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Hyperbolic Functional Differential Systems
with Unbounded Delay

S. Kozie l

Abstract. The phase space for quasilinear systems with unbounded delay is con-
structed. Carathéodory solutions to initial and mixed problems are investigated.
Theorems on the local existence and continuous dependence upon initial or initial
boundary functions are given. The fixed-point method and integral inequalities are
used.
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1. Introduction

For any metric spaces U and V we denote by C(U, V ) the class of all continuous
functions from U to V . We use vectorial inequalities with the understanding
that the same inequalities hold between their corresponding components. Let
us denote by Mk×n the set of all k×n matrices with real elements. For x ∈ Rn,
p ∈ Rk, Y ∈Mk×n where

x = (x1, . . . , xn), p = (p1, . . . , pk), Y = [yij]i=1,...,k, j=1,...,n,

we define the norms

‖x‖ =
n∑
i=1

|xi|, ‖p‖ = max
1≤i≤k

{|pi|}, ‖Y ‖ = max{
n∑
j=1

|yij| : 1 ≤ i ≤ k}.

We will denote by L([0, c], R+), c > 0, R+ = [0,+∞), the class of all functions
γ : [0, a] → R+, which are integrable on [0, c]. Let B = (−∞, 0]× [−r, r] where
r = (r1, . . . , rn) ∈ Rn

+, R+ = [0,+∞). For a function z : (−∞, a] × Rn → Rk,
a > 0, and for a point (t, x) ∈ (−∞, a]×Rn we define a function z(t,x) : B → Rk

as follows: z(t,x)(s, y) = z(t+ s, x+ y), (s, y) ∈ B. Suppose that the functions

ψ = (ψ1, . . . , ψk), ψi = (ψi.0, ψ
′
i),
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ψi.0 : [0, a] → R, ψ′i = (ψi.1, . . . , ψi.n) : [0, a]×Rn → Rn

are given. The requirements on ψi.0, 1 ≤ i ≤ k, are that ψi.0(t) ≤ t for t ∈ [0, a].
For (t, x) ∈ R1+n we write ψi(t, x) = (ψi.0(t), ψ

′
i(t, x)), 1 ≤ i ≤ k.

The phase space X for equations with unbounded delay is a linear space
with the norm ‖ · ‖X consisting of functions mapping the set B into Rk. Write
Ω = [0, a]×Rn ×X and suppose that the functions

ρ : Ω →Mk×n, ρ = [ρij]i=1,...,k, j=1,...,n

f : Ω → Rk, f = (f1, . . . , fk)

and
ϕ : (−∞, 0]×Rn → Rk, ϕ = (ϕ1, . . . , ϕk)

are given. We consider the quasilinear functional differential system

∂tzi(t, x) +
n∑
j=1

ρij(t, x, zψi(t,x))∂xj
zi(t, x) = fi(t, x, zψi(t,x)), 1 ≤ i ≤ k, (1)

with the initial condition

z(t, x) = ϕ(t, x) for (t, x) ∈ (−∞, 0]×Rn. (2)

Note that zψi(t,x) is the restriction of z to the set (−∞, ψi.0(t)] × [ψ′i(t, x) −
r, ψ′i(t, x) + r], and this restriction is shifted to the set B.

We consider weak solutions of problem (1), (2). A function z̄ : (−∞, c] ×
Rn → Rk, 0 < c ≤ a, is a solution to the above problem if

(i) z̄ψi(t,x) ∈ X for (t, x) ∈ [0, c]×Rn, 1 ≤ i ≤ k,

(ii) the derivatives ∂tz̄ and ∂xz̄ = (∂x1 z̄, . . . , ∂xn z̄) exist almost everywhere on
[0, c]×Rn,

(iii) z̄ satisfies (1) almost everywhere on [0, c]×Rn and condition (2) holds.

Recently, numerous papers were published concerning functional differential
equations or systems. The following questions were considered: functional dif-
ferential inequalities, uniqueness and continuous dependence for initial or mixed
problems, difference functional inequalities, numerical approximations of clas-
sical solutions, existence of classical or generalized solutions to initial or mixed
problems. In these considerations, initial or initial boundary functions are de-
fined on bounded domains. Monograph [6] contains an exposition of recent
developments of hyperbolic functional differential equations and systems.

Paper [7] initiated the investigations of partial differential equations with
unbounded delay. Sufficient conditions for the existence and uniqueness of
Carathéodory solutions of initial problems for quasilinear equations were proved.
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Functional differential equations in a Banach space were considered. The sys-
tem of axioms for the phase space is formulated in a form of inequalities for
norms in the space C((−∞, c] × Rn, Y ) and their suitable subspaces, where Y
is a Banach space. Methods used in [7] are extended in [3] to initial boundary
value problems. Systems of axioms in [7] and [3] are different because domains
of solutions for initial problems and mixed problems are different.

The aim of the paper is to propose a new system of axioms for phase spaces.
It is important in our considerations that assumptions on phase spaces are
generated by differential functional systems and they are the same for initial
problems and for mixed problems.

The paper is organized as follows. In Section 2 we formulate a system
of axioms and some properties of phase spaces. We give examples of spaces
satisfying the main assumption. A theorem on the existence and continuous
dependence upon initial data is presented in Section 3. The last part of the
paper deals with initial boundary value problems. A result on the existence of
Carathéodory solutions is proved. Note that results of the paper are new also
in the case when the domain B is a bounded set, see Remark 1, 4 and 5.

In the paper, we use general ideas concerning axiomatic approach to equa-
tions with unbounded delay, which were introduced for ordinary differential
equations in [5], [8]. We apply a method of bicharacteristics. It was introduced
and widely studied in non-functional setting in [1], [2].

2. Definitions and fundamental axioms

Assume that c > 0, w : (−∞, c] × [−r, r] → Rk and t ∈ (−∞, c]. We define
a function w(t) : B → Rk by w(t)(s, y) = w(t + s, y), (s, y) ∈ B. For each
t ∈ (−∞, c] the function w(t) is the restriction of w to the set (−∞, t]× [−r, r],
and this restriction is shifted to the set B. If w : (−∞, c]× [−r, r] → Rk, c > 0,
and w|[0,c]×[−r,r] is continuous, then we write

‖w‖[0,t] = max{‖w(s, y)‖ : (s, y) ∈ [0, t]× [−r, r]},

where t ∈ [0, c].

Assumption H[X]. Suppose that (X, ‖ · ‖X) is a Banach space and

1) there is a constant χ ∈ R+ independent of w such that for each function
w ∈ X we have

‖w(0, x)‖ ≤ χ‖w‖X , x ∈ [−r, r], (3)

2) if w : (−∞, c]× [−r, r] → Rk, c > 0, is a function such that w(0) ∈ X and
w|[0,c]×[−r,r] is continuous, then w(t) ∈ X for t ∈ [0, c] and
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(i) the function t→ w(t) is continuous on [0, c],

(ii) there are K,K0 ∈ R+ independent of w such that

‖w(t)‖X ≤ K‖w‖[0,t] +K0‖w(0)‖X , t ∈ [0, c]. (4)

Now we give examples of phase spaces.

Example 2.1. Let X be the class of all functions w : B → Rk which are
uniformly continuous and bounded on B. For w ∈ X we put

‖w‖X = sup{‖w(s, y)‖ : (s, y) ∈ B}. (5)

Then, Assumption H[X] is satisfied with all the constants equal to 1.

Example 2.2. Let X be the class of all functions w : B → Rk
+ such that

w ∈ C(B,Rk) and there exists the limit limt→−∞w(t, x) = w0(x) uniformly
with respect to x ∈ [−r, r]. The norm in the space X is defined by (5). Then,
Assumption H[X] is satisfied with all the constants equal to 1.

Example 2.3. Let γ : (−∞, 0] → (0,∞) be a continuous function. Assume
also that γ is nonincreasing on (−∞, 0]. Let X be the space of all continuous
functions w : B → Rk such that

lim
t→−∞

‖w(t, x)‖
γ(t)

= 0, x ∈ [−r, r].

Write

‖w‖X = sup

{
‖w(t, x)‖

(γ(t)
: (t, x) ∈ B

}
.

Then, Assumption H[X] is satisfied with K = 1
γ(0)

, K0 = 1, χ = γ(0).

Example 2.4. Let p ≥ 1 be fixed. Denote by Y the class of all w : B → Rk

such that

(i) w is continuous on {0} × [−r, r] and∫ 0

−∞
‖w(τ, x)‖pdτ < +∞ for x ∈ [−r, r],

(ii) for each t ∈ (−∞, 0] the function w(t, ·) : [−r, r] → Rk is continuous.

We define the norm in the space Y by

‖w‖Y = max {‖w(t, x)‖ : (t, x) ∈ {0} × [−r, r]}

+ sup

{(∫ 0

−∞
‖w(τ, x)‖pdτ

) 1
p

: x ∈ [−r, r]

}
.

Write X = Ȳ , where Ȳ is the closure of Y with the above given norm. Then,

Assumption H[X] is satisfied with K = 1, K0 = 1 + c
1
p , χ = 1.
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Example 2.5. Denote by Y the set of all functions w : B → Rk which are
bounded and which satisfy the following properties:

(i) w is continuous on {0} × [−r, r] and

I(x) = sup

{ ∫ −n

−(n+1)

‖w(τ, x)‖dτ : n ∈ N

}
< +∞

where x ∈ [−r, r] and N is the set of natural numbers

(ii) for each t ∈ (−∞, 0] the function w(t, ·) : [−r, r] → Rk is continuous.

The norm in the space Y is defined by

‖w‖Y = max{|w(t, x)| : (t, x) ∈ {0} × [−r, r]}+ sup{I(x) : x ∈ [−r, r]}.

Write X = Ȳ , where Ȳ is the closure of Y with the above given norm. Then,
Assumption H[X] is satisfied with K = 1 + c, K0 = 2, χ = 1.

If z : (−∞, c] × Rn → Rk, c > 0, is a function such that z|[0,c]×Rn is
continuous and (t, x) ∈ [0, c]×Rn, then we put

‖z‖[0,t;x] = max
{
‖z(s, y)‖ : (s, y) ∈ [0, t]× [x− r, x+ r]

}
.

Suppose additionally that the function z|[0,c]×Rn satisfies a Lipschitz condition
with respect to x. Then we write

Lip[z]|[0,t;Rn] = sup

{
‖z(s, y)− z(s, ȳ)‖

‖y − ȳ‖
: (s, y), (s, ȳ) ∈ [0, t]×Rn, y 6= ȳ

}
.

Lemma 2.1. Suppose that Assumption H[X] is satisfied and z : (−∞, c]×Rn →
Rk, 0 < c ≤ a. If z(0,x) ∈ X for x ∈ Rn and z|[0,c]×Rn is continuous, then
z(t,x) ∈ X for (t, x) ∈ (0, c]×Rn and

‖z(t,x)‖X ≤ K‖z‖[0,t;x] +K0‖z(0,x)‖X . (6)

If we assume additionally that the function z|[0,c]×Rn satisfies the Lipschitz con-
dition with respect to x, then

‖z(t,x) − z(t,x̄)‖X ≤ K Lip[z]|[0,t;Rn]‖x− x̄‖+K0‖z(0,x) − z(0,x̄)‖X , (7)

where (t, x), (t, x̄) ∈ [0, c]×Rn.

Proof. Inequality (6) is a consequence of (4) for w : (−∞, c] × [−r, r] → Rk

given by w(s, y) = z(s, x+ y) with fixed x ∈ Rn.
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We prove (7). Suppose that (t, x), (t, x̄) ∈ [0, c] × Rn and the function z̃ :
(−∞, c]×Rn → Rk is defined by z̃(s, y) = z(s, y+ x̄−x), (s, y) ∈ (−∞, c]×Rn.
Then z̃(t,x) = z(t,x̄) and

‖z(t,x) − z(t,x̄)‖X = ‖(z − z̃)(t,x)‖X

≤ K‖z − z̃‖[0,t;x] +K0‖(z − z̃)(0,x)‖X

≤ K Lip[z]|[0,t;Rn]‖x− x̄‖+K0‖z(0,x) − z(0,x̄)‖X ,

which proves (7).

Our basic assumption on initial functions is the following.

Assumption H[ϕ]. Suppose that ϕ : (−∞, 0] × Rn → Rk, ϕ(0,x) ∈ X for
x ∈ Rn, and there are b0, b1 ∈ R+ such that

‖ϕ(0,x)‖X ≤ b0, ‖ϕ(0,x) − ϕ(0,x̄)‖X ≤ b1‖x− x̄‖,

where x, x̄ ∈ Rn. Let us denote by I[X] the class of all initial functions ϕ :
(−∞, 0] × Rn → Rk satisfying Assumption H[ϕ]. Let be ϕ ∈ I[X] and let
0 < c ≤ a, d = (d0, d1) ∈ R2

+, λ ∈ L([0, c], R+). Let us denote by Cϕ.c[d, λ] the
class of all functions z : (−∞, c]×Rn → Rk such that

(i) z(t, x) = ϕ(t, x) for (t, x) ∈ (−∞, 0]×Rn,

(ii) the estimates

‖z(t, x)‖ ≤ d0, ‖z(t, x)− z(t̄, x̄)‖ ≤
∣∣∣∣ ∫ t̄

t

λ(τ)dτ

∣∣∣∣ + d1‖x− x̄‖,

hold on [0, c]×Rn.

We will prove that under suitable assumptions on f and ψ and for suffi-
ciently small c, 0 < c ≤ a, there exists a solution z̄ to problem (1), (2) such
that z̄ ∈ Cϕ.c[d, λ].

3. Existence of solutions to initial problems

Let us denote by ∆ the set of all functions α : [0, a] × R+ → R+ such that
α(·, t) ∈ L([0, a], R+) for t ∈ R+ and the function α(t, ·) : R+ → R+ is continu-
ous and nondecreasing, and α(t, 0) = 0 for almost all t ∈ [0, a]. Write

X[µ] = {w ∈ X : ‖w‖X ≤ µ}, µ ∈ R+.

We will need the following assumptions.
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Assumption H[ρ]. Suppose that

1) the function ρ(·, y, w) : [0, a] → Mk×n is measurable for every (y, w) ∈
Rn ×X and there is a function α ∈ ∆ such that

‖ρ(t, x, w)‖ ≤ α(t, µ)

for (x,w) ∈ Rn ×X[µ] almost everywhere on [0, a]

2) there is a function γ ∈ ∆ such that

‖ρ(t, x, w)− ρ(t, x̄, w̄)‖ ≤ γ(t, µ)[‖x− x̄‖+ ‖w − w̄‖X ]

for (x,w), (x̄, w̄) ∈ Rn ×X[µ] and for almost t ∈ [0, a],.

Assumption H[ψ]. Suppose that for each i, 1 ≤ i ≤ k, the functions ψi.0 :
[0, a] → R and ψ′i = (ψi.1, . . . , ψi.n) : [0, a]×Rn → Rn are continuous and

1) ψi.0(t) ≤ t for t ∈ (0, a]

2) there is s0 ∈ R+ such that

‖ψ′i(t, x)− ψ′i(t, x̄)‖ ≤ s0‖x− x̄‖

on [0, a]×Rn.

Suppose that Assumptions H[X], H[ρ], H[ψ] are satisfied and ϕ ∈ I[X],
z ∈ Cϕ.c[d, λ]. Consider the Cauchy problem

η′(τ) = ρi(τ, η(τ), zψi(τ,η(τ))), η(t) = x, (8)

where (t, x) ∈ [0, c] × Rn and 1 ≤ i ≤ k is fixed, while ρi = (ρi1, . . . , ρin).
Let us denote by gi[z](·, t, x) the solution to (8). The function gi[z] is the i-th
bicharacteristic of system (1) corresponding to z. For functions ϕ ∈ I[X] and
z ∈ Cϕ.c[d, λ], we write

‖ϕ‖X,Rn = sup{‖ϕ(0,x)‖X : x ∈ Rn}

and
‖z‖t = sup{‖z(s, y)‖ : (s, y) ∈ [0, t]×Rn},

where t ∈ [0, c].

We first prove a lemma on the existence and regularity of bi-characteristics.

Lemma 3.1. Suppose that Assumptions H[X], H[ρ], H[ψ] are satisfied and
ϕ, ϕ̄ ∈ I[X], z ∈ Cϕ.c[d, λ], z̄ ∈ Cϕ̄.c[d, λ], where 0 < c ≤ a. Then, for each
1 ≤ i ≤ k, the solutions gi[z](·, t, x) and gi[z̄](·, t, x) exist on [0, c]. They are
unique, and we have the estimates

‖gi[z](τ, t, x)− gi[z](τ, t̄, x̄)‖ ≤ L(c)

[∣∣∣ ∫ t

t̄

α(ξ)dξ
∣∣∣ + ‖x− x̄‖

]
(9)
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for (t, x), (t̄, x̄) ∈ [0, c]×Rn, τ ∈ [0, c], where

L(τ) = exp
[
A

∫ τ

0

γ(ξ, µ0)dξ
]
, τ ∈ [0, c]

A = 1 + s0(Kd1 +K0b1)

µ0 = Kd0 +K0b0

and

‖gi[z](τ, t, x)− gi[z̄](τ, t, x)‖

≤ L(c)

∣∣∣∣ ∫ τ

t

γ(ξ, µ0)
[
K‖z − z̄‖ξ +K0‖ϕ− ϕ̄‖X,Rn

]
dξ

∣∣∣∣ (10)

where (τ, t, x) ∈ [0, c]× [0, c]×Rn.

Proof. We begin by proving that problem (8) has exactly one solution. It
follows from the AssumptionsH[X], H[ψ], H[ρ] and Lemma 2.1 that ‖z(s,y)‖X ≤
µ0 for (s, y) ∈ [0, c]×Rn and that the following Lipschitz condition is satisfied:

‖ρi(τ, y, zψi(τ,y))− ρi(τ, ȳ, zψi(τ,ȳ))‖ ≤ γ(τ, µ0)A‖y − ȳ‖,

where τ ∈ [0, c], y, ȳ ∈ Rn. It follows that there exists exactly one Carathéodory
solution to problem (8), and the solution is defined on the interval [0, c].

Now we prove estimate (9). The function gi[z](·, t, x) satisfies the integral
equation

gi[z](τ, t, x) = x+

∫ τ

t

ρi(ξ, gi[z](ξ, t, x), zψi(ξ,gi[z](ξ,t,x)))dξ.

Write
Pi[z](ξ, t, x) = (ξ, gi[z](ξ, t, x), zψi(ξ,gi[z](ξ,t,x))).

It follows from the Assumptions H[ψ], H[ρ] and Lemma 2.1 that

‖gi[z](τ, t, x)− gi[z](τ, t̄, x̄)‖

≤ ‖x− x̄‖+

∣∣∣∣ ∫ t̄

t

α(ξ, µ0)dξ

∣∣∣∣
+

∣∣∣∣∫ t

τ

‖ρi(Pi[z](ξ, t, x))− ρi(Pi[z](ξ, t̄, x̄))‖dξ
∣∣∣∣

≤ ‖x− x̄‖+

∣∣∣∣ ∫ t̄

t

α(ξ, µ0)dξ

∣∣∣∣
+A

∣∣∣∣∫ τ

t

γ(ξ, µ0)‖gi[z](ξ, t, x)− gi[z](ξ, t̄, x̄)‖dξ
∣∣∣∣ ,



Hyperbolic Functional Differential Systems 385

where (t, x), (t̄, x̄) ∈ [0, c]×Rn, τ ∈ [0, c]. Now we obtain (9) from the Gronwall
inequality.

Our next aim is to prove (10). For z ∈ Cϕ.c[d, λ] and z̄ ∈ Cϕ̄.c[d, λ] we have

‖gi[z](τ, t, x)− gi[z̄](τ, t, x)‖

≤
∣∣∣∣∫ τ

t

‖ρi(Pi[z](ξ, t, x))− ρi(Pi[z̄](ξ, t, x))‖dξ
∣∣∣∣ . (11)

It follows from Assumption H[X] and Lemma 2.1 that

‖zψi(ξ,gi[z](ξ,t,x)) − z̄ψi(ξ,gi[z̄](ξ,t,x))‖X

≤ ‖zψi(ξ,gi[z](ξ,t,x)) − zψi(ξ,gi[z̄](ξ,t,x))‖X

+‖zψi(ξ,gi[z̄](ξ,t,x)) − z̄ψi(ξ,gi[z̄](ξ,t,x))‖X

≤ s0(Kd1 +K0b1)‖gi[z](ξ, t, x)− gi[z̄](ξ, t, x)‖

+K‖z − z̄‖ξ +K0‖ϕ− ϕ̄‖X,Rn

(12)

where (ξ, t, x) ∈ [0, c] × [0, c] × Rn. The above estimate and (11) imply the
integral inequality

‖gi[z](τ, t, x)− gi[z̄](τ, t, x)‖

≤
∣∣∣∣∫ τ

t

γ(ξ, µ0)
[
K‖z − z̄‖ξ +K0‖ϕ− ϕ̄‖X,Rn

]
dξ

∣∣∣∣
+A

∣∣∣∣∫ τ

t

γ(ξ, µ0)‖gi[z](ξ, t, x)− gi[z̄](ξ, t̄, x̄)‖dξ
∣∣∣∣ ,

where (ξ, t, x) ∈ [0, c] × [0, c] × Rn. Now we obtain (10) from the Gronwall
inequality.

Suppose that ϕ ∈ I[X], c ∈ (0, a], z ∈ Cϕ.c[d, λ] and

g[z](·, t, x) = (g1[z](·, t, x), . . . , gk[z](·, t, x))

are bicharacteristics of system (8). Write

f ∗(t, g[z](τ, t, x), zψ(τ,g[z](τ,t,x)))

=
(
f1(t, g1[z](τ, t, x), zψ1(τ,g1[z](τ,t,x))), . . . , fk(t, gk[z](τ, t, x), zψk(τ,gk[z](τ,t,x)))

)
and

ϕ∗(τ, g[z](τ, t, x)) = (ϕ1(τ, g1[z](τ, t, x)), . . . , ϕk(τ, gk[z](τ, t, x))) .
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Let us define operator F as

F [z](t, x) = ϕ∗(0, g[z](0, t, x)) +

∫ t

0

f ∗(τ, g[z](τ, t, x), zψ(τ,g[z](τ,t,x)))dτ

on [0, c]×Rn, and let

F [z](t, x) = ϕ∗(t, x) on (−∞, 0)×Rn.

Assumption H[f ]. Suppose that

1) the function f(·, y, w) : [0, a] → Rk is measurable for (y, w) ∈ Rn×X and
there is γ̃ ∈ ∆ such that

‖f(t, x, w)‖ ≤ γ̃(t, µ)

for (x,w) ∈ Rn ×X[µ] and for almost all t ∈ [0, a],

2) there exists a function β ∈ ∆ such that the Lipschitz condition

‖f(t, x, w)− f(t, x̄, w̄)‖ ≤ β(t, µ)[‖x− x̄‖+ ‖w − w̄‖X ]

is satisfied for (x,w), (x̄, w̄) ∈ Rn ×X[µ] and for almost all t ∈ [0, a].

Theorem 3.1. Suppose that ϕ ∈ I[X] and Assumptions H[ρ], H[f ], H[Ψ] are
satisfied. Then there are (d0, d1) = d ∈ R2

+, c ∈ (0, a] and λ ∈ L([0, c], R+) such
that there exists exactly one solution u ∈ Cϕ.c[d, λ] to problem (1), (2).

If ϕ̄ ∈ I[X] and ū ∈ Cϕ̄.c[d, λ] is a solution to system (1) with the ini-
tial condition z(t, x) = ϕ̄(t, x) on (−∞, 0] × Rn, then there is a function Λ ∈
C((0, c], R+) such that

‖u− ū‖t ≤ Λ(t)‖ϕ− ϕ̄‖X,Rn , t ∈ (0, c]. (13)

Proof. We have divided the proof into three steps.

Step I. We first show that there are (d0, d1) = d ∈ R2
+, c ∈ (0, a] and

λ ∈ L([0, c], R+) such that

F : Cϕ.c[d, λ] → Cϕ.c[d, λ].

Suppose that the constants (d0, d1) = d ∈ R2
+, c ∈ (0, a] and the function

λ ∈ L([0, c], R+) satisfy the conditions

d0 ≥ χb0 +

∫ c

0

γ̃(τ, µ0)dτ

d1 ≥
(
χb1 + A

∫ c

0

β(τ, µ0)dτ

)
L(c)
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and

λ(t) ≥ α(t, µ0)

(
χb1 + A

∫ c

0

β(τ, µ0)dτ

)
L(c) + γ̃(t, µ0) on t ∈ [0, c].

Suppose that z ∈ Cϕ.c[d, λ]. Then we have

‖F [z](t, x)‖ ≤ χb0 +

∫ c

0

γ̃(τ, µ0)dτ ≤ d0 (14)

It follows from Assumption H[f ] and Lemma 2.1 that for

‖F [z](t, x)− F [z](t̄, x̄)‖

≤ ‖ϕ∗(0, g[z](0, t, x))− ϕ∗(0, g[z](0, t̄, x̄))‖

+

∫ t

0

‖f ∗(τ, g[z](τ, t, x), zψ(τ,g[z](τ,t,x)))

−f ∗(τ, g[z](τ, t̄, x̄), zψ(τ,g[z](τ,t̄,x̄)))‖dτ

+
∣∣∣ ∫ t̄

t

γ̃(τ, µ0)dτ
∣∣∣

≤ χb1 max
1≤i≤k

‖gi[z](0, t, x)− gi[z](0, t̄, x̄)‖

+ A

∫ t

0

β(τ, µ0) max
1≤i≤k

‖gi[z](τ, t, x)− gi[z](τ, t̄, x̄)‖dτ

+
∣∣∣ ∫ t̄

t

γ̃(τ, µ0)dτ
∣∣∣

≤
(
χb1 + A

∫ c

0

β(τ, µ0)dτ
)
L(c)

[ ∣∣∣ ∫ t̄

t

α(τ, µ0)dτ
∣∣∣ + ‖x− x̄‖

]
+

∣∣∣ ∫ t̄

t

γ̃(τ, µ0)dτ
∣∣∣,

that is

‖F [z](t, x)− F [z](t̄, x̄)‖ ≤

∣∣∣∣∣
∫ t̄

t

λ(τ)dτ

∣∣∣∣∣ + d1‖x− x̄‖ (15)

on [0, c]×Rn. It follows from (14) and (15) that F [z] ∈ Cϕ.c[d, λ].

Step II. We shall prove that F is a contraction on Cϕ.c[d, λ]. For z, z̄ ∈
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Cϕ.c[d, λ] we have

‖F [z](t, x)− F [z̄](t, x)‖

≤ ‖ϕ∗(0, g[z](0, t, x))− ϕ∗(0, g[z̄](0, t, x))‖

+

∫ t

0

‖f ∗(τ, g[z](τ, t, x), zψ(τ,g[z](τ,t,x)))

−f ∗(τ, g[z̄](τ, t, x), zψ(τ,g[z̄](τ,t,x)))‖dτ .
It follows from (12) and Lemma 3.1 that

‖F [z](t, x)− F [z̄](t, x)‖

≤ χb1 max
1≤i≤k

‖gi[z](0, t, x)− gi[z̄](0, t, x)‖

+

∫ t

0

β(τ, µ0)
[
A max

1≤i≤k
‖gi[z](τ, t, x)− gi[z](τ, t, x̄)‖+K‖z − z̄‖τ

]
dτ

≤ χb1KL(c)

∫ t

0

γ(ξ, µ0)‖z − z̄‖ξdξ

+K

∫ t

0

β(τ, µ0)
[
‖z − z̄‖τ + AL(c)

∫ t

τ

γ(ξ, µ0)‖z − z̄‖ξdξ
]
dτ

≤
∫ t

0

‖z − z̄‖ξΨ(ξ)dξ,

where

Ψ(ξ) = KL(c)
[
χb1 + A

∫ ξ

0

β(s, µ0)ds
]
γ(ξ, µ0) +Kβ(ξ, µ0).

For functions z, z̄ ∈ Cϕ.c[d, λ] we write

[|z − z̄|] = sup

{
‖z − z̄‖t exp

[
− 2

∫ t

0

Ψ(ξ)dξ
]

: t ∈ [0, c]

}
.

We have

‖F [z](t, x)− F [z̄](t, x)‖

≤
∫ t

0

‖z − z̄‖ξ exp
[
− 2

∫ ξ

0

Ψ(s)ds
]
exp

[
2

∫ ξ

0

Ψ(s)ds
]
Ψ(ξ)dξ

≤ [|z − z̄|]
∫ t

0

exp
[
2

∫ ξ

0

Ψ(s)ds
]
Ψ(ξ)dξ

=
1

2
[|z − z̄|]

(
exp

[
2

∫ t

0

Ψ(ξ)dξ
]
− 1

)
≤ 1

2
[|z − z̄|] exp

[
2

∫ t

0

Ψ(ξ)dξ
]
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for t ∈ [0, c]. From the above inequality we get

‖F [z](t, x)− F [z̄](t, x)‖t ≤
1

2
[|z − z̄|] exp

[
2

∫ t

0

Ψ(ξ)dξ
]

for t ∈ [0, c], and consequently [|F [z] − F [z̄]|] ≤ 1
2
[|z − z̄|]. By the Banach

fixed point theorem there exists a unique solution u ∈ Cϕ.c[d, λ] of the equation
z = F [z]. Now we prove that u is a solution of equation (1). We have proved
that

ui(t, x) = ϕi(0, gi[u](0, t, x)) +

∫ t

0

fi(s, gi[u](s, t, x), uψi(s,gi[u](s,t,x)))ds (16)

on [0, c] × Rn for 1 ≤ i ≤ k. For given x ∈ Rn, 1 ≤ i ≤ k, let us put
η(i) = gi[u](0, t, x). It follows that gi[u](τ, t, x) = gi[u](τ, 0, η

(i)) for τ ∈ [0, c]
and x = gi[u](t, 0, η

(i)). The relations

η(i) = gi[u](0, t, x) and x = gi[u](t, 0, η
(i))

are equivalent for x, η(i) ∈ Rn. It follows from (16) that for 1 ≤ i ≤ k

ui(t, gi[u](t, 0, η
(i)))

= ϕi(0, η
(i)) +

∫ t

0

fi(s, gi[u](s, 0, η
(i)), uψi(s,gi[u](s,0,η(i))))ds .

(17)

By differentiating (17) with respect to t and by using the transformations -
η(i) = gi[u](0, t, x) which preserve the sets of measure zero, we obtain that u
satisfies (1) for almost all (t, x) ∈ [0, c]×Rn.

Step III. Now we prove relation (13). Let F̄ be an operator defined as F
but with function ϕ̄ instead of ϕ. If u = F [u] and ū = F̄ [ū], u = (u1, . . . , uk),
ū = (ū1, . . . , ūk), then it holds for each i ∈ {1, . . . , k}

|ui(t, x)− ūi(t, x)|

≤ |ϕi(0, gi[u](0, t, x))− ϕ̄i(0, gi[ū](0, t, x))|

+

∫ t

0

|fi
(
s, gi[u](s, t, x), uψi(s,gi[u](s,t,x)))

)
− fi

(
s, gi[ū](s, t, x), ūψi(s,g[ū](s,t,x)))

)
|ds

≤ ‖ϕ− ϕ̄‖X,Rn + χb1 max
1≤i≤k

‖gi[u](0, t, x)− gi[ū](0, t, x)‖

+

∫ t

0

β(s, µ0)
[

max
1≤i≤k

‖gi[u](s, t, x)− gi[ū](s, t, x)‖

+ max
1≤i≤k

‖uψi(s,gi[u](s,t,x)) − ūψi(s,gi[ū](s,t,x))‖X
]
ds.
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It follows from Lemma 3.1 that

‖gi[u](τ, t, x)− gi[ū](τ, t, x)‖

≤ L(0, c)

∫ t

0

γ(s, µ0) [K‖u− ū‖s +K0‖ϕ− ϕ̄‖X,Rn ] ds

for 0 ≤ τ ≤ t, and

‖uψi(s,gi[u](s,t,x)) − ūψi(s,gi[ū](s,t,x))‖X

≤ s0(Kd1 +K0b1)‖gi[u](s, t, x)− gi[ū](s, t, x)‖

+K‖u− ū‖s +K0‖ϕ− ϕ̄‖X,Rn

≤ s0(Kd1 +K0b1)L(c)

∫ t

0

γ(ξ, µ0) [K‖u− ū‖ξ +K0‖ϕ− ϕ̄‖X,Rn ] dξ

+K‖u− ū‖s +K0‖ϕ− ϕ̄‖X,Rn .

Then we have

‖u(t, x)− ū(t, x)‖

≤ ‖ϕ− ϕ̄‖X,Rn + χb1L(c)

∫ t

0

γ(s, µ0) [K‖u− ū‖s +K0‖ϕ− ϕ̄‖X,Rn ] ds

+

∫ t

0

β(s, µ0)
[
AL(c)

∫ t

0

γ(ξ, µ0) [K‖u− ū‖ξ +K0‖ϕ− ϕ̄‖X,Rn ] dξ

+K‖u− ū‖s +K0‖ϕ− ϕ̄‖X,Rn

]
ds

≤ Dc‖ϕ− ϕ̄‖X,Rn +

∫ t

0

Γ(s)‖u− ū‖sds

with

Dc = 1 +K0

∫ c

0

Ψ0(s)ds, Γ(s) = KΨ0(s),

where

Ψ0(s) = L(c)
[
χb1 + A

∫ c

0

β(ξ, µ0)dξ
]
γ(s, µ0) + β(s, µ0).

Using the Gronwall inequality we obtain ‖u− ū‖t ≤ Λ(t)‖ϕ− ϕ̄‖X,Rn , t ∈ [0, c],
with

Λ(t) = Dc exp
[ ∫ t

0

Γ(s)ds
]
.

Then we have shown the estimate (13) with the above given Λ. This proves the
theorem.
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Remark 1. Suppose that B = [−r0, 0]× [−r, r] where r0 ∈ R+ and

ρ̃ : [0, a]×Rn ×Rk →Mk×n, ρ̃ = [ρ̃ij]i=1,...,k, j=1,...,n

f̃ : [0, a]×Rn ×Rk → Rk, f̃ = (f̃1, . . . , f̃k)

are given functions. Write

Di[t, x]

= {(s, y) ∈ R1+n : ψi.0(t)− r0 ≤ s ≤ ψi.0(t), ψ
′
i(t, x)− r ≤ y ≤ ψ′i(t, x) + r}

for 1 ≤ i ≤ k, and

ρ(t, x, w) = ρ̃
(
t, x,

∫
B

w(s, y)dsdy
)

f(t, x, w) = f̃
(
t, x,

∫
B

w(s, y)dsdy
)

where
∫
B
w(s, y)dsdy =

(∫
B
w1(s, y)dsdy, . . . ,

∫
B
wk(s, y)dsdy

)
. Then the Cauchy

problem (1), (2) is equivalent to the system of differential integral equations

∂tzi(t, x) +
n∑
j=1

ρ̃ij

(
t, x,

∫
Di[t,x]

z(s, y)dsdy
)
∂xj

zi(t, x)

= f̃i

(
t, x,

∫
Di[t,x]

z(s, y)dsdy
) (18)

for 1 ≤ i ≤ k, with the initial condition

z(t, x) = ϕ(t, x) (19)

for (t, x) ∈ [−r0, 0] × [−r, r]. It is easy to formulate existence result for prob-
lem (18), (19) which is based on Theorem 3.1. Note that the results presented
in [6, Chapter 4] concern the case when the sets Di[t, x] do not depend on (t, x)
and i, and therefore they are not applicable to (18), (19).

Remark 2. For the above given %̃ and f̃ we put

%(t, x, w) = %̃(t, x, w(0, 0)), f(t, x, w) = f̃(t, x, w(0, 0))).

Then, the Cauchy problem (1), (2) is equivalent to the system of differential
equations with deviated variables

∂tzi(t, x) +
n∑
j=1

%̃ij(t, x, z(ψi(t, x)))∂xj
zi(t, x) = f̃i(t, x, z(ψi(t, x))) (20)

for 1 ≤ i ≤ k, with the initial condition (19). It is easy to formulate the
existence result for (20), (19) which is based on Theorem 3.1.
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4. Mixed problems

In this part of the paper we shall consider initial boundary value problems for
quasilinear partial functional differential systems with unbounded delay. Let
use the symbols B and X to denote the spaces defined in Section 1. Let a > 0
and b̄ = (b̄1, . . . , b̄n) with b̄i > 0 for 1 ≤ i ≤ n be fixed. We define the sets

E = [0, a]× (−b̄, b̄)
E0 = (−∞, 0]× [−b̄− r, b̄+ r]

∂0E = ([0, a]× [−b̄− r, b̄+ r])\E
E∗ = E0 ∪ E ∪ ∂0E

and

E[c] = E ∩ ([0, c]×Rn)

∂0E[c] = ∂0E ∩ ([0, c]×Rn)

D[c] = E[c] ∪ ∂0E[c]

where 0 < c ≤ a. Write Ω = Ē ×X where Ē is the closure of E, and suppose
that the functions

ρ : Ω →Mk×n, ρ = [ρij]i=1,...,k, j=1,...,n ,

f : Ω → Rk, f = (f1, . . . , fk)

ϕ : E0 ∪ ∂0E → Rk, ϕ = (ϕ1, . . . , ϕk)

and

ψ = (ψ1, . . . , ψk), ψi = (ψi.0, ψ
′
i), ψi.0 : [0, a] → R

ψ′i : Ē → [−b̄, b̄], ψ′i = (ψi.1, . . . , ψi.κ)

are given. The requirements on ψi.0 are such that ψi.0(t) ≤ t for t ∈ [0, a] and
1 ≤ i ≤ k. We consider the quasilinear functional differential system

∂tzi(t, x) +
n∑
j=1

ρij(t, x, zψi(t,x))∂xj
zi(t, x) = fi(t, x, zψi(t,x)), (21)

for 1 ≤ i ≤ k, with the initial boundary condition

z(t, x) = ϕ(t, x) (22)

for (t, x) ∈ E0 ∪ ∂0E. We consider weak solutions of problem (21), (22). A
function z̄ = (z̄1, . . . , z̄k) : E∗ ∩ ((−∞, c] × Rn) → Rk, 0 < c ≤ a, is a solution
to the above problem if the following conditions are satisfied:
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(i) z̄ψi(t,x) ∈ X for (t, x) ∈ E[c], 1 ≤ i ≤ k

(ii) the derivatives ∂tz̄i and ∂xz̄i = (∂x1 z̄i, . . . , ∂xn z̄i), 1 ≤ i ≤ k, exist almost
everywhere on E[c],

(iii) z̄ satisfies system (21) almost everywhere on E[c], and z̄(t, x) = ϕ(t, x) on
(E0 ∪ ∂0E) ∩ ((−∞, c]×Rn).

Remark 3. Note that existence results presented in [6], [4], [12] are not appli-
cable to (21), (22) also in the case when B is a bounded set.

Let ∆̃ be the class of all functions γ ∈ C(R+, R+) which are non-decreasing
on R+, and γ(0) = 0. If z : E0 ∪D[c] → Rk, 0 < c ≤ a, is a function such that
z|D[c] is continuous and (t, x) ∈ [0, c]× [−b̄, b̄], the we put

‖z‖[0,t;x] = max{‖z(s, y)‖ : (s, y) ∈ [0, t]× [x− r, x+ r]}.

Suppose additionally that the function z|D[c] satisfies the Lipschitz condition
with respect to x. Then we write

Lip[z]|D[t] = sup

{
‖z(s, y)− z(s, ȳ)‖

‖y − ȳ‖
: (s, y), (s, ȳ) ∈ D[t]

}
for t ∈ [0, c].

Lemma 4.1. Suppose that Assumption H[X] is satisfied and z : E0∪D[c] → Rk,
0 < c ≤ a. If z(0,x) ∈ X for x ∈ [−b̄, b̄] and z|D[c] is continuous, then z(t,x) ∈ X
for (t, x) ∈ [0, c]× [−b̄, b̄] and

‖z(t,x)‖X ≤ K‖z‖[0,t;x] +K0‖z(0,x)‖X . (23)

If we assume additionally that the function z|D[c] satisfies the Lipschitz condition
with respect to x, then

‖z(t,x) − z(t,x̄)‖X ≤ K Lip[z]|D[t]‖x− x̄‖+K0‖z(0,x) − z(0,x̄)‖X , (24)

where (t, x), (t, x̄) ∈ [0, c]× [−b̄, b̄].

The proof of the above lemma is similar to the proof of Lemma 2.1. We
omit the details.

Our basic assumption on initial boundary functions is the following.

Assumption H̃[ϕ]. Suppose that for ϕ : E0 ∪ ∂0E → Rk it holds:

1) ϕ(0,x) ∈ X for x ∈ [−b̄, b̄], and there are constants b0, b1 ∈ R+ such that

‖ϕ(0,x)‖X ≤ b0, ‖ϕ(0,x) − ϕ(0,x̄)‖X ≤ b1‖x− x̄‖

where x, x̄ ∈ [−b̄, b̄].
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2) ‖ϕ(t, x)‖ ≤ q0 on ∂0E, and there are constants q1, q2 ∈ R+ such that

‖ϕ(t, x)− ϕ(t̄, x̄)‖ ≤ q1|t− t̄|+ q2‖x− x̄‖ on ∂0E.

Let us denote by Ĩ[X] the class of all initial boundary functions ϕ : E0 ∪
∂0E → Rk satisfying Assumption H̃[ϕ]. Let ϕ ∈ Ĩ[X] and let 0 < c ≤ a,
d = (d0, d1, d2) ∈ R3

+, di ≥ qi for i = 0, 1, 2. We will denote by Cϕ.c[d] the class
of all functions z : E0 ∪D[c] → Rk such that

z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E[c] and the estimates

‖z(t, x)‖ ≤ d0, ‖z(t, x)− z(t̄, x̄)‖ ≤ d1|t− t̄|+ d2‖x− x̄‖

hold on D[c]. We will prove that under suitable assumptions on f , ρ and ψ and
for sufficiently small c, 0 < c ≤ a, there exists a solution z̄ to problem (21), (22)
such that z̄ ∈ Cϕ.c[d]. We will need the following assumptions on ρ and ψ.

Assumption H0[ρ]. Suppose that

1) the function ρ(·, x, w) : [0, a] → Mk×n is measurable for every (x,w) ∈
[−b̄, b̄] × X and ρ(t, ·) : [−b̄, b̄] × X → Mk×n is continuous for almost all
t ∈ [0, a]

2) there exist α, γ ∈ ∆̃ such that ‖ρ(t, x, w)‖ ≤ α(µ) and

‖ρ(t, x, w)− ρ(t, x̄, w̄)‖ ≤ γ(µ)[‖x− x̄‖+ ‖w − w̄‖X ]

for (x,w), (x̄, w̄) ∈ [−b̄, b̄]×X[µ] and for almost all t ∈ [0, a].

Assumption H̃[ψ]. Suppose that the functions ψi = (ψi.0, ψ
′
i), 1 ≤ i ≤ k,

satisfy the conditions:

1) ψi.0 ∈ C([0, a], R+), ψ′i ∈ C(Ē, [−b̄, b̄]) and ψi.0(t) ≤ t for t ∈ (0, a],
1 ≤ i ≤ k,

2) there is s0 ∈ R+ such that

‖ψ′i(t, x)− ψ′i(t, x̄)‖ ≤ s0‖x− x̄‖ on E for 1 ≤ i ≤ k.

Suppose that Assumptions H[X], H0[ρ], H̃[ψ] are satisfied and ϕ ∈ Ĩ[X], z ∈
Cϕ.c[d]. Consider the Cauchy problem

η′(τ) = ρi(τ, η(τ), zψi(τ,η(τ))), η(t) = x (25)

where (t, x) ∈ [0, c]× [−b̄, b̄] and 1 ≤ i ≤ k is fixed, while ρi = (ρi1, . . . , ρin). Let
us denote by gi[z](·, t, x) = (gi1[z](·, t, x), . . . , gin[z](·, t, x)) the solution to (25).
The function gi[z](·, t, x) is the i-th bicharacteristic of system (21) corresponding
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to z. Let δi[z](t, x) be the left end of the maximal interval on which the solution
gi[z](·, t, x) is defined. Write

Γj.+ = {(t, x) ∈ Ē : xj = b̄j}
Γj.− = {(t, x) ∈ Ē : xj = −b̄j}

Γ0 = {0} × [−b̄, b̄]

Γ = Γ0 ∪
n⋃
j=1

(
Γj.+ ∪ Γj.−

)
.

For functions ϕ ∈ Ĩ[X] and z ∈ Cϕ.c[d], we write

‖ϕ‖X,b̄ = sup{‖ϕ(0,x)‖X : x ∈ [−b̄, b̄]},

and

‖z‖t = sup{‖z(s, y)‖ : (s, y) ∈ D[t]}, 0 ≤ t ≤ c.

Lemma 4.2. Suppose that Assumptions H[X], H[ρ], H̃[ψ] are satisfied and
ϕ, ϕ̄ ∈ Ĩ[X], z ∈ Cϕ.c[d], z̄ ∈ Cϕ̄.c[d], where 0 < c ≤ a. Then, for each 1 ≤ i ≤
k, the solutions gi[z](·, t, x) and gi[z̄](·, t, x) exist on the intervals I

(i)
(t,x) and Ī

(i)
(t,x)

such that for ζ = δi[z](t, x) and ζ̄ = δi[ζ̄](t, x) we have (ζ, gi[z](ζ, t, x)) ∈ Γ and
(ζ̄ , gi[z̄](ζ̄ , t, x)) ∈ Γ. Solutions of (25) are unique, and the following estimates
hold:

‖gi[z](τ, t, x)− gi[z](τ, t̄, x̄)‖ ≤ Θ(τ,max{t, t̄}) [|t− t̄|+ ‖x− x̄‖] (26)

for τ ∈ I(i)
(t,x) ∩ I

(i)
(t̄,x̄), (t, x), (t̄, x̄) ∈ E[c], where

Θ(τ, t) = max{1, α(µ0)} exp [Aγ(µ0)|τ − t|]
µ0 = Kd0 +K0b0, A = 1 + s0(Kd1 +K0b1)

(27)

and

‖gi[z](τ, t, x)−gi[z̄](τ, t, x)‖ ≤ Θ̃(τ, t)

∣∣∣∣ ∫ τ

t

[
K‖z− z̄‖ξ+K0‖ϕ−ϕ̄‖X,b̄

]
dξ

∣∣∣∣ (28)

for τ ∈ I(i)
(t,x) ∩ Ī

(i)
(t,x), (t, x) ∈ E[c], where

Θ̃(τ, t) = γ(µ0) exp
[
Aγ(µ0)|t− τ |

]
. (29)
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Proof. It follows that ‖z(t,x)‖X ≤ µ0 for (t, x) ∈ E[c] and

‖ρi(τ, y, zψi(τ,y))− ρi(τ, ȳ, zψi(τ,ȳ))‖ ≤ γ(µ0)A‖y − ȳ‖,

where (τ, y), (τ, ȳ) ∈ E[c]. It follows from classical theorems that there exists
exactly one Carathéodory solution to problem (25) and the solution is defined on

some interval I
(i)
(t,x) satisfying the condition of the lemma. An easy computation

shows that the integral inequalities

‖gi[z](τ, t, x)− gi[z](τ, t̄, x̄)‖

≤ ‖x− x̄‖+ α(µ0)|t− t̄|

+Aγ(µ0)

∣∣∣∣∫ τ

t

‖gi[z](ξ, t, x)− gi[z](ξ, t̄, x̄)‖dξ
∣∣∣∣

for τ ∈ I(i)
(t,x) ∩ I

(i)
(t̄,x̄), and

‖gi[z](τ, t, x)− gi[z̄](τ, t, x)‖

≤ γ(µ0)

∣∣∣∣∫ τ

t

[
K‖z − z̄‖ξ +K0‖ϕ− ϕ̄‖X,b̄

]
dξ

∣∣∣∣
+Aγ(µ0)

∣∣∣∣∫ τ

t

‖gi[z](ξ, t, x)− gi[z̄](ξ, t, x)‖dξ
∣∣∣∣

for τ ∈ I(i)
(t,x)∩ Ī

(i)
(t,x) are satisfied. Now we obtain (26) and (28) from the Gronwall

inequality.

Assumption H̃[ρ]. Suppose that Assumption H0[ρ] is satisfied, and there is a
function β : R+ → (0,+∞) such that

ρi(t, x, w) ≤ −β(µ) for (t, x) ∈ Γi.+, w ∈ X[µ]

ρi(t, x, w) ≥ β(µ) for (t, x) ∈ Γi.−, w ∈ X[µ]

for i = 1, . . . , k.

Now we prove a lemma on the regularity of the function δi[z], 1 ≤ i ≤ k.

Lemma 4.3. Suppose that Assumptions H[X], H̃[ρ], H̃[ψ] are satisfied and
ϕ, ϕ̄ ∈ Ĩ[X], z ∈ Cϕ.c[d], z̄ ∈ Cϕ̄.c[d], where 0 < c ≤ a. Then, for each
1 ≤ i ≤ k, the functions δi[z] and δi[z̄] are continuous on Ē[c]. Moreover, it
holds the estimates

|δi[z](t, x)− δi[z](t̄, x̄)| ≤
2Θ(0, c)

β(µ0)

[
‖x− x̄‖+ |t− t̄|

]
(30)

|δi[z](t, x)− δi[z̄](t, x)| ≤
2Θ̃(0, c)

β(µ0)

∫ t

0

[
K‖z − z̄‖τ +K0‖ϕ− ϕ̄‖X,b̄

]
dτ (31)

on Ē[c], where Θ and Θ̃ are given by (27) and (29), respectively.
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Proof. Let us fix i, 1 ≤ i ≤ k. The continuity of δi[z] and δi[z̄] on Ē[c]
follows from classical theorems on continuous dependence on inital conditions
for Carathéodory solutions of differential systems.

Now we prove (30). This estimate is obvious in the case δi[z](t, x) =
δi[z](t̄, x̄) = 0 (i.e. in the case when solutions of problem (25) are defined
on [0, t] and [0, t̄], respectively). Suppose now that 0 ≤ δi[z](t, x) < δi[z](t̄, x̄).
Then, for ζ̄ = δi[z](t̄, x̄) we have

(ζ̄ , gi[z](ζ̄ , t̄, x̄)) ∈
n⋃
j=1

(
Γj.+ ∪ Γj.−

)
.

Consider the case when (ζ̄ , gi[z](ζ̄ , t̄, x̄)) ∈ Γj.+ for some j, 1 ≤ j ≤ n. Then
gij[z](ζ̄ , t̄, x̄) = bj. Let

Γ
(ε)
j.+ = {(t, x) ∈ Ē : xj ∈ [b̄j − ε, b̄j]}.

It follows from assumption H̃[ρ] that there is ε > 0 such that

ρij(t, x, w) ≤ −1

2
β(µ0) for (t, x) ∈ Γ

(ε)
j.+, w ∈ X[µ0].

Since the functions δi[z] and gi[z] are continuous with respect to all variables,
there exists δ̃ > 0 such that the following implication remains true:

|t− t̄|+ ‖x− x̄‖ < δ̃ ⇒


(τ, gi[z](τ, t, x)) ∈ Γ

(ε)
j.+

for

τ ∈
[
δi[z](t, x), δi[z](t̄, x̄)

]
.

 (32)

For (t, x), (t̄, x̄) satisfying (32) we obtain

−1

2
β(µ0)[δi[z](t̄, x̄)− δi[z](t, x)]

≥
∫ δi[z](t̄,x̄)

δi[z](t,x)

ρij(τ, gi[z](τ, t, x), zψi(τ,gi[z](τ,t,x)))dτ

= gij[z](δi[z](t̄, x̄), t, x)− gij[z](δi[z](t, x), t, x)

≥ gij[z](δi[z](t̄, x̄), t, x)− gij[z](δi[z](t̄, x̄), t̄, x̄)

≥ −Θ(0, c) [|t− t̄|+ ‖x− x̄‖]

which is our claim. In the same way we prove (30) in the case when (ζ̄ , gi[z](ζ̄ ,
t̄, x̄)) ∈ Γj.− for some j, 1 ≤ j ≤ n, and a condition analogous to (32) is satisfied.
If (t, x), (t̄, x̄) do not satisfy (32), then we consider intermediate points

(t0, x
(0)), (t1, x

(1)), . . . , (tp, x
(p))

with t0 = t, x(0) = x, tp = t̄, x(p) = x̄, satisfying the following conditions:
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(i) we have

|t− t̄| = |t0 − t1|+ |t1 − t2|+ . . .+ |tp−1 − tp|

‖x− x̄‖ = ‖x(0) − x(1)‖+ ‖x(1) − x(2)‖+ . . .+ ‖x(p−1) − x(p)‖

(ii) condition of the form (32) holds for each pair (tj, x
(j)), (tj+1, x

(j+1)), j =
0, 1, . . . , p− 1

(iii) the bicharacteristics gi[z](·, tj, x(j)) and gi[z]( · , tj+1, x
(j+1)) reach the same

set, either Γj.+ or Γj.−, 0 ≤ j ≤ p− 1.

Now, an application of the previous reasoning to each pair of the above form
concludes the proof of estimate (30).

Now we consider estimate (31). The inequality is obvious if δi[z](t, x) =
δi[z̄](t, x) = 0. Suppose now that 0 ≤ δi[z](t, x) < δi[z̄](t, x). Then, for ζ =
δi[z̄](t, x) we have

(ζ, gi[z̄](ζ, t, x)) ∈
n⋃
j=1

(
Γj.+ ∪ Γj.−

)
.

Consider that case when (ζ, gi[z̄](ζ, t, x)) ∈ Γj.+ for some j, 1 ≤ j ≤ n. Then

gij[z̄](ζ, t, x) = b̄j. Again, consider the set Γ
(ε)
j.+. It follows that there exists a

δ̃ > 0 such that the following implication holds:

‖z − z̄‖t < δ̃ ⇒ (τ, gi[z](τ, t, x)) ∈ Γ
(ε)
j.+, (33)

where τ ∈ (δi[z](t, x), δi[z̄](t, x)). For z, z̄ satisfying (33) we obtain

−1

2
β(µ0)[δi[z̄](t, x)− δi[z](t, x)]

≥
∫ δi[z̄](t,x)

δi[z](t,x)

ρij(τ, gi[z](τ, t, x), zψi(τ,gi[z](τ,t,x)))dτ

≥ gij[z](δi[z̄](t, x), t, x)− gij[z̄](δi[z̄](t, x), t, x)

≥ −Θ̃(0, c)

∫ t

0

[
K‖z − z̄‖τ +K0‖ϕ− ϕ̄‖X,b̄

]
dτ,

which proves (31). In a similar way we prove (31) in the case when (ζ, gi[z̄](ζ,
t, x)) ∈ Γj.− for some j, 1 ≤ j ≤ n, and condition analogous to (33) is satisfied.
If z, z̄ do not satisfy (33), then we consider intermediate functions z0, z1, . . . , zp
with z0 = z, zp = z̄, zj ∈ Cϕj .c[d], where ϕj ∈ Ĩ[X] for j = 0, 1, . . . , p, and
ϕ0 = ϕ, ϕp = ϕ̄, satisfying

i) a condition of the form (33) holds for each pair zj, zj+1, and

‖z − z̄‖t = ‖z0 − z1‖t + ‖z1 − z2‖t + . . .+ ‖zp−1 − zp‖t,
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(ii) the bicharacteristics gj[z](·, t, x) and gj[z̄(·, t, x) reach the same set, either
Γj.+ or Γj.−, 0 ≤ j ≤ p− 1.

Now, the application of the previous reasoning to each pair of the above form
gives the estimate (31). This completes the proof of the Lemma.

Suppose that ϕ ∈ Ĩ[X], c ∈ (0, a], z ∈ Cϕ.c[d] and g[z](·, t, x) = (g1[z](·, t, x),
. . . , gk[z](·, t, x)) is the family of bicharacteristics for system (21) corresponding

to z. Let I
(k)
(t,x), be the domain of the function gi[z](·, t, x), 1 ≤ i ≤ k. Let us

define operator F = (F1, . . . , Fk) as follows:

Fi[z](t, x) = ϕi(δi[z](t, x), gi[z](δi[z](t, x), t, x))

+

∫ t

δi[z](t,x)

fi(τ, gi[z](τ, t, x), zψi(τ,gi[z](τ,t,x)))dτ

for (t, x) ∈ E[c], and

Fi[z](t, x) = ϕi(t, x) on D[c],

where δi[z](t, x) is the left end of the interval I
(i)
(t,x).

Assumption H̃[f ]. Suppose that

1) the function f(·, x, w) : [0, a] → Rk is measurable for (x,w) ∈ [−b̄, b̄]×X
and f(t, ·) : [−b̄, b̄]×X → Rk is continuous for almost all t ∈ [0, a],

2) there exist α̃, γ̃ ∈ ∆̃ such that ‖f(t, x, w)‖ ≤ α̃(µ) and

‖f(t, x, w)− f(t, x̄, w̄)‖ ≤ γ(µ)[‖x− x̄‖+ ‖w − w̄‖X ]

for (x,w), (x̄, w̄) ∈ [−b̄, b̄]×X[µ] and for almost all t ∈ [0, a].

We are able now to state the main result on the existence of solutions of mixed
problem (21), (22).

Theorem 4.1. Suppose that ϕ ∈ Ĩ[X] and Assumptions H[ρ], H̃[ρ], H̃[f ],
H̃[Ψ] are satisfied. Then there are (d0, d1, d2) = d ∈ R3

+ and c ∈ (0, a] such that

there exists exactly one solution u ∈ Cϕ.c[d] to problem (21), (22). If ϕ̄ ∈ Ĩ[X]
and ū ∈ Cϕ̄.c[d] is a solution to system (21) with the initial boundary condition
z(t, x) = ϕ̄(t, x) on E0 ∪ ∂0E, then there is a function Λ ∈ C([0, c], R+) such
that

‖u− ū‖t ≤ Λ(t)
[
‖ϕ− ϕ̄‖∗.t + ‖ϕ− ϕ̄‖X,b̄

]
, t ∈ [0, c], (34)

where

‖ϕ− ϕ̄‖∗.t = max{‖(ϕ− ϕ̄)(s, y)‖ : (s, y) ∈ ∂0E[t]}

holds.



400 S. Kozie l

Proof. We have divided the proof into three steps.

Step I. We first show that there are d ∈ R3
+ and c ∈ (0, a] such that

F : Cϕ.c[d] → Cϕ.c[d]. Suppose that the constants d ∈ R3
+ and c ∈ (0, a] satisfy

the conditions:

d0 ≥ max{q0, χb0}+ cα̃(µ0)

d1 ≥ Θ̂(c)

d2 ≥ Θ̂(c) + α̃(µ0)

where

Θ̂(t) = Θ(0, t)(Â+ B̂)

Â =
2q1
βµ0

+ max{χb1, q2}
[
1 +

2α(µ0)

β(µ0)

]
B̂ = Acγ̃(µ0) +

2α̃(µ0)

β(µ0)
.

Suppose that z ∈ Cϕ.c[d]. Then ‖F [z](t, x)‖ ≤ d0 for (t, x) ∈ [0, c]× [−b̄, b̄]. Our
next goal is to evaluate the number ‖F [z](t, x) − R[z](t̄, x̄)‖ for (t, x), (t̄, x̄) ∈
[0, c]× [−b̄, b̄]. Suppose that 1 ≤ i ≤ k is fixed, and that δi[z](t̄, x̄) ≤ δi[z](t, x).
It follows from Assumption H̃[f ] and Lemma 4.2 and 4.3 that

|Fi[z](t, x)− Fi[z](t̄, x̄)|

≤
∣∣ϕi(δi[z](t, x), gi[z](δi[z](t, x), t, x))

−ϕi(δi[z](t̄, x̄), gi[z](δi[z](t̄, x̄), t̄, x̄))
∣∣

+

∫ t

δi[z](t,x)

∣∣∣fi(τ, gi[z](τ, t, x), zψi(τ,gi[z](τ,t,x)))

−fi(τ, gi[z](τ, t̄, x̄), zψi(τ,gi[z](τ,t̄,x̄)))
∣∣∣dτ

+α̃(µ0)
[
|t− t̄|+ δi[z](t, x)− δi[z](t̄, x̄)

]
≤ Θ(0, c)Â

[
|t− t̄|+ ‖x− x̄‖

]
+Θ(0, c)γ̃(µ0)Ac

[
|t− t̄|+ ‖x− x̄‖

]
+α̃(µ0)

[
|t− t̄|+ 2Θ(0, c)

β(µ0)
(|t− t̄|+ ‖x− x̄‖)

]
.

The result is

|Fi[z](t, x)− Fi[z](t̄, x̄)| ≤ Θ(0, c)(Â+ B̂)
[
|t− t̄|+ ‖x− x̄‖

]
+ α̃|t− t̄|. (35)
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In a similar way we prove (35) in the case δi[z](t̄, x̄) > δi[z](t, x). This gives

‖F [z](t, x)− F [z](t, x̄)‖ ≤ d1|t− t̄|+ d2‖x− x̄‖ (36)

on [0, c]× [−b̄, b̄], and consequently F [z] ∈ Cϕ.c[d].
Step II. We shall prove that F is a contraction on Cϕ.c[d]. For z, z̄ ∈

Cϕ.c[d] we have

|Fi[z](t, x)− Fi[z̄](t, x)|
≤ |ϕi(δi[z](t, x), g[z](δi[z](t, x), t, x))

−ϕi(δi[z̄](t, x), g[z̄](δi[z̄], t, x))|

+

∫ t

δi[z](t,x)

∣∣∣fi(τ, gi[z](τ, t, x), zψi(τ,gi[z](τ,t,x)))

−fi(τ, gi[z̄](τ, t, x), z̄ψi(τ,gi[z̄](τ,t,x)))
∣∣∣dτ

+α̃(µ0)[δi[z](t, x)− δi[z̄](t, x)]

≤ KΘ̃(0, c)

[
Â+

2α̃(µ0)

β(µ0)

] ∫ t

0

‖z − z̄‖ξdξ

+Kγ̃(µ0)
[
1 + AcΘ̃(0, c)

] ∫ t

0

‖z − z̄‖ξdξ

where we assumed, without loss of generality, that δi[z̄](t, x) ≤ δi[z](t, x). We
thus get

‖F [z](t, x)− F [z̄](t, x)‖ ≤ C̃

∫ t

0

‖z − z̄‖ξdξ, (t, x) ∈ [0, c]× [−b̄, b̄], (37)

where

C̃ = KΘ̃(0, c)

[
Â+

2α̃(µ0)

β(µ0)

]
+Kγ̃(µ0)

[
1 + AcΘ̃(0, c)

]
.

For functions z, z̄ ∈ Cϕ.c[d], we write

[|z − z̄|] = max{‖z − z̄‖t exp[−2C̃t] : t ∈ [0, c]}.

We conclude from (37) that

‖F [z](t, x)− F [z̄](t, x)‖ ≤ C̃[|z − z̄|]
∫ t

0

exp[2C̃ξ]dξ ≤ 1

2
[|z − z̄|] exp[2C̃t],

and consequently

[|F [z]− F [z̄]|] ≤ 1

2
[|z − z̄|].
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By the Banach fixed point theorem there exists a unique solution u ∈ Cϕ.c[d]
satisfying equation z = F [z].

Now we prove that u is the Carathéodory solution of equation (21). For
each i, 1 ≤ i ≤ k, we write δi(t, x) and gi(·, t, x) = (gi.1(·, t, x), . . . , gi.n(·, t, x))
instead of δi[u](t, x) and gi[u](·, t, x). For each i, 1 ≤ i ≤ k put

E
(0)
i = {(t, x) ∈ E[c] : δi(t, x) = 0}

and

E
(j)
i = {(t, x) ∈ E[c] : gij(δi(t, x), t, x) = b̄j or gij(δi(t, x), t, x) = −b̄j}

for j = 1, . . . , n. At first we prove that u satisfies (21) almost everywhere on

E
(0)
i , 1 ≤ i ≤ k. For a fixed t, (t, x) ∈ E

(0)
i , we put ηi = gi(0, t, x). Let

I
(i)
(t,x) be the domain of the bicharacteristic gi(·, t, x). It follows that gi(τ, t, x) =

gi(τ, 0, ηi) for t ∈ I
(i)
(t,x) and x = gi(t, 0, ηi). The relations ηi = gi(0, t, x) and

x = gi(t, 0, ηi), where (t, x) ∈ E
(0)
i , ηi ∈ (−b̄, b̄), are equivalent. Then, the

relations

ui(t, x) = Fi[u](t, x), (t, x) ∈ E(0)
i ,

and

ui(t, gi(t, 0, ηi))

= ϕi(0, ηi) +

∫ t

0

fi(τ, gi(τ, 0, ηi), uψi(τ,gi(τ,0,ηi)))dτ, ηi ∈ (−b̄, b̄).
(38)

are equivalent. By differentiating (38) with respect to t we get

∂tu(t, gi(t, 0, ηi)) +
n∑
j=1

∂xj
u(t, gi(t, 0, ηi))

d

dt
gij(t, 0, ηi)

= fi(t, gi(t, 0, ηi), uψi(t,gi(t,0,ηi)))

for almost all t ∈ I
(i)
(0,ηi)

. Making use of the transformation x = gi(t, 0, ηk) and

(25) we get (21) almost everywhere on E
(0)
i . Now we prove that u satisfies

system (21) on E
(1)
i ∪ . . .∪E(n)

i . It is enough to show this on any set of the form

E
(j1)
i ∩E(j2)

i ∩ . . .∩E(jr)
i , where 1 ≤ r ≤ n and jl ∈ {1, . . . , n}, l = 1, . . . , r. Let

(t, x) ∈ E(j1)
i ∩ E(j2)

i ∩ . . . ∩ E(jr)
i , and

λi = δi(t, x)

ηi = (ηi.1, . . . , ηi.n) = (gi.1(δi(t, x), t, x), . . . , gi.n(δi(t, x), t, x)).
(39)
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Note that gi.q(δi(t, x), t, x) = b̄q or gi.q(δi(t, x), t, x) = −b̄q if q = jl for some
l ∈ {1, . . . , r}. Consider the family of bicharacteristics gi(·, λi, ηi) with

λi ∈ (0, c), ηi.q ∈ (−b̄q, b̄q), q /∈ {j1, . . . , jr}.

The relations (39) and x = gi(t, λi, ηi) are equivalent. Then, the relations

ui(t, x) = Fi[u](t, x), (t, x) ∈ E(j1)
i ∩ E(j2)

i ∩ . . . ∩ E(jr)
i ,

and
ui(t, gi(t, λi, ηi)) = Fi[u](t, gi(t, λi, ηi)), (40)

where λi ∈ (0, c), x ∈ I
(i)
(λi,ηi)

, and ηi.q ∈ (−b̄q, b̄q), q /∈ {j1, . . . , jr}, are equiva-

lent. It follows from (40) that

ui(t, gi(t, λi, ηi)) = ϕi(λi, ηi) +

∫ t

λi

fi(τ, gi(τ, λi, ηi), uψi(τ,gi(τ,λi,ηi)))dτ. (41)

By differentiating (41) with respect to t we get

∂tu(t, gi(t, λi, ηi)) +
n∑
j=1

∂xj
u(t, gi(t, λi, ηi))

d

dt
gij(t, λi, ηi)

= fi(t, gi(t, λi, ηi), uψi(t,gk(t,λi,ηi)))

for almost all t ∈ I(i)
(λi,ηi)

. Making use of the transformation x = gi(t, λi, ηi) and

(25) we get (21) almost everywhere on E
(j1)
i ∩ E(j2)

i ∩ . . . ∩ E(jr)
i . Since

Ec = E
(0)
i ∪ E(1)

i ∪ . . . ∪ E(n)
i

for any i, 1 ≤ i ≤ k holds, it follows that u is the Carathéodory solution of (21),
(22) on (E0 ∪ ∂0E) ∩ ((−∞, c]×Rn).

Step III. Now we prove relation (34). Let F̄ be operator defined as F
but with function ϕ̄ instead of ϕ. Since u = F [u] and ū = F̄ [ū], where u =
(u1, . . . , uk), ū = (ū1, . . . , ūk), it follows that

|ui(t, x)− ūi(t, x)|

≤ |ϕi(δi[u](t, x), gi[u](δi[u](t, x), t, x))

−ϕ̄i(δi[ū](t, x), gi[ū](δi[ū](t, x), t, x))|

+

∫ t

δi[u](t,x)

∣∣∣fi(τ, gi[u](τ, t, x), uψi(τ,gi[u](τ,t,x))))

−fi(τ, gi[ū](τ, t, x), ūψi(τ,g[ū](τ,t,x))))
∣∣∣dτ

+α̃(µ0)
[
δi[u](t, x)− δi[ū](t, x)

]
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for (t, x) ∈ E[c] holds, where we have assumed without loss of generality that
δi[ū](t, x) ≤ δi[u](t, x). It follows from Assumption H̃[f ] and Lemma 4.1, 4.2
and 4.3 that

|ui(t, x)− ūi(t, x)|

≤ max{‖ϕ− ϕ̄‖X.b̄, ‖ϕ− ϕ̄∗.t}

+ÂΘ̃(0, c)

∫ t

0

[
K‖u− ū‖τ +K0‖ϕ− ϕ̄‖X.b̄

]
dτ

+
[
Θ̃(0, c)B̂ + γ̃(µ0)

] ∫ t

0

[
K‖u− ū‖τ +K0‖ϕ− ϕ̄‖X.b̄

]
dτ

for 1 ≤ i ≤ k, (t, x) ∈ E[c] holds. Then we have the integral inequality

‖u− ū‖t ≤ ‖ϕ− ϕ̄‖∗.t + d̃‖ϕ− ϕ̄‖X.b̄ +K
[
Θ̃(c) + γ̃(µ0)

] ∫ t

0

‖u− ū‖τdτ

for t ∈ [0, c], where d̃ = 1 + cK0(Θ̂(c) + γ̃(µ0)). Using the Gronwall inequality
we obtain (34) for

Λ(t) = d̃ exp
[
K(Θ̂(c) + γ̃(µ0)t

]
.

This proves the theorem.

Remark 4. Existence results for quasilinear functional differential equations
with initial boundary conditions are presented in [6], Chapter 5, see also [4]
where classical solutions are considered. It is easy to see that Theorem 5.35
from [6] can be extended to quasilinear functional differential systems. The
following condition is important in these considerations. Write

signρi(t, x, w) = (signρi1(t, x, w), . . . , signρin(t, x, w)), 1 ≤ i ≤ k. (42)

It is assumed in [6] (see also [4]) that the function (42) is constant. Note that
we have omitted this assumption in Theorem 4.1.

Remark 5. Suppose that B = [−r0, 0]× [−r, r]. Consider differential integral
system (18) with the initial boundary condition

z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E. (43)

It is easy to formulate existence result for problem (18), (43) which is based
on Theorem 4.1. Note that the results presented in [4], [6], [9]-[12] concern the
case when the sets Di[t, x] do not depend on (t, x) and i, and therefore they are
not applicable to (18), (43).
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