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Global Regularity in Fractional Order
Sobolev Spaces for the p–Laplace Equation

on Polyhedral Domains

C. Ebmeyer, WB. Liu and M. Steinhauer

Abstract. The p-Laplace equation is considered for p > 2 on a n-dimensional convex
polyhedral domain under a Dirichlet boundary value condition. Global regularity
of weak solutions in weighted Sobolev spaces and in fractional order Nikolskij and
Sobolev spaces are proven.
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1. Introduction

Let Ω ⊂ Rn be a convex polyhedral domain and p > 2. We will be concerned
with the Dirichlet problem for the elliptic p-Laplace equation

−div
(
|∇u(x)|p−2∇u(x)

)
= f(x) in Ω

u(x) = 0 on ∂Ω,
(1)

where u : Ω → R, f ∈ W−1,p′(Ω), and p′ = p
p−1

. Our aim is to prove global
regularity results for weak solutions u under suitable assumptions on the right-
hand side f .

Problems with p–structure arise in many physical contexts, such as in
plasticity theory, bimaterial problems in elastic-plastic mechanics, and non-
Newtonian fluids; see, e.g., [1, 8, 11, 13] and the references given therein. The
p–Laplace operator may be seen as the prototype of problems with p–structure,
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as the Laplace operator is for usual elliptic problems. Despite this fact, global
regularity results in Sobolev spaces are in general not available. For the Laplace
equation (i.e., p = 2) it is well-known that weak solutions of the homogeneous
Dirichlet problem on bounded domains are W 2,2(Ω)–functions, if the right-hand
side f and the boundary of the domain are suitably smooth. In this paper we
generalize this result to the p-Laplacian for p > 2. We will show that each weak
solution u of the p-Laplace equation satisfies

u ∈ N 1+ 2
p
,p(Ω) for p > 2, (2)

where N s,p is a Nikolskij space. This implies that u ∈ W 1+s,p(Ω) for all s < 2
p
.

Moreover, we will prove ∫
Ω

|∇u|p−2|∇2u|2 dx <∞. (3)

This result is known on interior domains Ω0 ⊂⊂ Ω under some strong regularity
assumptions on f such as f = 0, or for the nondegenerate case (that is, −div (1+
|∇u|p−2)∇u = f); see [3, 9, 14, 15, 17]. Further, for p < 2 and smooth domains
the regularity result (3) was shown in [12].

The main ingredient in our proof is a refinement of the difference quotient
technique, as developed in [4, 6] in order to investigate the regularity of weak
solutions of nonlinear problems. Our method of proof can be applied to a wide
range of problems with p–structure, such as convex domains with piecewise
smooth boundaries, nonhomogeneous boundary value conditions, and systems
of equations. However, for simplicity, we restrict ourselves to convex polyhe-
drons in Rn and homogeneous Dirichlet boundary value conditions. We require
only minimal assumptions on the regularity of the right-hand side f . In partic-
ular, we do not assume regularity in weighted spaces.

Regularity results of this type have an interest in their own but they are
very useful for numerical purposes, as well. In [7] error bounds for finite element
approximations of problems with p–structure are proven. It is shown that the
regularity results (2) and (3) are sufficient for deriving the optimal rates of
convergence. We refer to [7] for a detailed discussion related to this subject.

This paper is organized as follows. In Section 2 the main results are given.
In Section 3 we treat the local situation near a flat boundary portion and prove
the basic estimates by applying a difference quotient method. In Section 4 we
investigate the local situation near corner points and nonsmooth portions of the
boundary. Section 5 contains the proofs of the main results.

2. Main results and notations

In this paper we are concerned with convex polyhedral domains. More precisely,
we consider convex domains satisfying the following assumptions:
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i) Ω ⊂ Rn is a bounded, convex, open set in Rn for n ≥ 2;

ii) ∂Ω =
⋃

1≤k≤M Γk, where Γk for k = 1, . . . ,M are relative open subsets
of a hyperplane, and each Γk is a (n − 1)-dimensional convex polyhedral
domain;

iii) Γi ∩ Γk = ∅ for i 6= k;

iv) ∂Γk1 ∩ . . . ∩ ∂Γkj
= ∅, if j > n and k1 < . . . < kj.

Condition iv) means that the closures of at most n ”faces” of the boundary have
a nonempty intersection. Typical examples of such domains are, for instance,
cubes or tetrahedrons in three dimensions, and classical convex polygonal do-
mains in two dimensions.

By W s,p(Ω) we denote the usual Sobolev spaces. In the case that s > 0 is
no integer, a function f : Ω → R belongs to W s,p(Ω), if the norm

‖f‖W s,p(Ω) =

(
‖f‖p

W m,p(Ω) +
∑
|α|=m

∫
Ω

∫
Ω

|∂αf(x)− ∂αf(y)|p

|x− y|n+σp
dx dy

) 1
p

is finite, where s = m + σ, m ≥ 0 is an integer, 0 < σ < 1, and 1 ≤ p < ∞.
Further, we use the Nikolskij spaces N s,p(Ω); cf. [10]. Let Ωδ = {x ∈ Ω :
dist(x, ∂Ω) ≥ δ} and z ∈ Rn. The space N s,p(Ω) consists of all functions
f : Ω → R for which the norm

‖f‖N s,p(Ω) =
(
‖f‖p

Lp(Ω) + |f |pN s,p(Ω)

) 1
p

is finite, where as before s = m+ σ, m ∈ N0, 0 < σ < 1, and

|f |pN s,p(Ω) =
∑
|α|=m

sup
0<|z|<δ

∫
Ωδ

|∂αf(x+ z)− ∂αf(x)|p

|z|σp
dx.

The spaces N s,p(Ω) are larger than the corresponding Sobolev spaces W s,p(Ω);
but for ε > 0 we have the imbeddings [10, section 8.2.5], [16, section 6.2]

N s+ε,p(Ω) ↪→ W s,p(Ω) ↪→ N s,p(Ω). (4)

Let us introduce the notations ∂i := ∂
∂xi

, |∇u|2 :=
∑n

i=1(∂iu)
2 := ∂iu ∂iu,

and |∇2u|2 :=
∑n

i,j=1(∂i∂ju)
2 := ∂i∂ju ∂i∂ju by employing Einstein’s summa-

tion convention saying that one has to sum over an index that occurs twice.

We call a function u ∈ W 1,p
0 (Ω) a weak solution of (1), if∫

Ω

|∇u|p−2∂iu ∂iφ dx =

∫
Ω

f φ dx for all φ ∈ W 1,p
0 (Ω). (5)
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It is well-known that for 1 < p < +∞ and f ∈ W−1,p′(Ω) there exists a unique
weak solution of (1), because (5) is the weak formulation of the Euler-Lagrange
equation of the variational integral

Dp(u; Ω) :=
1

p

∫
Ω

|∇u|p dx−
∫

Ω

f u dx

that is strictly convex. So, in fact the weak solution of (1) realizes the unique
minimum of Dp(u; Ω) over W 1,p

0 (Ω).

Now we state our main results. The first theorem is concerned with the
regularity of weak solutions in fractional order Nikolskij spaces.

Theorem 2.1. Let p > 2 and f ∈ W
p−2

p
,p′(Ω). Then the weak solution u of (5)

satisfies

u ∈ N 1+ 2
p
,p(Ω). (6)

Remark. i) Theorem 2.1 implies corresponding regularity of u in fractional
order Sobolev spaces. Utilizing the imbedding theorem of Nikolskij spaces into
Sobolev spaces (4) we get

u ∈ W 1+ 2
p
−ε,p(Ω) for all ε > 0. (7)

In this statement the ε comes in only by using the imbedding theorem of Nikol-
skij spaces into Sobolev spaces (4). This result may be seen as a generalization
of the well-known fact that a weak solution of the Laplace equation (i.e., p = 2)
is a W 2,2(Ω)–function (and therefore certainly also a N 2,2(Ω)–function (c. f. (4)
with s = p = 2.)).

ii) In order to prove our results we test the equation by second order
difference quotients of u. In [5] difference quotients of first order were used
in order to investigate the regularity for the p-Laplace equation on domains
with corners, i.e., on nonconvex polyhedrons. Instead of (7) it was shown that

u ∈ W 1+ 1
p
−ε,p(Ω) for all ε > 0. This generalizes the fact that weak solutions of

the Laplace equation on nonconvex polyhedrons are W
3
2
,2(Ω)–functions.

The next theorem provides regularity of the second derivatives in a weighted
Sobolev space.

Theorem 2.2. Let p > 2 and f ∈ W
p−2

p
,p′(Ω). Then the weak solution u of (5)

satisfies ∫
Ω

|∇u|p−2|∇2u|2 dx ≤ c, (8)

where the constant c depends only on the data, i.e., c = c(n, p,Ω, f).
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Remark. i) Let us discuss the sharpness of our results. The function u = |x|α+ε

with α = p+2−n
p

solves −∆pu = f , where f = c|x|(α+ε)(p−1)−p. If ε > 0 then f ∈
W

p−2
p

,p′(Ω) and u satisfies (6) and (8). However, if ε = 0, then f 6∈ W
p−2

p
,p′(Ω),

|∇u|p−2|∇2u|2 6∈ L1(Ω), and u 6∈ N s,p(Ω) for all s > 1 + 2
p
.

ii) Theorem 2.2 implies that

|∇u|
p−2
2 ∇u ∈ W 1,2(Ω; Rn). (9)

iii) Theorem 2.1 and the imbedding theorem of Nikolskij spaces into Nikol-
skij spaces (with different differentiability and integrability index) provides [10,
Section 8.2.9 f.], [16, Section 6.3]

u ∈ N 1, np
n−2 (Ω) for n ≥ 3 , u ∈ N 1,∞(Ω) for n = 2.

iv) Utilizing (9) and well–known imbedding theorems we obtain higher inte-
grability of ∇u and Hölder continuity of u (for suitable values of the parameter
p). In fact, for n ≥ 3 we get

∇u ∈ L
np

n−2 (Ω; Rn) , u ∈ C0,1+ 2
p
−n

p (Ω̄) if p > max(2, n− 2).

In the case of n = 2 it follows that

∇u ∈ Lq(Ω; Rn) ∀q < +∞ , u ∈ C0,α(Ω̄) ∀α ∈ (0, 1).

Remark. Possible generalizations of our results resp. method of proof concern
the following topics:

i) Bounded domains Ω with piecewise W 2,∞ ≡ C1,1 boundary ∂Ω and con-
vex angles.

ii) More general equations with p-structure under suitable growth- and
monotonicity assumptions on the coefficients.

iii) The p–Laplace system

−∂j

(
|∇u(x)|p−2∂ju

i(x)
)

= f i(x) in Ω, ui(x) = 0 on ∂Ω,

for all 1 ≤ i ≤ N , where u : Ω → RN and N > 1.
iv) More general boundary value conditions such as inhomogeneous Dirich-

let or Neumann boundary value conditions.
Let us remark that all these generalizations are straightforward. Indeed, we

are able to treat situations which arise after a W 2,∞–mapping of a polyhedron
onto a domain with a piecewise smooth boundary; cf. [4, 6]. Moreover, let us
note that there is no difference in treating systems or equations. The proof is
the same just with indices inserted.
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3. Local regularity up to a flat boundary portion

Let R > 0, P ∈ ∂Ω, and BR(P ) = {x ∈ Rn : |x − P | < R}. In this section we
investigate the regularity of u in Ω ∩B4R(P ) under the assumption that

∂Ω ∩B4R(P ) = Γk0 ∩B4R(P )

for some k0 ∈ {1, . . . ,M}. That is, we assume that ∂Ω∩B4R(P ) is contained in
a hyperplane. First, we investigate the regularity of u in a direction tangential
to Γk0 , then in a direction normal to Γk0 ; see the Lemmas 3.3 and 3.4 below.
The aim of this section is to show that some expressions containing a difference
quotient of ∇u stay uniformly bounded in L2. For convenience, we will assume

that f ∈ W 1,p′(Ω). The weaker assumption f ∈ W
p−2

p
,p′(Ω) will be treated in

Section 5.

Our method of proof is a difference quotient technique. Let us introduce
some notations. Let h > 0, and let e ∈ Rn be a unit vector, i.e., |e| = 1. We set

T h
e u(x) := u(x+ he) , T−h

e u(x) := u(x− he)

as well as

Dh
eu(x) :=

T h
e u(x)− u(x)

h
=
u(x+ he)− u(x)

h

D−h
e u(x) :=

u(x)− T−h
e u(x)

h
=
u(x)− u(x− he)

h
.

That is, Dh
e is the forward difference quotient of u in direction e and D−h

e the
backward difference quotient. To shorten our writing we use the abbreviations
BR = BR(P ) , ΩR = Ω ∩ BR(P ). Further, 〈·, ·〉 denotes the Euclidean scalar
product in Rn and C will denote a generic constant that will be allowed to vary
from equation to equation or from inequality to inequality.

Remark. i) If the function u = u(x) is defined in some open set Ω ⊂ Rn, then
Dh

eu and D−h
e u are defined in the sets {x ∈ Ω : x± he ∈ Ω} and therefore in

Ω0 := {x ∈ Ω : dist(x, ∂Ω) > h} .

ii) If u ∈ W 1,p(Ω), then D±h
e u ∈ W 1,p(Ω0), and we have ∂iD

±h
e u = D±h

e ∂iu.

iii) If at least one of the functions u, v has a support contained in Ω0, then
the discrete integration by parts formula holds, i.e.,∫

Ω

uD±h
e v dx = −

∫
Ω

vD∓h
e u dx .
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iv) We have the following discrete Leibniz product rules for difference quo-
tients of first order:

Dh
e (uv)(x) = T h

e u(x)D
h
e v(x) + v(x)Dh

eu(x) ,

D−h
e (uv)(x) = T−h

e u(x)D−h
e v(x) + v(x)D−h

e u(x) ,

and for difference quotients of second order:

Dh
eD

h
e (uv)(x) = T 2h

e u(x)Dh
eD

h
e v(x) +Dh

e v(x)T
h
e D

h
eu(x)

+Dh
eu(x)D

h
e v(x) + T h

e v(x)D
h
eD

h
eu(x)

D−h
e D−h

e (uv)(x) = u(x)D−h
e D−h

e v(x) + T−h
e D−h

e v(x)D−h
e u(x)

+ T−h
e D−h

e u(x)T−h
e D−h

e v(x) + T−h
e v(x)D−h

e D−h
e u(x)

Dh
eD

−h
e (uv)(x) = u(x)Dh

eD
−h
e v(x) +D−h

e u(x)D−h
e v(x)

+ T h
e v(x)D

h
eD

−h
e u(x) +D−h

e u(x)Dh
e v(x)

= D−h
e Dh

e (uv)(x) .

v) LetB3r(x0) be a ball and v ∈ W 1,p(B3r(x0)). Then there exists a constant
K > 0 such that

sup
0<h<r

∫
B2r(x0)

|D±h
e v(x)|p dx ≤ K

∫
B3r(x0)

|〈∇v, e〉|p dx ≤ K

∫
B3r(x0)

|∇v|p dx .

vi) Let v ∈ Lp(Ω), 1 < p < +∞, and suppose there exist constants K > 0
and h0 > 0 such that

sup
e∈Rn , |e|=1

sup
0<h<h0

∥∥D±h
e v

∥∥
Lp(Ω0)

≤ K .

Then ∇v ∈ Lp(Ω) and ‖∇v‖Lp(Ω) ≤ K. Furthermore, D±h
e v → 〈∇v, e〉 in

Lp
loc(Ω) as h ↓ 0.

For a discussion and proofs of these statements we refer to [9, pp. 271 ff.].
Now we prove two auxiliary lemmas. We start with a technical result.

Lemma 3.1. Let α ≥ 0 and β > 0. There exist two constants c1(α, β) and
c2(α, β) such that

c1
(
|a|2 + |b|2

)β
2 ≤

∫ 1

0

(1− t)α |ta+ (1− t)b|β dt ≤ c2
(
|a|2 + |b|2

)β
2 (10)

for all vectors a, b ∈ Rn.
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Proof. Let Z(t) = |ta+ (1− t)b|. The estimate from above is obvious:∫ 1

0

(1− t)α Z(t)β dt ≤
∫ 1

0

Z(t)β dt

=

∫ 1

0

(
|ta+ (1− t)b|2

)β
2 dt

≤
∫ 1

0

(
2t2|a|2 + 2(1− t)2|b|2

)β
2 dt

≤ 2
β
2

(
|a|2 + |b|2

)β
2 .

So we can take c2 = 2
β
2 . For the estimate from below we first suppose that

|a| ≥ |b|. Then we have for t ≥ 2
3
Z(t) ≥ t|a| − (1 − t)|b| ≥ (2t − 1)|b| ≥ 1

3
|b|

and also Z(t) ≥ t|a| − (1− t)|b| ≥ (2t− 1)|a| ≥ 1
3
|a|. Both together yield

Z(t) ≥ 1

6
(|a|+ |b|) for t ≥ 2

3
.

In the same manner we obtain for |b| ≥ |a| and t ≤ 1
3

the same inequality.
Therefore,∫ 1

0

(1− t)α Z(t)β dt ≥
∫ 1

2
3

(1− t)α Z(t)β dt ≥ 1

(α+ 1)3α+16β
(|a|+ |b|)β

∫ 1

0

(1− t)α Z(t)β dt ≥
∫ 1

3

0

(1− t)α Z(t)β dt ≥ 3α+1 − 2α+1

(α+ 1)3α+16β
(|a|+ |b|)β .

Taking (|a|2 + |b|2)
β
2 ≤ (|a|+ |b|)β into account the assertion follows with

c1 =
min(1, 3α+1 − 2α+1)

(α+ 1)3α+16β
.

The following lemma is a convexity-like inequality and provides a basic
estimate of our proof. (In the sequel we silently assume that all functions are
extended in a suitable manner onto a h–neighbourhood of Ω.)

Lemma 3.2. Let 0 < h < R
2
, P ∈ Ω, and η ∈ W 2,∞(Rn) be a cut–off function

satisfying η ≡ 1 in BR(P ), supp η = B2R, and 0 ≤ η ≤ 1 in Rn. For every unit
vector e ∈ Rn and every v ∈ W 1,p(Ω) there holds

c1

∫
Ω3R

η2
(
|T h

e ∇v|2 + |∇v|2
) p−2

2
∣∣Dh

e∇v
∣∣2 dx

+c1

∫
Ω3R

η2
(
|T−h

e ∇v|2 + |∇v|2
) p−2

2
∣∣D−h

e ∇v
∣∣2 dx

≤ 1

p

∫
Ω3R

η2Dh
eD

−h
e |∇v|p dx−

∫
Ω3R

η2 |∇v|p−2 〈∇v,Dh
eD

−h
e ∇v〉 dx,

(11)

where the constant c1 depends only on p and is determined as in Lemma 3.1.
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Proof. Let 0 < h < R
2
, z ∈ Rn, and ∂i = ∂

∂zi
. Defining the functions

a(z) = 1
p
|z|p and

ai(z) = ∂ia(z) = |z|p−2zi

aij(z) = ∂jai(z) = (p− 2)|z|p−4zizj + |z|p−2δij ,

the Taylor expansion of a(z) yields

a(z′)− a(z)− (z′ − z)iai(z)

= (z′ − z)i(z
′ − z)j

∫ 1

0

(1− s) aij(sz
′ + (1− s)z) ds.

(12)

Let us put z′ = T h
e ∇v and z = ∇v. Due to the fact that

aij(z)ξiξj = |z|p−2 |ξ|2 + (p− 2)|z|p−4〈z, ξ〉2 ≥ |ξ|2|z|p−2

for all ξ ∈ Rn and z ∈ Rn we get

1

p

∣∣T h
e ∇v

∣∣p − 1

p
|∇v|p − 〈|∇v|p−2∇v,∇T h

e v −∇v〉

=
∣∣T h

e ∇v −∇v
∣∣2 ∫ 1

0

(1− s) |µh
e (s,∇v)|p−2 ds

+ (p− 2)

∫ 1

0

(1− s) |µh
e (s,∇v)|p−4 〈µh

e (s,∇v),∇T h
e v −∇v〉2 ds

≥
∣∣T h

e ∇v −∇v
∣∣2 ∫ 1

0

(1− s) |µh
e (s,∇v)|p−2 ds ,

(13)

where µh
e (s,∇v) = sT h

e ∇v + (1− s)∇v. Multiplying by η2, integrating over Ω,
and dividing by h it follows that∫

Ω3R

η2Dh
e

|∇v|p

p
dx−

∫
Ω3R

η2 |∇v|p−2〈∇v,Dh
e∇v〉 dx

≥ h

∫
Ω3R

η2
∣∣Dh

e∇v
∣∣2 ∫ 1

0

(1− s)
∣∣µh

e (s,∇v)
∣∣p−2

ds dx .

(14)

Similarly, putting z′ = T−h
e ∇v and z = ∇v in equation (12) we find

−
∫

Ω3R

η2D−h
e

|∇v|p

p
dx+

∫
Ω3R

η2 |∇v|p−2〈∇v,D−h
e ∇v〉 dx

= h

∫
Ω3R

η2 |D−h
e ∇v|2

∫ 1

0

(1− s) |µ−h
e (s,∇v)|p−2 ds dx+ h(p− 2)

×
∫

Ω3R

η2

∫ 1

0

(1− s) |µ−h
e (s,∇v)|p−4〈µ−h

e (s,∇v), D−h
e ∇v〉2 ds dx

≥ h

∫
Ω3R

η2
∣∣D−h

e ∇v
∣∣2 ∫ 1

0

(1− s)
∣∣µ−h

e (s,∇v)
∣∣p−2

ds dx ,

(15)
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where µ−h
e (s,∇v) = sT−h

e ∇v+(1− s)∇v. Now we take the sum of the inequal-
ities (14) and (15). Dividing by h and noting that

1

h
(Dh

e f −D−h
e f) =

1

h2
(T h

e f − 2f + T−h
e f) = Dh

eD
−h
e f

we get∫
Ω3R

η2
∣∣Dh

e∇v
∣∣2 ∫ 1

0

(1− s) |µh
e (s,∇v)|p−2 ds dx

+

∫
Ω3R

η2
∣∣D−h

e ∇v
∣∣2 ∫ 1

0

(1− s) |µ−h
e (s,∇v)|p−2 ds dx

≤
∫

Ω3R

η2Dh
eD

−h
e

|∇v|p

p
dx−

∫
Ω3R

η2 |∇v|p−2〈∇v,Dh
eD

−h
e ∇v〉 dx .

Taking Lemma 3.1 into account (with α = 1 and β = p−2, implying c1 = c1(p))
the assertion follows.

Now, we investigate the regularity of u in a direction tangential to Γk0 and
prove the following result.

Lemma 3.3. Let the unit vector e be parallel to ∂Ω ∩B4R. There is a positive
constant C = C(R, p) such that

sup
0<h< R

2

∫
ΩR

(
|T h

e ∇u|2+|∇u|2
) p−2

2
∣∣Dh

e∇u
∣∣2 dx

+ sup
0<h< R

2

∫
ΩR

(
|T−h

e ∇u|2 + |∇u|2
) p−2

2
∣∣D−h

e ∇u
∣∣2 dx

≤ C
(
‖∇u‖p

Lp(Ω4R) + ‖f‖p′

W 1,p′ (Ω3R)

)
(16)

Proof. Let 0 < h < R
2

and φ = η2Dh
e D

−h
e u, where η is a cut-off function as

in the previous lemma. Recall that e is parallel to ∂Ω ∩ B4R. Thus, it follows
that φ = 0 on ∂Ω. Hence, the function φ is an admissible test function in
equation (5). This yields∫

Ω3R

|∇u|p−2 ∂iu η
2 ∂iD

h
eD

−h
e u dx

= −
∫

Ω3R

|∇u|p−2 ∂iu ∂iη
2Dh

eD
−h
e u dx+

∫
Ω3R

f η2Dh
eD

−h
e u dx .
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Utilizing Lemma 3.2 we obtain

c1

∫
Ω3R

η2
(
|T h

e ∇u|2 + |∇u|2
) p−2

2
∣∣Dh

e∇u
∣∣2 dx

+ c1

∫
Ω3R

η2
(
|T−h

e ∇u|2 + |∇u|2
) p−2

2
∣∣D−h

e ∇u
∣∣2 dx

≤ 1

p

∫
Ω3R

η2Dh
eD

−h
e |∇u|p dx+

∫
Ω3R

|∇u|p−2∂iu ∂iη
2Dh

eD
−h
e u dx

−
∫

Ω3R

f η2Dh
eD

−h
e u dx =: J1 + J2 + J3 .

Now let us estimate the integrals J1, J2, and J3 step by step. Notice that η = 0
in Ω3R \ Ω2R = (Ω ∩ B3R) \ (Ω ∩ B2R). Using the Leibniz rule for second order
difference quotients

η2Dh
eD

−h
e |∇u|p = Dh

eD
−h
e (η2 |∇u|p)− T h

e |∇u|pDh
eD

−h
e η2

−D−h
e η2Dh

e |∇u|p −D−h
e η2D−h

e |∇u|p

we find

J1 =
1

p

∫
Ω3R

Dh
eD

−h
e (η2 |∇u|p) dx− 1

p

∫
Ω3R

Dh
eD

−h
e η2 T h

e |∇u|p dx

− 1

p

∫
Ω3R

Dh
e |∇u|pD−h

e η2 dx− 1

p

∫
Ω3R

D−h
e |∇u|pD−h

e η2 dx

=: J11 + · · ·+ J14

In view of the facts that e is parallel to ∂Ω∩B4R and η = 0 in Ω\Ω2R it follows

J11 =
1

ph2

(∫
Ω3R

T h
e (η2 |∇u|p) dx− 2

∫
Ω3R

η2 |∇u|p dx+

∫
Ω3R

T−h
e (η2 |∇u|p) dx

)
=

1

ph2

(∫
Ω3R+he

η2 |∇u|p dx− 2

∫
Ω3R

η2 |∇u|p dx+

∫
Ω3R−he

η2 |∇u|p dx
)

and hence

J11 =
1− 2 + 1

ph2

∫
Ω2R

η2 |∇u|p dx = 0. (17)

Noting that
∥∥Dh

eD
−h
e η2

∥∥
L∞(Ω3R)

≤ C(R) we also get

|J12| ≤ C(R, p)

∫
Ω3R

T h
e |∇u|p dx = C(R, p)

∫
Ω3R+he

|∇u(y)|p dy



364 C. Ebmeyer et al.

and hence

|J12| ≤ C(R, p)

∫
Ω 7R

2

|∇u|p dy ≤ C(R, p) ‖∇u‖p
Lp(Ω4R) . (18)

The Leibniz rule g Dh
e f = Dh

e (fg)− T h
e f D

h
e g yields

J13 = −1

p

∫
Ω3R

Dh
e (|∇u|pD−h

e η2) dx+
1

p

∫
Ω3R

T h
e |∇u|pDh

eD
−h
e η2 dx . (19)

The first integral on the right-hand side of (19) vanishes because of∫
Ω3R

Dh
e (|∇u|pD−h

e η2) dx =
1

h

∫
(Ω3R+he)\Ω3R

|∇u|pD−h
e η2 dx

− 1

h

∫
Ω3R\(Ω3R+he)

|∇u|pD−h
e η2 dx

(20)

and the fact that η = 0 in Ω \ Ω2R. Thus, we deduce

|J13| ≤ C(R, p) ‖∇u‖p
Lp(Ω4R) .

Similarly, using the Leibniz rule g D−h
e f = D−h

e (fg)− T−h
e f D−h

e g we find

J14 = −1

p

∫
Ω3R

D−h
e (|∇u|pD−h

e η2) dx+
1

p

∫
Ω3R

T−h
e |∇u|pD−h

e D−h
e η2 dx

from which
|J14| ≤ C(R, p) ‖∇u‖p

Lp(Ω4R)

follows. Next, utilizing again the Leibniz rule we have

J2 =

∫
Ω3R

Dh
e (|∇u|p−2 ∂iu ∂iη

2D−h
e u) dx

−
∫

Ω3R

Dh
e (|∇u|p−2 ∂iu ∂iη

2) T h
e D

−h
e u dx .

(21)

Arguing as in (20) we see that the first integral on the right-hand side of (21)
vanishes. For the second integral we apply once more the Leibniz rule to get

J2 = −
∫

Ω3R

Dh
e (|∇u|p−2 ∂iu ∂iη

2)Dh
eu dx

= −
∫

Ω3R

{
Dh

e (|∇u|p−2 ∂iu) ∂iη
2 + T h

e (|∇u|p−2 ∂iu)D
h
e∂iη

2
}
Dh

eu dx

:= J21 + J22 .
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Recalling that supp η = B2R the Hölder and Young inequalities yield

|J22| ≤ C(η)

(∫
Ω3R

|T h
e ∇u|p dx

)1− 1
p

(∫
Ω3R

|Dh
eu|p dx

) 1
p

≤ C(R, p) ‖∇u‖p
Lp(Ω4R) .

For estimating J21 we use

|Dh
e (|∇u|p−2∇u)| =

∣∣∣∣ ∫ 1

0

|µh
e (s,∇u)|p−2 dsDh

e∇u

+ (p− 2)

∫ 1

0

|µh
e (s,∇u)|p−4〈µh

e (s,∇u), Dh
e∇u〉µh

e (s,∇u)ds
∣∣∣∣

≤ (p− 1)

∫ 1

0

|µh
e (s,∇u)|p−2 ds |Dh

e∇u| .

Utilizing Hölder’s and Young’s inequalities, the properties of the cut-off function
η, and Lemma 3.1 (with α = 0, β = p− 2) we find

|J21| ≤ 2(p− 1)

∫
Ω3R

∫ 1

0

|µh
e (s,∇u)|p−2 ds |Dh

e∇u| η |∇η| |Dh
eu| dx

≤ 2(p− 1)

(∫
Ω3R

η2

∫ 1

0

|µh
e (s,∇u)|p−2 ds |Dh

e∇u|2 dx
) 1

2

×
(∫

Ω3R

|∇η|2
∫ 1

0

|µh
e (s,∇u)|p−2 ds |Dh

eu|2 dx
) 1

2

≤ c1
4

∫
Ω3R

η2
(
|T h

e ∇u|2 + |∇u|2
) p−2

2 |Dh
e∇u|2 dx

+ C(R, p)

∫
Ω3R

(
|T h

e ∇u|2 + |∇u|2
) p−2

2 |Dh
eu|2 dx

≤ c1
4

∫
Ω3R

η2
(
|T h

e ∇u|2 + |∇u|2
) p−2

2 |Dh
e∇u|2 dx+ C(R, p) ‖∇u‖p

Lp(Ω4R)

Finally, noting that
∫

Ω3R
Dh

e (f η2D−h
e u) dx = 0 we get

J3 = −
∫

Ω3R

f η2Dh
eD

−h
e u dx

= −
∫

Ω3R

Dh
e (f η2D−h

e u) dx+

∫
Ω3R

Dh
e (f η2)Dh

eu dx

=

∫
Ω3R

Dh
eu

(
Dh

e f η
2 + T h

e f D
h
e η

2
)
dx .
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Therefore we have

|J3| ≤ C(R, p)
(
‖∇u‖p

Lp(Ω3R) + ‖f‖p′

W 1,p′ (Ω3R)

)
.

Collecting the results we conclude that∫
ΩR

(
|T h

e ∇u|2+|∇u|2
) p−2

2 |Dh
e∇u|2 dx

+

∫
ΩR

(
|T−h

e ∇u|2 + |∇u|2
) p−2

2 |D−h
e ∇u|2 dx

≤ C(R, p)
(
‖∇u‖p

Lp(Ω4R) + ‖f‖p′

W 1,p′ (Ω3R)

)
,

and the assertion of the lemma follows.

Next, let us study the regularity of u in a direction normal to Γk0 .

Lemma 3.4. Let e be the inner unit normal of ∂Ω. There is a positive constant
C = C(R, p) such that

sup
0<h< R

2

∫
ΩR

(
|T h

e ∇u|2+|∇u|2
) p−2

2
∣∣Dh

e∇u
∣∣2 dx

+ sup
0<h< R

2

∫
ΩR

(
|T−h

e ∇u|2 + |∇u|2
) p−2

2
∣∣D−h

e ∇u
∣∣2 dx

≤ C
(
‖∇u‖p

Lp(Ω4R) + ‖f‖p′

W 1,p′ (Ω3R)

)
(22)

Proof. Let 0 < h < R
2
. Further, let z ∈ ∂Ω ∩ B3R and z + λe ∈ Ω4R. We

extend the functions u and f onto B4R by setting

u(z − λe) := −u(z + λe) and f(z − λe) := f(z + λe).

We define the set

Ωh = {y ∈ Ω3R : y 6= x+ he, x ∈ Ω3R} .

Furthermore, let Ω−h be the reflection of Ωh with respect to the hyperplane
containing ∂Ω ∩B4R.

Without loss of generality we may assume that e = en where en is the
n-th unit vector of Rn (for, a coordinate transformation does not change the
structure of the equation). Let η be a cut-off function as in Lemma 3.2. We test
the equation (1) by φ = η2Dh

eD
−h
e u. Let us verify that φ is an admissible test
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function. For x ∈ ∂Ω ∩ ∂Ω2R we have u(x + he) = −u(x − he) and u(x) = 0.
Thus, φ = 0 on ∂Ω holds. We obtain∫

Ω3R

|∇u|p−2 ∂iu η
2 ∂iD

h
eD

−h
e u dx

= −
∫

Ω3R

|∇u|p−2 ∂iu ∂iη
2Dh

eD
−h
e u dx+

∫
Ω3R

f η2Dh
eD

−h
e u dx .

In view of Lemma 3.2 we get

c1

∫
Ω3R

η2
(
|T h

e ∇u|2 + |∇u|2
) p−2

2
∣∣Dh

e∇u
∣∣2 dx

+ c1

∫
Ω3R

η2
(
|T−h

e ∇u|2 + |∇u|2
) p−2

2
∣∣D−h

e ∇u
∣∣2 dx

≤ 1

p

∫
Ω3R

η2Dh
eD

−h
e |∇u|p dx

+

∫
Ω3R

|∇u|p−2∂iu ∂iη
2Dh

eD
−h
e u dx−

∫
Ω3R

f η2Dh
eD

−h
e u dx

=: J4 + J5 + J6 .

Proceeding as in the proof of Lemma 3.3 we conclude that

J4 =
1

p

∫
Ω3R

Dh
eD

−h
e (η2 |∇u|p) dx− 1

p

∫
Ω3R

Dh
eD

−h
e η2 T h

e |∇u|p dx

− 1

p

∫
Ω3R

Dh
e |∇u|pD−h

e η2 dx− 1

p

∫
Ω3R

D−h
e |∇u|pD−h

e η2 dx

=: J41 + · · ·+ J44.

Now let us estimate the integrals J41, J43, and J44. Notice that∫
Ω3R

T h
e (η2 |∇u|p) dx−

∫
Ω3R

η2 |∇u|p dx = −
∫

Ωh

η2 |∇u|p dx∫
Ω3R

T−h
e (η2 |∇u|p) dx−

∫
Ω3R

η2 |∇u|p dx =

∫
Ω−h

η2 |∇u|p dx.

Thus, we have

J41 = − 1

ph2

∫
Ωh

η2 |∇u|p dx+
1

ph2

∫
Ω−h

η2 |∇u|p dx = 0.

Further, applying the Leibniz rule Dh
e f D

−h
e g = Dh

e (f D−h
e g)−T h

e f D
h
eD

−h
e g we

obtain

J43 = −1

p

∫
Ω3R

Dh
e (|∇u|pD−h

e η2) dx+
1

p

∫
Ω3R

T h
e |∇u|pDh

eD
−h
e η2 dx.
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Similarly, the identity D−h
e f D−h

e g = D−h
e (f Dh

e g)− f Dh
eD

−h
e g implies that

J44 = −1

p

∫
Ω3R

D−h
e (|∇u|pDh

e η
2) dx+

1

p

∫
Ω3R

|∇u|pDh
eD

−h
e η2 dx.

It is easy to see that

−1

p

∫
Ω3R

Dh
e (|∇u|pD−h

e η2) dx− 1

p

∫
Ω3R

D−h
e (|∇u|pDh

e η
2) dx

=
1

ph2

∫
Ωh

|∇u|p (η2 − T−h
e η2) dx+

1

ph2

∫
Ω−h

|∇u|p (T h
e η

2 − η2) dx = 0.

Furthermore, arguing as above (see (18)) we estimate the integral J42. Alto-
gether, we conclude that

|J4| ≤ C(R, p) ‖∇u‖p
Lp(Ω4R) .

Now let us consider the integral J5. Recall that e = en. Thus, the functions
|∇u|p−2 ∂iu ∂iη

2Dh
eD

−h
e u, 1 ≤ i ≤ n, are even with respect to the hyperplane

containing ∂Ω ∩B4R, because, by the definitions of the extensions,

i) |∇u|p−2 is even,

ii) ∂iu is odd for i 6= n and even for i = n,

iii) ∂iη
2 = 2η ∂iη is even for i 6= n and odd for i = n (using a suitable

radial-symmetric cut-off function),

iv) Dh
eD

−h
e u is odd.

This yields

J5 =

∫
Ω3R

|∇u|p−2 ∂iu ∂iη
2Dh

eD
−h
e u dx =

1

2

∫
B3R

|∇u|p−2 ∂iu ∂iη
2Dh

eD
−h
e u dx.

Now we have an integral over B3R and the support of the integrand is B2R. The
identity Dh

e (fg) = Dh
e f g + T h

e f D
h
e g entails

J5 = −1

2

∫
B3R

Dh
e (|∇u|p−2 ∂iu ∂iη

2)Dh
eu dx

= −1

2

∫
B3R

{
Dh

e (|∇u|p−2∂iu)∂iη
2 + T h

e (|∇u|p−2∂iu)D
h
e∂iη

2
}
Dh

eu dx .

Proceeding from here as in estimating the integral J2 in the proof of Lemma 3.3
we obtain

|J5| ≤
c1
4

∫
B3R

η2
(
|T h

e ∇u|2 + |∇u|2
) p−2

2 |Dh
e∇u|2 dx+ C(R, p) ‖∇u‖p

Lp(Ω4R)

=
c1
4

∫
Ω3R

η2
(
|T h

e ∇u|2 + |∇u|2
) p−2

2 |Dh
e∇u|2 dx

+
c1
4

∫
Ω3R

η2
(
|T−h

e ∇u|2 + |∇u|2
) p−2

2 |D−h
e ∇u|2 dx+ C(R, p) ‖∇u‖p

Lp(Ω4R) .
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Finally, let us estimate J6. Let us note that the integrand f η2Dh
eD

−h
e u is even

with respect to the hyperplane containing ∂Ω ∩ B4R because all of its factors
are even (this follows for f and Dh

eD
−h
e u by the definitions of the extensions,

and for η we use a radial-symmetric cut-off function). We find

J6 = −
∫

Ω3R

f η2Dh
eD

−h
e u dx

= −1

2

∫
B3R

f η2Dh
eD

−h
e u dx

= −1

2

∫
B3R

Dh
e (f η2D−h

e u) dx+
1

2

∫
B3R

Dh
e (f η2)Dh

eu dx .

Noting that the first integral on the right-hand side vanishes we conclude that

|J6| ≤ C(R, p)
(
‖∇u‖p

Lp(Ω3R) + ‖f‖p′

W 1,p′ (Ω3R)

)
.

Thus, the assertion follows.

4. Local regularity up to a non-smooth boundary

In this section we are concerned with the case that ∂Ω∩B4R(P ) is not contained
in a hyperplane. Thus, there is an index set Λ such that Γk ∩ B4R(P ) 6= ∅ for
all k ∈ Λ, ∂Ω ∩ B4R(P ) =

⋃
k∈Λ Γk ∩ B4R(P ), and |Λ| ≥ 2. In this section we

treat the case that P ∈
⋂

k∈Λ Γk. Further, we suppose that k0 ∈ Λ is fixed and
e ∈ Rd is a unit vector parallel to (∂Ω ∩B4R) \ Γk0 satisfying

z + se ∈ Ω for z ∈ ∂Ω ∩B3R, s > 0, and z + se ∈ B4R . (23)

Let us note that ∂Γk1 ∩ . . . ∩ ∂Γkj
= ∅, if j > n and k1 < . . . < kj. Thus, there

is at least one unit vector e fulfilling (23). Now we prove

Lemma 4.1. Let e ∈ Rn be parallel to (∂Ω ∩ B4R) \ Γk0, across Γk0, and let it
satisfy (23). Then there is a positive constant C = C(R, p) such that

sup
0<h< R

2

∫
ΩR

(
|T h
∗∇u|2+|∇u|2

) p−2
2

∣∣Dh
∗∇u

∣∣2 dx
+ sup

0<h< R
2

∫
ΩR

(
|T−h
∗ ∇u|2 + |∇u|2

) p−2
2

∣∣D−h
∗ ∇u

∣∣2 dx
≤ C

(
‖∇u‖p

Lp(Ω4R) + ‖f‖p′

W 1,p′ (Ω3R)

)
.

(24)

The notation T h
∗ and D±h

∗ will be defined immediately in the following proof.
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Proof. Let 0 < h < R
2
. Further, let us note that Ω4R is convex. This fact will

be used in the following reflection argument. Let σ(Ω4R) be the reflection of
Ω4R with respect to the hyperplane containing Γk0 . Moreover, let σ(e) be the
reflection of e and σ(∂Ω) the reflection of ∂Ω.

Let z ∈ Γk0 ∩ B3R and z + λe ∈ Ω4R. We extend u and f onto σ(Ω4R) by
setting

u(z + λσ(e)) := −u(z + λe) , f(z + λσ(e)) := f(z + λe).

Furthermore, let z ∈ Γk0 ∩B3R be fixed. We define

ψ(s) =

{
z + s e for s ≥ 0
z − s σ(e) for s < 0.

Let x ∈ Ω3R be such that x = z+s0e for some s0 > 0. Then we have x = ψ(s0).
We now define

T h
∗ f(x) ≡ T h

∗ f(ψ(s0)) := f(ψ(s0 + h))

T−h
∗ f(x) ≡ T−h

∗ f(ψ(s0)) := f(ψ(s0 − h))

and

Dh
∗f(x) :=

T h
∗ f(x)− f(x)

h
, D−h

∗ f(x) :=
f(x)− T−h

∗ f(x)

h
.

Now, we follow the proof of Lemma 3.4. We use the test function φ =
η2Dh

∗D
−h
∗ u in equation (5). This is an admissible test function. On the one

hand, e is parallel to (∂Ω∩B4R)\Γk0 . Hence, x ∈ (∂Ω∩B3R)\Γk0 implies that
T±h
∗ x ∈ (∂Ω∪σ(∂Ω))∩B4R \Γk0 . On the other hand, for z ∈ Γk0 ∩B3R it holds

that T−h
∗ u(z) = −T h

∗ u(z) and u(z) = 0; thus, T h
∗ u(z) − 2u(z) + T−h

∗ u(z) = 0.
Hence, testing the equation and utilizing an analogue of Lemma 3.2 by using
T h
∗ , T

−h
∗ and Dh

∗ , D
−h
∗ instead of T h

e , T
−h
e and Dh

e , D
−h
e which one easily checks

to be true by following the proof of Lemma 3.2, we find

c1

∫
Ω3R

η2
(
|T h
∗∇u|2 + |∇u|2

) p−2
2

∣∣Dh
∗∇u

∣∣2 dx
+c1

∫
Ω3R

η2
(
|T−h
∗ ∇u|2 + |∇u|2

) p−2
2

∣∣D−h
∗ ∇u

∣∣2 dx
≤ 1

p

∫
Ω3R

η2Dh
∗D

−h
∗ |∇u|p dx

+

∫
Ω3R

|∇u|p−2∂iu ∂iη
2Dh

∗D
−h
∗ u dx−

∫
Ω3R

f η2Dh
∗D

−h
∗ u dx .

Proceeding as in the proof of Lemma 3.4 and estimating the integrals on the
right-hand side in a similar fashion as before the assertion follows.
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5. Proof of the main results

In this section we give the proofs of the Theorems 2.1 and 2.2. First of all,
we prove the following proposition under the assumption that the right-hand
side f of the equation is sufficiently smooth, i.e., f ∈ W 1,p′(Ω).

Proposition 5.1. Let p > 2 and f ∈ W 1,p′(Ω). Then the weak solution u of
(5) satisfies

|∇u|
p−2
2 ∇u ∈ W 1,2(Ω; Rn). (25)

Proof. We cover Ω by a finite number of appropriate balls BRi
(Pi), i = 1, 2, . . .,

such that either BRi
(Pi) ⊂⊂ Ω or Pi ∈ ∂Ω. First, let us consider the case that

BRi
(Pi) ⊂⊂ Ω. Let e ∈ Rn be a unit vector. Following the proof of Lemma 3.3

we get a constant C(Ri) depending only on Ri and the data but not on e such
that

sup
0<h<

Ri
2

∫
ΩRi

(
|T h

e ∇u|2 + |∇u|2
) p−2

2
∣∣Dh

e∇u
∣∣2 dx ≤ C(Ri) . (26)

Next, in the case that Pi ∈ ∂Ω we assume that Pi ∈
⋂

k∈Λi
Γk, where Λi is

an index set such that Γk ∩ BRi
(Pi) 6= ∅ for all k ∈ Λi and ∂Ω ∩ BRi

(Pi) =⋃
k∈Λi

Γk ∩ BRi
(Pi). If ∂Ω ∩ BRi

(Pi) is smooth, there are n − 1 unit vectors
parallel and one normal to the boundary. More general, we may choose n
linearly independent unit vectors fulfilling the assumptions of either Lemma 3.3,
3.4, or 4.1. We deduce (26) for these unit vectors e.

Now let F (a) = |a| p−2
2 a (a ∈ Rn) and Fi(a) = ∂

∂ai
F (a). Utilizing the Taylor

expansion and Lemma 3.1 we find

|F (a)− F (b)|2 =

∣∣∣∣(a− b)i

∫ 1

0

Fi(ta+ (1− t)b) dt

∣∣∣∣2
≤ c

(
|a|2 + |b|2

) p−2
2 |a− b|2.

(27)

Due to (26) we conclude there is a constant C(Ri) such that

sup
0<h<

Ri
2

∥∥Dh
eF (∇u)

∥∥2

L2(ΩRi
)
≤ C(Ri).

Hence, there is a constant C0 depending only on the geometry of ∂Ω and the
data such that

sup
e∈Rn , |e|=1

sup
h>0

∥∥Dh
eF (∇u)

∥∥2

L2(Ωh)
≤ C0,

where Ωh = {x ∈ Ω : dist(x, ∂Ω) ≥ h}. This implies that ‖∇F (∇u)‖2
L2(Ω) ≤ C0.

Thus, the assertion follows.
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Remark. i) It is easy to see that

|∂e(|∇u|
p−2
2 ∇u)|2 ≡ |∂eF (∇u)|2 ≥ |∇u|p−2|∂e∇u|2, (28)

where ∂e is the derivative in direction e. From Proposition 5.1 it follows that∫
Ω

|∇u|p−2|∇2u|2 dx ≤ C . (29)

ii) In (27) we have shown
∣∣|a| p−2

2 a− |b| p−2
2 b

∣∣2 ≤ c
(
|a|2 + |b|2

) p−2
2 |a− b|2. In

the same manner it follows there is a constant c′ > 0 such that∣∣|a| p−2
2 a− |b|

p−2
2 b

∣∣2 ≥ c′
(
|a|2 + |b|2

) p−2
2 |a− b|2 . (30)

Further, it is well-known (see [2, 3]) that there is a constant c′′ independent of
a and b such that

|a− b|p ≤ c′′
(
|a|2 + |b|2

) p−2
2 |a− b|2 . (31)

Thus, putting a = T h
e ∇u and b = ∇u we find constants C and C ′ such that

|u|p
N 1+ 2

p ,p
(Ω)

≤ C sup
e∈Rn , |e|=1

sup
h>0

∥∥∥Dh
e (|∇u|

p−2
2 ∇u)

∥∥∥2

L2(Ωh)
, (32)

for ∫
Ωh

h−2|T h
e ∇u−∇u |p ≤ c

∫
Ωh

|Dh
e (|∇u|

p−2
2 ∇u)|2 ,

and∫
Ωh

(|T h
e ∇u|2 + |∇u|2)

p−2
2 |Dh

e∇u|2 dx ≥ C ′
∥∥∥Dh

e (|∇u|
p−2
2 ∇u)

∥∥∥2

L2(Ωh)
. (33)

Proof of Theorem 2.2. Notice that f ∈ W
p−2

p
,p′(Ω). Let (fk)k∈N be a se-

quence of W 1,p′(Ω)–functions such that fk → f in W
p−2

p
,p′(Ω). Then there is a

sequence of functions (uk)k∈N solving in the weak sense

−div (|∇uk|p−2∇uk) = fk in Ω, uk = 0 on ∂Ω.

The proofs of (5.1) and (29) imply that∫
Ω

∣∣∣∇(|∇uk|
p−2
2 ∇uk)

∣∣∣2 dx+

∫
Ω

|∇uk|p−2|∇2uk|2 dx ≤ C
∥∥fk

∥∥p′

W s,p′ (Ω)
(34)

for s = 1 and a constant C depending only on p, n, and ∂Ω. Now let us show that
this estimate holds for s = p−2

p
, as well. Therefore, we have to modify the proofs
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of the Lemmas 3.3, 3.4, and 4.1, and to give an estimate of |
∫
η2Dh

eu
k Dh

e f
k|

by using only the W
p−2

p
,p′(Ω)–norm of fk. Let ε > 0. We deduce∣∣∣∣∫

B3R

η2Dh
eu

k Dh
e f

k dx

∣∣∣∣ ≤ ∥∥η2Dh
eu

k
∥∥

W
2
p ,p

(B3R)

∥∥Dh
e f

k
∥∥

W
− 2

p ,p′
(B3R)

≤ ε
∥∥uk

∥∥p

N 1+ 2
p ,p

(B3R)
+ Cε

∥∥fk
∥∥p′

W
p−2

p ,p′
(B3R)

.

Using a covering argument, (32), (33), and choosing ε > 0 sufficiently small
we obtain estimate (34) for s = p−2

p
. Further, due to the fact that fk → f

(k →∞) in W
p−2

p
,p′(Ω) it follows that the integrals on the left-hand side of (34)

are uniformly bounded. In view of (32) this implies that the N 1+ 2
p
,p–norms are

uniformly bounded. Hence, there is a subsequence (again denoted by (uk)k)
and a function v ∈ W 1,p

0 (Ω) such that

uk → v (k →∞) strongly in W 1,p
0 (Ω).

We deduce that there is a subsequence (denoted by (uk)k) such that ∇uk(x) →
∇v(x) a.e., thus,

|∇uk(x)|p−2∇uk(x) → |∇v(x)|p−2∇v(x) a.e. .

This implies that |∇uk|p−2∇uk converges weakly to |∇v|p−2∇v in Lp′(Ω). Hence,
v is a weak solution of −∆pv = f . We conclude that v = u.

Now let us investigate the regularity of u. Notice that ∇uk → ∇u in Lp(Ω),

and hence (cf. (27)) |∇uk| p−2
2 ∇uk → |∇u| p−2

2 ∇u in L2(Ω). Thus we obtain by
lower semicontinuity of the L2-norm or by Fatou’s lemma∥∥∥Dh

e (|∇u|
p−2
2 ∇u)

∥∥∥
L2(Ωh)

≤ lim inf
k→∞

∥∥∥Dh
e (|∇uk|

p−2
2 ∇uk)

∥∥∥
L2(Ωh)

≤ C (35)

for ‖Dh
e |∇uk| p

2‖L2(Ωh) is uniformly bounded. Estimate (35) yields |∇u| p−2
2 ∇u ∈

W 1,2(Ω). Due to (28) the assertion follows.

Proof of Theorem 2.1. Utilizing the estimates (32) and (35) it follows that

u ∈ N 1+ 2
p
,p(Ω).
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Ordnung (in German). Czech. Math. J. 25 (100) (1975), 227 – 239.
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