u‖1− p

2
p

≤ c′ (‖A0u‖
p
2
p + ‖V u‖

p
2
p ) ‖V u‖1− p

2
p

≤ ε ‖A0u‖p + cε ‖V u‖p .

If Cγ 6= 0, we add a large constant λ > 0 such that U + λ and V + λ satisfy
(H2) with Cγ = 0. Then the first part of the proof implies that

‖U
1
2 a0[∇u]

1
2‖p ≤ ‖(U + λ)

1
2 a0[∇u]

1
2‖p

≤ ε ‖A0u‖p + cε ‖(λ + V )u‖p ≤ ε ‖A0u‖p + c′ε ‖V u‖p

due to (H2).

Proposition 2.6. Let 1 < p ≤ 2. Assume that the hypotheses (H1)–(H5) are
satisfied and that (2.4) holds. Then there are constants C, C ′ ≥ 0 depending
only on p and the constants in (H2)–(H4) such that

‖u‖p + ‖A0u‖p + ‖V u‖p ≤ C ‖u− Au‖p ≤ C ′ (‖u‖p + ‖A0u‖p + ‖V u‖p)

for every u ∈ Dp.
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Proof. Let u ∈ Dp. Due to Theorem 2.4 there are test functions un such that
un → u, V un → V u, and A0un → A0u in Lp(Rd); thus we may suppose that
∇un → ∇u a.e.. Lemma 2.5 and (H3) then imply that F · ∇un → F · ∇u in
Lp(Rd). So it suffices to show the proposition for a test function u. The second
asserted estimate follows directly from Lemma 2.5 and (H3). To prove the other
one, we first suppose that Cγ = 0 in (H2). We denote by c a generic constant
only depending on p and the constants in (H2)–(H4). We have ‖V u‖p ≤ c ‖Au‖p

due to (2.8) and (H2). Moreover, assumption (H3) and Lemma 2.5 yield

‖F ·∇u‖p ≤ κ (ε ‖A0u‖p+c ‖V u‖p) ≤ κε (‖Au‖p+‖F ·∇u‖p+‖V u‖p)+c ‖V u‖p ,

where ε := (2κ)−1. As a consequence, we have

‖F · ∇u‖p ≤ c (‖Au‖p + ‖V u‖p) ≤ c ‖Au‖p .

These inequalities further imply that

‖A0u‖p = ‖Au− F · ∇u + V u‖p ≤ c ‖Au‖p ,

so that ‖A0u‖+ ‖V u‖p ≤ C̃ ‖Au‖p in this case. Finally, in the general case we
find again λ > 0 such that U + λ + 1 and V + λ + 1 satisfy (H2) with Cγ = 0.
Then we obtain

‖u‖p + ‖A0u‖+ ‖V u‖p ≤ ‖u‖p + C̃ ‖(1 + λ)u− Au‖p

≤ (1 + λC̃)‖u‖p + C̃ ‖u− Au‖p

≤ C ‖u− Au‖p

by the dissipativity of A.

Theorem 2.7. Let 1 < p ≤ 2. Assume that the hypotheses (H1)–(H5) are
satisfied and that (2.4) holds. Then A with domain Dp generates a positive,
analytic C0–semigroup T (·) in Lp(Rd) such that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp

and some φp > 0. Test functions are a core of A.

Proof. For t ∈ [0, 1] and u ∈ Dp we set Ltu := A0u + tF · ∇u − V u. Note
that these operators satisfy (H1)–(H5) with the same constants. Proposition 2.6
thus shows that

‖u‖Dp ≤ C ‖u− Ltu‖p

for every u ∈ Dp, with C independent of t ∈ [0, 1]. We have 1 ∈ ρ(L0) due to
Theorem 2.4. Therefore 1 ∈ ρ(L1) = ρ(A) by a continuity argument, see, e.g.,
[17, Theorem 5.2]. As in the proof of Proposition 2.6 we extend Proposition 2.2
to the operator A with domain Dp. Thus the Lumer–Phillips theorem implies
that the operators A and e±iφpA generate contractive C0–semigroups for some
φp > 0. So the semigroup generated by A is analytic by [16, Theorem II.4.9].
The last assertion follows from Theorem 2.4. The positivity of T (t) can be seen
as in Theorem 2.4.
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3. The case p > 2

In the case p > 2 the elementary proof of Lemma 2.5 does not work anymore.
Thus we need a different approach to control the drift term by the diffusion part
and the potential. As in [4], [5], [25], we employ localization techniques. To
that purpose we change our hypothesis (H2) to the stronger assumption (H2’).

The following version of the Besicovitch covering theorem follows from the
proof of Lemma 2.2 in [25].

Lemma 3.1. Let k > 1 and {B(x, r(x)) : x ∈ Rd} be a collection of balls
such that the radii r(x) are uniformly bounded and σr(y) ≤ r(x) ≤ 1

σ
r(y) for

a constant σ > 0 if two balls B(x, r(x)) and B(y, r(y)) overlap. Then there
exists a natural number N (depending only on d, k, σ) and a countable covering
{B(xn,

1
k
r(xn))} of Rd such that each y ∈ Rd is contained in at most N of the

balls B(xn, r(xn)).

From the proof of Proposition 3.3 we separate a lemma dealing with lo-
cal perturbations of the Calderón–Zygmund estimate. We denote the norm of
Lp(B(x, r)) by ‖ · ‖p,r .

Lemma 3.2. Let x ∈ Rd, r > 0, 1 < p < ∞ and q ∈ C1(B(x, r), Rd×d) such
that q(y) = q(y)T > 0 for y ∈ B(x, r), and 0 < νI ≤ q(x) ≤ ΛI for some
numbers Λ, ν > 0. Set ω = sup{|q(y) − q(x)| ; y ∈ B(x, r)}. Then there are
constants c, η > 0 only depending on d and p such that if ω

ν
≤ η and u ∈ C∞

0 (Rd)
then

‖D2u‖p, r
2
≤ c

ν

(
‖ tr(qD2u)‖p,r +

1

r
‖q∇u‖p,r +

ω

r
‖∇u‖p,r +

Λ

r2
‖u‖p,r

)
.

Proof. Throughout the proof, x ∈ Rd is fixed and we write c for a generic
constant only depending on d and p. Let ν ≤ λ2

1 ≤ · · · ≤ λ2
d ≤ Λ be the

eigenvalues of q(x), where λk > 0. By the Calderón–Zygmund estimate, see [17,
Theorem 9.9], we have ‖D2v‖p ≤ c ‖∆v‖p for every test function v. Using the
change of variables y 7→ y′ = (λ−1

1 y1, · · · , λ−1
d yd), we deduce

ν ‖∂ij v‖p ≤ λiλj ‖∂ij v‖p ≤ c
∥∥∥∑

k
λ2

k ∂kkv
∥∥∥

p

for i, j ∈ {1, · · · , d}. There is an orthogonal matrix J such that J−1q(x)J =
diag (λ2

k). Thus another change of variables implies

ν ‖D2 v‖p ≤ c ‖ tr(q(x)D2v)‖p .

We fix u ∈ C∞
0 (Rd) and a smooth cut off function χ supported in B(x, r) such

that χ = 1 on B(x, r/2), |∇χ| ≤ c/r, and |D2χ| ≤ c/r2. Then the above
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estimate (with v = χu) yields

‖D2u‖p, r
2
≤ ‖D2(χu)‖p

≤ cν−1 ‖ tr(q(x)D2(χu))‖p

≤ c

ν

(
‖ tr(q(x)D2u)‖p,r +

1

r
‖q(x)∇u‖p,r +

|q(x)|
r2

‖u‖p,r

)
≤ c

ν

(
‖ tr(qD2u)‖p,r + ω‖D2u‖p,r +

1

r
‖q∇u‖p,r

+
ω

r
‖∇u‖p,r +

Λ

r2
‖u‖p,r

)
.

(3.1)

To get rid of ‖D2u‖p,r on the right hand side of (3.1), we shall derive an analo-
gous estimate in the whole space and then use a covering argument.

Observe that |q(y)| ≤ |q(x)| + ω ≤ Λ(1 + ω/ν) and (q(y)ξ|ξ) ≥ ν − ω
for y ∈ B(x, r) and |ξ| = 1. So if ω ≤ ν/2, we have ν

2
I ≤ q(y) ≤ 2ΛI for

y ∈ B(x, r). We extend q to Rd setting q(y) = q(x + r(y − x)/|y − x|) if
|y − x| ≥ r so that ν

2
I ≤ q(x′) ≤ 2ΛI and |q(y)− q(x′)| ≤ 2ω for all y, x′ ∈ Rd.

As a result (3.1) holds for all centers x′ ∈ Rd. By Lemma 3.1 there exists a
countable covering {B(xn, r/2)} of Rd such that at each point y ∈ Rd at most
N of the balls B(xn, r) overlap. We then raise the estimates (3.1) with x = xn

to the pth power and sum over n. Taking the pth root, we arrive at

‖D2u‖p ≤
C ′

ν

(
‖ tr(qD2u)‖p + ω‖D2u‖p +

1

r
‖q∇u‖p +

ω

r
‖∇u‖p +

Λ

r2
‖u‖p

)
for a constant C ′ > 0 only depending on d and p. If ω/ν ≤ η := (2C ′)−1, we
can eliminate the term ‖D2u‖p on the right hand side thus obtaining

‖D2u‖p ≤
2C ′

ν

(
‖ tr(qD2u)‖p +

1

r
‖q∇u‖p +

ω

r
‖∇u‖p +

Λ

r2
‖u‖p

)
.

Now the assertion follows as in (3.1) using the same cut–off function.

Proposition 3.3. Assume that (H1) and (H2’) hold and that 1 < p < ∞.
Then, for each ε > 0, there exists a constant cε only depending on p and the
constants in (H2’) such that

‖U
1
2 a0[∇u]

1
2‖p ≤ ε‖A0u‖p + cε‖V u‖p

for every test function u.

Proof. Step (1): We recall that ρ(x) = |a(x)| 12 U(x)−
1
2 . For x ∈ Rd and

r > 0 we set
ω(x, r) = sup{|a(y)− a(x)| ; y ∈ B(x, r)}.
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Let δ ∈ (0, 1). Assumption (H2’) implies that

ω(x, δρ(x))

ν(x)
≤ c2 δ (3.2)

for all x. So we can fix a number δ1 ∈ (0, 1) such that

ω(x, δρ(x))

ν(x)
≤ η (3.3)

for 0 < δ ≤ δ1, x ∈ Rd, and the constant η from Lemma 3.2. Moreover, the
radii r = r(x) := δρ(x) and the quotients ω(x, r)/ν(x) are uniformly bounded
for x ∈ Rd and 0 < δ ≤ δ1 by (H2’) and (3.2). Replacing U and V by µ+U and
µ + V for sufficiently large µ = µ(γ, Cγ) > 0, we can assume that (H2’) holds
with Cγ = 0. This implies that

|∇U− 1
2 (x)| ≤ γ

2
|a(x)|−

1
2 , x ∈ Rd.

For y ∈ B(x, δρ(x)), x ∈ Rd, and a suitable point z on the line segment between
x and y, we thus obtain

|U(x)−
1
2 − U(y)−

1
2 | ≤ δγ

2

|a(x)| 12
|a(z)| 12

U(x)−
1
2

≤ δγ

2

( |a(x)|
|a(x)| − ω(x, r)

) 1
2
U(x)−

1
2

≤ δγ

2

(
1− ω(x, r)

ν(x)

)− 1
2
U(x)−

1
2

≤ 1

2
U(x)−

1
2 .

(3.4)

In the last step we have used (3.2) and we take δ ∈ (0, δ2] for a sufficiently small
δ2 ∈ (0, δ1]. This estimate yields

1
4
U(y) ≤ U(x) ≤ 9

4
U(y), y ∈ B(x, r), x ∈ Rd. (3.5)

Inequality (3.2) further implies that

|((a(x)− a(y))ξ|ξ)| ≤ ω(x, r) ≤ ω(x, r)

ν(x)
(a(x)ξ|ξ) ≤ 1

2
(a(x)ξ|ξ) (3.6)

for |ξ| = 1, δ ∈ (0, δ3], and some δ3 ∈ (0, δ2]. From (3.5) and (3.6) we infer

β1 U(y)a(y) ≤ U(x)a(x) ≤ β2 U(y)a(y), y ∈ B(x, r), x ∈ Rd, (3.7)
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in the sense of quadratic forms, for some constants 0 < β1 ≤ β2. Now fix
δ = δ3/2 and the corresponding radii r = r(x) = δρ(x). Due to (3.4) and (3.6),
there are constants 0 < β′1 ≤ β′2 such that β′1 r(y) ≤ r(x) ≤ β′2 r(y) whenever
the balls B(x, r(x)) and B(y, r(y)) overlap. Thus we can apply Lemma 3.1 to
the balls B(x, r(x)). We finally observe that

|∇a(y)ξ|2 ≤ c2
2 U(x)ν(x) |ξ|2 ≤ c2

2β2 U(y) (a(y)ξ|ξ) (3.8)

for y ∈ B(x, r) and ξ ∈ Rd due to (H2’) and (3.7).

Step (2): In the remainder of the proof, c denotes a generic constant only
depending on p and the constants in (H2’). Fix x ∈ Rd. Let ν(x) = λ2

1 ≤ · · · ≤
λ2

d = |a(x)| be the eigenvalues of a(x), where λk > 0. Recall that

‖∇v‖2
p ≤ c ‖v‖p ‖∆v‖p

for each test function v. As in the proof of Lemma 3.1 we deduce by two changes
of variables that

‖λj ∂jv‖2
p ≤ c ‖v‖p

∥∥∥∑
k
λ2

k ∂kkv
∥∥∥

p
.

Changing variables again, we obtain

‖U(x)
1
2 a(x)

1
2∇v‖2

p ≤ c ‖U(x)v‖p ‖ tr(a(x)D2v)‖p . (3.9)

We now take a smooth function χ supported in B(x, r/2) and satisfying χ = 1 on
B(x, r/4), |∇χ| ≤ c/r, and |D2χ| ≤ c/r2. Then (3.9) for v = χu, the definition
of r, and standard manipulations with positive-definite matrices imply that

‖U(x)
1
2 a(x)

1
2∇u‖2

p, r
4

≤ ‖U(x)
1
2 a(x)

1
2∇(χu)‖2

p, r
2

≤ c ‖U(x)u‖p, r
2

[
‖ tr(a(x)D2u)‖p, r

2
+

1

r
‖a(x)∇u‖p, r

2
+
|a(x)|

r2
‖u‖p, r

2

]
≤ c ‖U(x)u‖p, r

2

[
‖ tr(a(x)D2u)‖p, r

2
+ U(x)

1
2 ‖a(x)

1
2∇u‖p, r

2
+ U(x) ‖u‖p, r

2

]
.

Next we employ (3.7) and (3.5) to estimate

‖U
1
2 a0[∇u]

1
2‖2

p, r
4
≤ c ‖Uu‖p, r

2

[
‖ tr(aD2u)‖p, r

2
+ ω(x, r) ‖D2u‖p, r

2

+ ‖U
1
2 a0[∇u]

1
2‖p, r

2
+ ‖Uu‖p, r

2

]
.

At this point, because of (3.3), we can apply Lemma 3.2 to the restriction of a
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to B(x, r/2). Consequently,

‖U
1
2 a0[∇u]

1
2‖2

p, r
4
≤ c ‖Uu‖p, r

2

[
‖ tr(aD2u)‖p, r

2
+ ‖U

1
2 a0[∇u]

1
2‖p, r

2
+ ‖Uu‖p, r

2

]
+

c ω(x, r)

ν(x)
‖Uu‖p, r

2

[
‖ tr(aD2u)‖p,r +

1

r
‖a∇u‖p,r

+
ω(x, r)

r
‖∇u‖p,r +

|a(x)|
r2

‖u‖p,r

]
.

Observe that the definition of r and (3.3) yield

ω(x, r)

r
=

ω(x, r)

δ |a(x)| 12
U(x)

1
2 ≤ δ−1η

ν(x)

|a(x)| 12
U(x)

1
2 ≤ δ−1η ν(x)

1
2 U(x)

1
2 .

Using these facts and again (3.7), (3.5), we arrive at

‖U
1
2 a0[∇u]

1
2‖2

p, r
4
≤ c ‖Uu‖p,r

[
‖ tr(aD2u)‖p,r + ‖U

1
2 a0[∇u]

1
2‖p,r + ‖Uu‖p,r

]
.

So (3.8) yields

‖U
1
2 a0[∇u]

1
2‖2

p, r
4
≤ c ‖Uu‖p,r

[
‖Au‖p,r + ‖U

1
2 a0[∇u]

1
2‖p,r + ‖Uu‖p,r

]
.

By a standard application of Young’s inequality, we deduce

‖U
1
2 a0[∇u]

1
2‖p

p, r
4
≤ ε′ ‖Au‖p

p,r + ε′ ‖U
1
2 a0[∇u]

1
2‖p

p,r + cε′ ‖Uu‖p
p,r (3.10)

for ε′ > 0. Due to Lemma 3.1 there is a countable covering B(xn, r(xn)/4) such
that at each point y ∈ Rd at most N of the balls B(xn, r(xn)) overlap. We now
sum the inequalities (3.10) for x = xn over n. This yields

‖U
1
2 a0[∇u]

1
2‖p

p ≤ cε′ ‖Au‖p
p + cε′ ‖U

1
2 a0[∇u]

1
2‖p

p + c′ε′ ‖Uu‖p
p .

We conclude the proof by choosing a small ε′ > 0 and then taking the pth
root.

We can now establish the following two results exactly as Proposition 2.6
and Theorem 2.7 employing Proposition 3.3 instead of Lemma 2.5.

Proposition 3.4. Let 2 < p < ∞. Assume that the hypotheses (H1), (H2’),
(H3), (H4), and (H5) are satisfied and that (2.4) holds. Then there are constants
C, C ′ ≥ 0 depending only on p and the constants in (H2’), (H3), (H4) such that

‖u‖p + ‖A0u‖p + ‖V u‖p ≤ C ‖u− Au‖p ≤ C ′ (‖u‖p + ‖A0u‖p + ‖V u‖p)

for every u ∈ Dp.
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Theorem 3.5. Let 2 < p < ∞. Assume that the hypotheses (H1), (H2’), (H3),
(H4), and (H5) are satisfied and that (2.4) holds. Then A with D(A) = Dp

generates a positive, analytic C0–semigroup T (·) in Lp(Rd) such that ‖T (z)‖ ≤ 1
for | arg z| ≤ φp and some φp > 0. Test functions are a core of A.

The above approach also shows that the graph norm of A is stronger than
the norm of W 2,p(Rd) for 1 < p < ∞, provided that a is strictly elliptic.

Proposition 3.6. Let 1 < p < ∞ and assume that the hypotheses (H1), (H2’),
(H3), (H4), and (H5) are satisfied and that (2.4) holds. We further suppose that
a is strictly elliptic, i.e., νI ≤ a for a constant ν > 0. Then Dp is continuously
embedded in W 2,p(Rd).

Proof. We keep the notation introduced in the proof of Proposition 3.3 re-
taining the same choices of δ and r(x) = δρ(x). Let u ∈ C∞

0 (Rd). Employing
Lemma 3.2 and proceeding as in the proof of Proposition 3.3, we obtain

‖D2u‖p, r
2
≤ c

ν

(
‖ tr(aD2u)‖p,r +

1

r
‖a∇u‖p,r +

ω(x, r)

r
‖∇u‖p,r +

|a(x)|
r2

‖u‖p,r

)
≤ c

ν

[
‖Au‖p,r + ‖U

1
2 a0[∇u]

1
2‖p,r + ‖Uu‖p,r

]
.

The covering argument then yields

‖D2u‖p ≤ c
[
‖Au‖p + ‖U

1
2 a0[∇u]

1
2‖p + ‖Uu‖p

]
≤ c

[
‖Au‖p + ‖u‖p

]
,

where we use Propositions 3.3 and 3.4 in the second inequality.

We further want to show that A has maximal regularity of type Lq–Lp.
For that purpose we suppose that the assumptions of Theorem 2.7 hold for
p = 2 and the assumptions of Theorem 2.7 or 3.5 hold for some p = r ≤ 2
or p = r > 2, respectively. Then the same assumptions are valid for some
ρ ∈ (1, p) or ρ ∈ (p,∞), respectively. Observe that the semigroups generated
by A on L2(Rd), Lr(Rd), and Lρ(Rd) are consistent, i.e., they coincide on the
intersection of these spaces. (In fact, since test functions are a core for A on
each space, the resolvents of A are consistent, which implies that the semigroups
are consistent.)

By rescaling, we may assume that the spectrum of A is contained in the
open left half plane. It is known that the operator A has maximal regularity
of type Lq on Lr(Rd) if its imaginary powers satisfy ‖(−A)is‖r ≤ Mea|s| for
some a ∈ [0, π/2) and all s ∈ R thanks to the Dore–Venni theorem, see, e.g., [2,
Theorem II.4.10.7]. If an operator B is maximal dissipative and invertible on a
Hilbert space, then ‖(−B)is‖ ≤ Meπ|s|/2 by a result due to Kato, [20, Theorem
5]. Hence, ‖(−A)is‖2 ≤ Mea|s| for a = π/2−φ and some φ ∈ (0, π/2], since A is
regularly dissipative. Moreover, A generates a positive contraction semigroup
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on Lρ(RN), so that ‖(−A)is‖ρ ≤ Mε exp((ε + π/2)|s|) for each ε > 0 and s ∈ R
because of the Coifman–Weiss transference principle, see [6, Theorem 5.8]. If
we combine these facts with the Riesz-Thorin interpolation theorem, we obtain
the following result.

Theorem 3.7. Let the assumptions of Theorem 2.7 hold for p = 2 and let the
assumptions of Theorem 2.7 or 3.5 hold for some p = r ≤ 2 or p = r > 2,
respectively. Let f ∈ Lq([0, T ], Lr(Rd)) and ϕ = 0, for some q ∈ (1,∞) and
T > 0. Then the solution u of (1.3) belongs W 1,q([0, T ], Lr(Rd)) and A0u, V u ∈
Lq([0, T ], Lr(Rd)).

The same conclusion holds in the setting of Theorem 2.4 if either γ < 2 and
1 < r ≤ 2 or if γ2 < 4/(r − 1) and r > 2.

4. Interior singularities

We now consider singularities of the lower order coefficients, again assuming
that (H1) and (H5) hold and that 1 < p < ∞. For simplicity we suppose that
F, V, and U satisfy (H2), (H3), and (H4) on Rd\{0} and that (2.4) is true. Then
Dp = D(A0) ∩ D(V ) is still dense in Lp(Rd) since Dp contains C∞

0 (Rd \ {0}).
In addition, we require that

U(x) →∞ as x → 0. (4.1)

As before, we may assume without loss of generality that (H2) holds with Cγ =
0. Since a is uniformly elliptic in a neighborhood of 0, we can rewrite (H2) as

|∇U− 1
2 | ≤ γ1 in a neighborhood of the origin and for a suitable γ1 > 0. Then

(4.1) yields
U(x) ≥ (γ1|x|)−2 as x → 0. (4.2)

So our methods only apply to strongly singular potentials. Of course, some
weaker singularities can easily be handled by perturbation arguments based on
Sobolev embeddings. However, the whole picture seems to be quite complicated
even for Schrödinger operators in L2(Rd), see [12], [13]. We further note that
for sufficiently small γ1 in (4.2) and aij = δij the space C∞

0 (Rd \ {0}) is a core
for A0 − V = ∆ − V due to Theorem 4.1 in [27]. Since the resulting upper
bound for γ differs from our smallness condition (2.4), we do not invoke the
results from [27]. Therefore, C∞

0 (Rd \ {0}) could be not a core of the operators
studied below, in general.

As in the proof of Theorem 2.4 we introduce the approximating potentials
Vε = V

1+εV
and Uε = U

1+εU
, where ε ∈ (0, 1]. Observe that both functions can

be extended continuously by setting V (0) = U(0) = 1/ε. Moreover, Uε belongs
to C1(Rd) with ∇Uε(0) = 0 due to (4.2). One can check as in (2.10) that (H2)
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holds for Uε and Vε with constants independent of ε ∈ (0, 1]. We further define
Fε = (1 + εU)−3/2F and Fε(0) = 0. Because of

|Fε · ξ| = (1 + εU)−
3
2 |F · ξ| ≤ κ (1 + εU)−

3
2 U

1
2 a0[ξ]

1
2 ≤ κU

1
2
ε a0[ξ]

1
2

for ξ ∈ Rd, Fε and Uε satisfy hypothesis (H3) with the same constant. This
estimate also shows that the function Fε belongs to C1(Rd, Rd). Then we obtain

div Fε = (1 + εU)−
3
2 div F − 3ε

2
(1 + εU)−

5
2 ∇U · F

≥ −θU(1 + εU)−1 − 3
2
κγεU2(1 + εU)−2

≥ −(θ + 3
2
κγ)Uε .

Hence Fε and Uε fulfill (H4) with a uniform constant if in addition

θ + 3
2
κγ < p. (4.3)

In view of (2.4) this condition holds automatically if p > 5/2.

As a consequence, Lemmas 2.3 and 2.5 and Propositions 2.2 and 2.6 hold
for the operators

A(ε) = A0 + Fε · ∇ − Vε, 0 < ε ≤ 1,

with uniform constants. Observe that in this case Dp = D(A0) since Vε is
bounded.

We first consider the Schrödinger case F = Fε = 0. By approximation,
Proposition 2.2 is true for A0 − Vε defined on D(A0). Let u ∈ D(A0) ∩D(V ).
Then Vεu → V u in Lp(Rd) as ε → 0 by monotone convergence, and thus
Proposition 2.2 holds for A0 − V defined on D(A0) ∩ D(V ). Arguing as in
Theorem 2.4, we then establish the following result. (In (2.11) one has to use
ϕ ∈ C∞

0 (Rd \ {0}).)

Theorem 4.1. Let 1 < p < ∞. Assume that (H1) and (H5) hold and that U
and V satisfy (H2) with γ2 < 4(p − 1)−1 on Rd \ {0}. Moreover, let (4.1) and
(4.3) be true. Then A0−V with domain Dp generates an analytic C0–semigroup
T (·) in Lp(Rd) such that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp and some φp > 0.

In a second step we treat the full operator A for the case 1 < p ≤ 2. For
u ∈ D(A0) there are un ∈ C∞

0 (Rd) such that un → u and A0un → A0u in
Lp(Rd), by Lemma 2.1. Using Lemma 2.5 and (H3) for Uε and Fε, we see that
Fε · ∇un → Fε · ∇u in Lp(Rd) as n → ∞. Thus Proposition 2.2 holds for A(ε)

defined on D(A0). Next, we take u ∈ D(A0) ∩ D(V ). Then Vεu → V u in
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Lp(Rd) as ε → 0. Further, Fε · ∇u converges to F · ∇u pointwise for x 6= 0, and
|Fε · ∇u| ≤ |F · ∇u|. Fatou’s Lemma, (H3), and Lemma 2.5 show that

‖F · ∇u‖p ≤ lim inf
ε→0

‖Fε · ∇u‖p

= lim inf
ε→0

lim
n→∞

‖Fε · ∇un‖p

≤ c lim inf
ε→0

lim
n→∞

(‖A0un‖p + ‖Vεun‖p)

= c (‖A0u‖p + ‖V u‖p).

As a consequence, Fε · ∇u → F · ∇u in Lp(Rd) by dominated convergence.
Combining these facts, we see that the conclusions of Propositions 2.2 and 2.6
are valid for A defined on D(A0)∩D(V ). Now one can proceed as in the proof
of Theorem 2.7 to derive the next result.

Theorem 4.2. Let 1 < p ≤ 2. Assume that (H1) and (H5) hold and that U , V ,
and F satisfy (H2), (H3), and (H4) with (2.4) on Rd \ {0}. Moreover, let (4.1)
and (4.3) be true. Then A with D(A) = Dp generates an analytic C0–semigroup
T (·) in Lp(Rd) such that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp and some φp > 0.

Finally we deal with the complete operator A for p > 2, now assuming
(H2’) on Rd \ {0} instead of (H2). Again (1.1) (and thus (H2)) are satisfied
by Uε, Vε, and akl with uniform constants. But (1.2) is false for Uε if the
diffusion coefficients are unbounded. So it is not clear a priori whether we can
extend Proposition 3.3 to Uε with uniform constants. However, we can almost
prove this fact by additional arguments, see (4.5). We write c (cη) for a generic
constant only depending on p and the constants in (H2’), (H3), and (H4) (and
on η > 0). Take u ∈ D(A0) ∩D(V ) and a smooth function χ with support in
B(0, 2) such that 0 ≤ χ ≤ 1 and χ = 1 on B(0, 1). Then we have

‖U
1
2
ε a0[∇u]

1
2‖p

= ‖U
1
2
ε

{
a0[∇(χu)] + a0[∇((1− χ)u)] + 2a0(∇(χu),∇((1− χ)u))

} 1
2‖p

≤ c ‖U
1
2
ε a0[∇(χu)]

1
2‖p + c ‖U

1
2
ε a0[∇((1− χ)u)]

1
2‖p

≤ c ‖U
1
2
ε a0[∇(χu)]

1
2‖p + c ‖U

1
2 a0[∇((1− χ)u)]

1
2‖p .

To estimate the first summand in the last line, we extend the diffusion coeffi-
cients akl from B(0, 2) to ãkl ∈ C1

b (Rd) such that ãkl = ãlk are strictly elliptic.
Now we can apply Proposition 2.3 of [25] and obtain, for each η > 0,

‖U
1
2
ε a0[∇(χu)]

1
2‖p ≤ η ‖A0(χu)‖p + cη ‖Uε(χu)‖p

(In fact, Proposition 2.3 of [25] is stated for test functions, but by approximation
it also holds for χu since Uε is bounded.) For the second summand, we extend
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U from Rd \B(0, 1) to Ũ ∈ C1(Rd) such that Ũ is strictly positive. Then we are
in a position to use Proposition 3.3 (which can be extended to D(A0) ∩D(Ũ)
by approximation, using Theorem 2.4), and obtain

‖U
1
2 a0[∇((1− χ)u)]

1
2‖p ≤ η ‖A0((1− χ)u)‖p + cη ‖U((1− χ)u)‖p

for each η > 0. Thus we deduce

‖U
1
2
ε a0[∇u]

1
2‖p ≤ cη [‖A0u‖p + ‖a0(χ,∇u)‖p + ‖a0(1− χ,∇u)‖p]

+ c ‖u‖p + cη ‖Uεχu‖p + cη ‖U(1− χ)u‖p

≤ cη‖A0u‖p + cη‖U
1
2
ε a0[∇u]

1
2‖p + cη‖Uεχu‖p + cη‖U(1− χ)u‖p,

where we have used that Uε is uniformly bounded from below for ε ∈ (0, 1]. So
we arrive at the desired estimate

‖U
1
2
ε a0[∇u]

1
2‖p ≤ cη ‖A0u‖p + cη ‖U(1− χ)u‖p + cη ‖Uεχu‖p (4.4)

≤ cη ‖A0u‖p + cη ‖Uu‖p (4.5)

for sufficiently small η > 0 and all 0 < ε ≤ 1 and u ∈ D(A0) ∩ D(V ). (Note
that we have U , and not Uε, on the right hand side.) Combined with (H3), this
inequality yields

‖Fε · ∇u‖p ≤ κ ‖U
1
2
ε a0[∇u]

1
2‖p ≤ cκη ‖A0u‖p + cηκ ‖Uu‖p (4.6)

for u ∈ D(A0) ∩D(V ), 0 < ε ≤ 1, and small η > 0. We further define

fε := u− A0u− Fε · ∇u + V u.

Let 0 < ε′ ≤ ε ≤ 1. Because of Uε′ ≥ Uε, the coefficients akl, Uε′ , Vε′ , and Fε

satisfy (H1), (H2), (H3), (H4), and (H5) with uniform constants. Lemma 2.3
now yields

‖Vε′u‖p ≤ c ‖u− A0u− Fε · ∇u + Vε′u‖p (4.7)

for test functions u and a constant not depending on ε and ε′. Let u ∈ D(A0)
such that V (1 − χ)u ∈ Lp(Rd) (where χ and Ũ are chosen as above). By
Theorem 2.4 applied to Ũ , there are test functions un such that A0un → A0u,
U(1 − χ)un → U(1 − χ)u, and un → u in Lp(Rd). Estimate (4.4) and (H3)
thus show (4.7) for such u. Letting ε′ → 0, we then derive ‖V u‖p ≤ c ‖fε‖p for
u ∈ D(A0) ∩D(V ). So we conclude that

‖A0u‖p ≤ ‖fε‖p + ‖u‖p + ‖Fε · ∇u‖p + ‖V u‖p ≤ c ‖fε‖p + 1
2
‖A0u‖p

taking a sufficiently small η in (4.6). As a consequence,

‖u‖p + ‖A0u‖p + ‖V u‖p ≤ C ‖fε‖p ≤ C ′ (‖u‖p + ‖A0u‖p + ‖V u‖p) (4.8)
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for constants independent of ε ∈ (0, 1] and u ∈ D(A0)∩D(V ). Since Fε ·∇u →
F · ∇u pointwise, Fatou’s lemma and (4.6) imply

‖F · ∇u‖p ≤ lim
ε→0

‖Fε · ∇u‖p ≤ cκη ‖A0u‖p + cηκ ‖Uu‖p . (4.9)

Hence, Fε · ∇u → F · ∇u in Lp(Rd) as ε → 0 by the theorem of dominated
convergence. Thus we can let ε → 0 in (4.8) and obtain the assertion of Propo-
sition 2.6 in the present situation. We can extend Proposition 2.2 for A(ε)

to u ∈ D(A0) ∩ D(V ) as we extended (4.7). Since Fε · ∇u → F · ∇u and
Vεu → V u in Lp(Rd) as ε → 0, Proposition 2.2 is then also valid for A defined
on D(A0)∩D(V ). Now the next theorem can be shown exactly as Theorem 2.7.

Theorem 4.3. Let p > 2. Assume that (H1) and (H5) hold and that U , V ,
and F satisfy (H2’), (H3), and (H4) with (2.4) on Rd \{0}. Moreover, let (4.1)
and (4.3) be true. Then A with D(A) = Dp generates an analytic C0–semigroup
T (·) in Lp(Rd) such that ‖Tp(z)‖ ≤ 1 for | arg z| ≤ φp and some φp > 0.

In order to extend Theorem 3.7, let the assumptions of Theorem 4.2 hold for
p = 2 and let the assumptions of Theorem 4.2 or 4.3 hold for some p = r ≤ 2
or p = r > 2, respectively. In view of the proof of Theorem 3.7, we have
to show that A generates positive and consistent semigroups on L2(Rd) and
Lp(Rd). This is true for r ≤ 2, since then the theory of Section 2 applies to
A(ε) and A(ε)u → Au as ε → 0 for u ∈ D(A0) ∩ D(V ). Thus positivity and
consistency follows from the Trotter–Kato theorem, [16, Theorem III.4.8]. The
same argument works in the case F = 0 for all r ∈ (1,∞). If r > 2, we still have
T (t) ≥ 0 on L2(Rd), so that it remains to verify that the semigroups on Lr(Rd)
and L2(Rd) coincide for f ∈ L2(Rd) ∩ Lr(Rd). Consider again the operator
Ltu = A0u− V u + tF · ∇u, 0 ≤ t ≤ 1. Note that the resolvent of A0 − V = L0

is consistent. For small t > 0 and large λ ∈ ρ(L0), we have

R(λ, Lt) = R(λ, L0)
∞∑

k=0

[tF · ∇R(λ, L0)]
n.

Due to (4.9), this expansion implies that the resolvent of Lt is consistent. By
finitely many iterations of this argument, we derive the consistency of the re-
solvent of L1 = A, whence the consistency of the semigroups follows.

Theorem 4.4. Let the assumptions of Theorem 4.2 hold for p = 2 and let the
assumptions of Theorem 4.2 or 4.3 hold for some p = r ≤ 2 or p = r > 2,
respectively. Then the semigroups T (t) are positive. Let f ∈ Lq([0, T ], Lr(Rd))
and ϕ = 0, for some q ∈ (1,∞) and T > 0. Then the solution u of (1.3) belongs
W 1,q([0, T ], Lr(Rd)) and A0u, V u ∈ Lq([0, T ], Lr(Rd)).
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