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Sequences of 0’s and 1’s
Classes of Concrete ‘big’ Hahn Spaces

J. Boos and M. Zeltser

Abstract. This paper continues the joint investigation by Bennett et al. (2001)
and Zeltser et al. (2002) of the extent to which sequence spaces are determined by
the sequences of 0’s and 1’s that they contain. Bennett et al. proved that each
subspace E of `∞ containing the sequence e = (1, 1, . . .) and the linear space bs of
all sequences with bounded partial sums is a Hahn space, that is, an FK-space F
contains E whenever it contains (the linear hull χ(E) of) the sequences of 0’s and
1’s in E. In some sense these are ‘big’ subspaces of `∞. Theorem 2.6, one of the
main results of this paper, tells us that this result remains true if we replace bs with
suitably defined spaces bs(N) which are subspaces of bs when N is a finite partition
of N. As an application of the main result, two large families of closed subspaces
E of `∞ being Hahn spaces are presented: The bounded domain E of a weighted
mean method (with positive weights) is a Hahn space if and only if the diagonal of
the matrix defining the method is a null sequence; a similar result applies to the
bounded domains of regular Nörlund methods. Since an FK-space E is a Hahn space
if and only if χ(E) is a dense barrelled subspace of E, by these results, a large class
of concrete closed subspaces E of `∞ such that χ(E) is a dense barrelled subspace
can be identified by really simple conditions. A further application gives a negative
answer to Problem 7.1 in the paper mentioned above.
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1. Introduction

We start with few preliminaries. (Otherwise, the terminology from the theory
of locally convex spaces and summability is standard, we refer to Wilansky
[9, 10] and Boos [3].)

ω denotes the space of all real-valued sequences, and any vector subspace
of ω is called a sequence space.

Let χ be the set of all sequences of 0’s and 1’s and, if E is any sequence
space, let χ(E) denote the linear hull of the sequences of 0’s and 1’s contained
in E. It is always true that χ(E) ⊂ χ(`∞) ∩ E, but equality fails in general.

An FK-space is a sequence space endowed with a complete, metrizable,
locally convex topology under which the coordinate mappings x → xk (k ∈ N)
are all continuous. A normable FK-space is called a BK-space.

The most natural FK-space is ω under the topology of coordinatewise con-
vergence. Familiar examples of BK-spaces are `∞ (bounded sequences) with
the supremum norm ‖ · ‖∞ and its closed subspaces c (convergent sequences)
and c0 (null sequences), `1 (absolutely summable sequences) with its usual
norm, and bs =

{
x = (xk) ∈ ω| supn

∣∣ ∑n
k=1 xk

∣∣ < ∞}
= Σ−1(`∞) (bounded

partial sums) with the norm ‖·‖bs = ‖·‖∞◦Σ where Σ denotes the summation
matrix.

A fundamental property of FK-spaces is that their topologies are mono-
tonic: if E ⊂ F , then E is continuously embedded into F . This means that a
sequence space can have at most one FK-topology, and we take advantage of
this fact by not actually specifying the topology under consideration.

Let B = (bnk) be an infinite matrix with real entries. The (summability)
domain cB of B is defined as

cB =

{
x = (xk) ∈ ω

∣∣∣∣ Bx :=
( ∑

k

bnkxk

)

n

∈ c

}

where the definition of Bx implies the convergence of the series. The pair
(cB , limB) with limB : cB → R, x → limBx is called a matrix method and
we denote it also by B. By definition, the matrix (method) B is coercive,
conservative and regular, if `∞ ⊂ cB , c ⊂ cB , and c ⊂ cB with limB |c = lim,
respectively. Note that cB is a separable FK-space and, if B is conservative,
the bounded domain `∞ ∩ cB of B is a closed subspace of `∞.

In this paper, we continue the joint investigation of Bennett, Boos and
Leiger in [1] and of Leiger and the authors in [11] of the extent to which
sequence spaces are determined by the sequences of 0’s and 1’s that they
contain. As in these papers we consider sequence spaces E with the property
that

χ(E) ⊂ F =⇒ E ⊂ F (1.1)
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whenever F is an arbitrary FK-space, a separable FK-space, and a matrix
domain cB , respectively. Then E is said to have the Hahn property, the
separable Hahn property, and the matrix Hahn property, respectively. We call
E a Hahn space, whenever E has the Hahn property. As well, we call a matrix
potent, if its bounded domain has the matrix Hahn property.

A sequence space having any Hahn property is necessarily a subspace of
`∞ (cf. [1: Theorem 5.1]). Obviously, the Hahn property implies the separable
Hahn property, and the last one implies the matrix Hahn property. Each of
the converse implications does not hold in general (cf. [1: Theorem 5.3] and
[11: Theorem 1.3]).

The study of Hahn spaces is of functional analytical interest as, for in-
stance, the following result shows.

Theorem 1.1 [2: Theorem 1]. Let E be an FK-space. Then E has the
Hahn property if and only if χ(E) is a dense, barrelled subspace of E.

This result overlaps with results due to Drewnowski and Paúl (see, for
instance, [5]) and pointed out in details by Stuart [8]. Namely, if the set
E = {χ{k∈N| xk 6=0} | x ∈ χ∩E} is a ring as a family of subsets of N and has the
Nikodym property (cf. [5]), then χ(E) with ‖ · ‖∞ is barrelled; if in addition
χ(E) is ‖ · ‖∞ dense in E and E is a closed subspace of (`∞, ‖ · ‖∞), then E
has the Hahn property. In the following investigations we consider sequence
spaces E such that E is not necessarily a ring, so that the mentioned results
do not apply in general.

It is well-known that, in general, it is complicated to identify dense, bar-
relled subspaces of Banach spaces. In this light we should see the following
result which gives us a large and very useful class of ‘big’ Hahn spaces.

Theorem 1.2 [1: Theorem 3.4]. If E is a sequence space satisfying bs +
Sp{e} ⊂ E ⊂ `∞, then E has the Hahn property.

In particular, the bounded domains of strongly conservative matrices A
(these are exactly those matrices with bs + Sp{e} ⊂ cA) have the Hahn prop-
erty. As it is pointed out in [1: Problem 7.7], in the special case of conservative
Hausdorff matrices the strongly conservative matrices are exactly the potent
ones, so that in this case of bounded domains the matrix Hahn property and
the Hahn property coincide. In the case of conservative weighted mean meth-
ods A = (ank) the situation is much more troublesome: On the one hand, as
in the case of Hausdorff matrices, they are potent if and only if the diagonal
(ann) converges to 0, and on the other hand, as simple examples prove, the
bounded domain of a potent matrix does not necessarily contain bs + Sp{e}.
Thus Theorem 1.2 does not apply to this situation. In Section 2 we will es-
sentially extend Theorem 1.2 by replacing bs by suitable subspaces bs(N).
In Section 3 we use this result for showing that also in the case of weighted
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mean methods the matrix Hahn property and the Hahn property coincide.
In this way, we determine the class of all conservative Nörlund methods with
the bounded domain having the Hahn property. These results may be seen
as a further contribution to the investigation of the question which bounded
domains have the Hahn property (cf. [1: Problem 7.7]). In Section 4 we show
that the intersection of Hahn spaces is not necessarily a Hahn space which
gives a negative answer to [1: Problem 7.1]. Moreover, we use some of the
results in Section 2 to present a large class of such spaces.

2. General classes of big Hahn spaces

Let I be a non-empty subset of N. For simplification, we assume I = N if I
has infinite, and I = Nr if I has exactly r (r ∈ N) elements. Furthermore, let
Ni = {nij ∈ N| j ∈ N} (i ∈ I) be infinite ordered sets such that

⋃

i∈I

Ni = N, Ni ∩Nj = ∅ (i, j ∈ I, i 6= j) (2.1)

that is, N = (Ni| i ∈ I) is a partition of N (consisting of infinite sets). Then
we define

bs(N) =
{

x ∈ ω

∣∣∣∣ ‖x‖bs(N) = sup
j
‖(xk)k∈Nj‖bs < ∞

}
.

Generalizing the summation matrix map Σ, for any partition N = (Ni| i ∈ I)
satisfying (2.1) we consider the matrix map ΣN defined by

[ΣNx]n =
k∑

j=1

xnij if n = nik (n, k ∈ N, i ∈ I)

and its inverse map Σ −1
N . Note, for every y ∈ ω we have

[
Σ −1

N y
]
n

= ynik
− yni,k−1 when n = nik (n, k ∈ N, i ∈ I, yni0 := 0)

Remark 2.1.

(a) bs(N) = Σ −1
N (`∞), hence bs(N) is a BK-space as the domain of a

bijective matrix map with respect to the BK-space `∞.
(b) If N is infinite, then bs(N) 6⊂ bs, since trivially x ∈ bs(N) \ bs when

x is chosen such that it is 1 exactly once on each set Ni, else 0. However, if
N is finite, then we obviously have bs(N) ⊂ bs and, moreover, bs(N) ( bs if
and only if N consists of more than one set. In the last case the codimension
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of bs(N) in bs is ‘uncountable infinite’ as we now verify. It is sufficient to
prove that it is not finite since the FK-space bs cannot be the union of an
increasing sequence of FK-spaces. Now, if we suppose that bs = bs(N) + X
where dimX < ∞, then (X, ‖ · ‖bs) is a BK-space, hence bs(N) is closed in bs
by [10: Corollary 4.5.2]. On the other hand, we may easily find a sequence
(x(j)) in bs(N) converging in bs to an x ∈ bs \ bs(N). For instance, we may
choose index sequences (µs) and (νs) with n1µs

< n2νs
< n1µs+1 (s ∈ N) and

consider the sequence (x(j)) defined by

x(j)
nkl

=





1
s if k = 1 and l = µs (s ∈ Nj)
− 1

s if k = 2 and l = νs (s ∈ Nj)
0 otherwise

(k, l ∈ N).

(c) We get a decreasing chain of sequence spaces of the type bs(N) if we
proceed inductively, for instance, in the following way: We start with N and
divide it into two infinite parts Ni1 (i1 = 1, 2), then we divide each Ni1 into
two parts Ni1i2 (i2 = 1, 2) and get in the k-th step a partition N (k) of N
consisting of 2k sets Ni1···ik

, say Nki (i = 1, . . . , 2k). Obviously, we have

bs(N (k+1)) ( bs(N (k)) ( bs (k ∈ N).

Further, similarly as in (b) we get that the codimension of bs(N (k+1)) in
bs(N (k)) is ‘uncountable infinite’.

(d) In the case that N is a finite partition the assumption in the definition
of bs(N) that the sets Ni have to be infinite is not essential since, whenever
N = (N1, . . . , Ns) is a partition of N, we may define

b̂s(N) =
{

x ∈ ω
∣∣∣ (xk)k∈Nj ∈ bs when j ∈ {1, . . . , s} and |Nj | = ∞

}
.

Obviously, there exists at least one infinite set Nj∗ . Then we join this set with
the finite sets among N1, . . . , Ns and get a partition M = (M1, . . . , Mr) of N.
Now, it is easy to check that b̂s(N) = bs(M).

Proposition 2.2. In general, `1 ⊂ bs(N) and

`1 =
⋂ {

bs(N)
∣∣∣ N = (N1, N2) is a partition of N satisfying (2.1)

}

=
⋂ {

bs(N)
∣∣∣ N is a partition of N satisfying (2.1)

}
.

Proof. Since `1 ⊂ bs(N) is obvious, the proof is done when for every
x ∈ bs\`1 there exists a partition N = (N1, N2) with x 6∈ bs(N). For that,
we fix x ∈ bs\`1, assume – without loss of generality – (x+

k ) 6∈ `1, choose a
subsequence (yk) of (x+

k ) satisfying (yk) /∈ bs and put N1 = {k ∈ N| yk > 0}
and N2 = N\N1
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In the following steps we verify that Theorem 1.2 remains true if we replace
bs by any space bs(N). The proofs are much the same as in the corresponding
proofs in [1]. However, for the sake of completeness we adapt them to the case
in hand.

Proposition 2.3. If E is a sequence space satisfying bs(N) + Sp{e} ⊂
E ⊂ `∞, then E = bs(N) + χ(E).

Proof. Let x ∈ E be given. Without loss of generality we may suppose
that 0 ≤ xk < 1 (k ∈ N). We set yni1 = 0, znik

= xnik
− ynik

and

yni,k+1 =
{

1 if
∑k

j=1 ynij
<

∑k
j=1 xnij

0 otherwise
(k ∈ N, i ∈ I)

where Ni =
{
nij | j ∈ N}

is the i-th partition set. Then z ∈ bs(N) and
y = x− z ∈ E + bs(N) = E, so y ∈ χ(E)

Lemma 2.4. Let E be a sequence space including bs(N) for some parti-
tion N = (Ni| i ∈ I). If x ∈ E takes only the values {0, 1, . . . , K} in N, then
x ∈ χ(E).

Proof. For each j ∈ I we set x
(j)
k = xk for k ∈ Nj and x

(j)
k = 0 otherwise

(k ∈ N). Further, let L be the least common multiple of 1, . . . , K. Following
the proof of [1: Lemma 3.2], for every j ∈ I we obtain subsets V j

1 , . . . , V j
L of

supp x(j) such that χV j
k
− 1

Lx(j) ∈ bs and x(j) =
∑L

k=1 χV j
k
. Since supp

(
χV j

k
−

1
Lx(j)

) ⊂ Nj (j ∈ I), then
∑

j∈I

(
χV j

k
− 1

Lx(j)
) ∈ bs(N) (coordinatewise sum).

So χVk
∈ E ∩ {0, 1}N where Vk =

⋃
j∈I V j

k (k = 1, . . . , L). Hence

x =
∑

j∈I

x(j) =
∑

j∈I

L∑

k=1

χV j
k

=
L∑

k=1

χVk
∈ χ(E) (coordinatewise sum)

and the lemma is proved

Lemma 2.5. We have χ(`∞) ⊂ ΣN

(
χ(bs(N) + Sp{e})).

Proof. Let w be an arbitrary sequence of 0’s and 1’s. The sequence
y = Σ −1

N w belongs to bs(N) and takes only the values −1, 0, 1. It follows from
Lemma 2.4 that y + e ∈ χ(bs(N) + Sp{e}) and thus y ∈ χ(bs(N) + Sp{e}).
Hence w ∈ ΣN

(
χ(bs(N) + Sp{e}))

The following result generalizes Theorem 1.2.

Theorem 2.6. If E is a sequence space satisfying bs(N) + Sp{e} ⊂ E ⊂
`∞ for some partition N , then E has the Hahn property.
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Proof. Proposition 2.3 shows that E = bs(N) + Sp{e} + χ(E). Since
χ(E) certainly has the Hahn property, it suffices in view of [1: Proposition
2.1] to show that bs(N) + Sp{e} does, too. Suppose then that F is an FK-
space containing χ(bs(N) + Sp{e}); we must show that F contains all of
bs(N) + Sp{e}. For this it is sufficient to check that bs(N) ⊂ F or, what
is equivalent, that `∞ ⊂ ΣN (F ). But this last assertion follows from [1:
Corollary 1.2], it being plain from Lemma 2.5 that χ(`∞) ⊂ ΣN (F )

As an immediate consequence of Theorem 1.1 and Theorem 2.6 we get:

Corollary 2.7. If E is any FK-space satisfying bs(N)+Sp{e} ⊂ E ⊂ `∞

for some partition N , then χ(E) is both dense and barrelled in E.

We apply the above results to more concrete sequence spaces than the
spaces bs(N) which are related to the bounded domains of weighted means.
For that we replace in the definition of bs the summation matrix by more
general triangles.

Let p = (pn) be any real sequence satisfying pn > 0 (n ∈ N). Then we
consider the matrices

Σp = Σ diag (pn) and Σ −1
p = diag

(
1

pn

)
Σ−1

and the domain

`∞Σp
=

{
x = (xk) ∈ ω

∣∣∣ sup
n

∣∣
n∑

k=1

pkxk

∣∣ < ∞
}

= Σ −1
p (`∞).

In particular, we have `∞Σp
= Σ −1

p (`∞) ⊂ `∞ if and only if
(

1
pn

) ∈ `∞.
Therefore, `∞Σp

= Σ −1
p (`∞) does not have any Hahn property when

(
1

pn

)
/∈ `∞

by [1: Theorem 5.1].

Proposition 2.8. Let r ∈ N and p, q be sequences in Nr and, moreover,
let Nr(i−1)+j =

{
k ∈ N| pk = i, qk = j

}
(i, j = 1, . . . , r). Then bs(N) ⊂

`∞Σp
∩`∞Σq

(⊂ `∞) holds where N = {Nr(i−1)+j | i, j = 1, . . . , r}. Consequently
(cf. Theorem 2.6), every linear subspace of `∞ containing (`∞Σp

∩`∞Σq
)⊕Sp{e}

has the Hahn property. In particular, `∞Σp
⊕ Sp{e}, (`∞Σp

∩ `∞Σq
) ⊕ Sp{e},

(`∞Σp
⊕ Sp{e}) ∩ (`∞Σq

⊕ Sp{e}) have the Hahn property.

Proof. Note first that some of the sets Ni might be empty or finite. For
that see Remark 2.1(d). Since

(`∞Σp
∩ `∞Σq

)⊕ Sp{e} ⊂ (`∞Σp
⊕ Sp{e}) ∩ (`∞Σq

⊕ Sp{e}),
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by Proposition 2.6 it suffices to verify that bs(N) ⊂ `∞Σp
∩`∞Σq

for the partition
N fixed in the proposition. Let x ∈ bs(N) be arbitrarily given. Then

sup
n

∣∣∣∣
n∑

k=1

pkxk

∣∣∣∣ = sup
n

∣∣∣∣
r∑

i=1

i

n∑
k=1

pk=i

xk

∣∣∣∣

≤
r∑

i=1

i

r∑

j=1

sup
n

∣∣∣∣
∑

k∈Nr(i−1)+j∩Nn

xk

∣∣∣∣

< ∞.

Hence x ∈ `∞Σp
. Analogously we may prove x ∈ `∞Σq

The following example shows that the statement in Proposition 2.8 fails
in general if p is not bounded.

Example 2.9. Let p = (n). Then `∞Σp
⊕Sp{e} does not enjoy any of the

Hahn properties. (However, compare this result with that in Example 3.5.)
For a proof note that

ϕ ( `∞Σp
⊂

{
x ∈ ω : xn = O

(
1
pn

)}
( c0

and
χ(`∞Σp

⊕ Sp{e}) = χ(ϕ⊕ Sp{e}) = χ(c) = ϕ⊕ Sp{e}.
Furthermore, x =

(
(−1)k 1

k

) ∈ `∞Σp
, x /∈ cA where A = (ank) is the matrix

with ank = (−1)k when k ≤ 2n and ank = 0 otherwise, and obviously ϕ ⊕
Sp{e} ⊂ cA. So `∞Σp

⊕ Sp{e} does not enjoy the matrix Hahn property.

3. Bounded domains of Riesz and Nörlund means

In connection with Riesz and Nörlund means we consider exclusively real
sequences (pk) with

p1 > 0, pk ≥ 0 (k ∈ N), Pn :=
n∑

k=1

pk (n ∈ N). (3.1)

The Riesz matrix Rp = (rnk) and the Nörlund matrix Np = (pnk) (associated
with p) are defined by

rnk =
{ pk

Pn
if k ≤ n

0 otherwise
(n, k ∈ N)
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and

pnk =
{ pn−k+1

Pn
if k ≤ n

0 otherwise
(n, k ∈ N),

respectively. The summability method corresponding Rp is called Riesz meth-
od, Riesz mean or weighted mean method whereas the summability method
corresponding Np is called Nörlund method or Nörlund mean.

Note that Rp = diag
(

1
Pn

)
Σp and, if Pn →∞, that obviously `∞Σp

⊂ c0Rp .

We recall some basic properties of Riesz and Nörlund matrices (methods)
(cf. [3: Sections 3.2 and 3.3], [4] and [6]).

Remarks 3.1.

(a) Rp is conservative and it is either regular (being equivalent to Pn →
∞) or coercive (cf. also [7]).

(b) If pk > 0 for all k ∈ N, then cRp = c, `∞ ∩ cRp = c and
(

Pn

pn

) ∈ `∞ are
equivalent. In particular, in this case Rp is not potent.

(c) If (Pn) is bounded, then Rp is potent since `∞∩cRp = `∞ (cf. assertion
(a)). If (Pn) is unbounded, that is Pn → ∞, then the potency of Rp is
equivalent to

(
pn

Pn

) ∈ c0 (which is obviously equivalent to
(maxi∈Nn pi

Pn

)
n
∈ c0).

Note that this equivalence is proven in [3: Sections 3.2 and 3.3] (cf. also [4, 6])
under the assumption pk > 0 for all k ∈ N, but the proofs work also without
this assumption.

(d) If (pk) is monotonically decreasing, then cRp ⊃ cC1 with consistency.

(e) If (pk) is monotonically increasing, then cRp ⊂ cC1 with consistency.

(f) If (pk) is monotonically increasing, then cRp = cC1 with consistency if
and only if

(
npn

Pn

) ∈ `∞.

Remarks 3.2.

(a) The Nörlund method Np is conservative if and only if
(

pn

Pn

) ∈ c, and
regular if and only if

(
pn

Pn

) ∈ c0.

(b) If Np is conservative and non-regular, then it is coercive (cf. [7:
Theorem 2]).

By Remark 3.1(c) we have a very simple as well as satisfactory char-
acterization of those Riesz means Rp satisfying (3.1) with `∞ ∩ cRp having
the matrix Hahn property. This is quite different in the case of the (regu-
lar) Nörlund means: Up to now, there was not known a similar satisfactory
necessary or sufficient condition for the potency of regular Nörlund methods.

As an application of Theorem 2.6 we will prove in this section the strong
result that the bounded domain of a regular potent Riesz matrix Rp (p as in
(3.1), Pn →∞ and

(
pn

Pn

) ∈ c0) has the Hahn property and (this is like a nice
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additional gift that the bounded domain of the corresponding Nörlund matrix
Np has also the Hahn property) in particular that Np is potent.

Before we start this program, we consider Np in the much easier open case
that p ∈ `1.

Theorem 3.3. If (in addition) p ∈ `1, then the Nörlund method Np is
(obviously regular and) not potent.

Proof. Let k1 ∈ N be chosen such that
∑∞

k=k1+1 pk < p1
8 and pk1 > 0.

Let X be the set of all elements in χ ∩ cNp
such that

∣∣∣∣∣
k1∑

k=1

pkxn+1−k −
k1∑

k=1

pkxn−k

∣∣∣∣∣ <
p1

2

for every n > k1. Obviously, X 6= ∅ since e ∈ X. If xn−k (k = 1, . . . , k1) are
fixed (n > k1), then there exists at most one xn ∈ {0, 1} such that∣∣∣∣∣

k1∑

k=2

pkxn+1−k + p1xn −
k1∑

k=1

pkxn−k

∣∣∣∣∣ <
p1

2
.

So each element x ∈ X is completely defined by the first k1 coordinates
x1, . . . , xk1 . Evidently, n0 := |X| ≤ 2k1 . Since there exist exactly 2k1 different
combinations xn−k ∈ {0, 1} (k = 1, . . . , k1) and xn is uniquely defined by
xn−k (k = 1, . . . , k1), it follows that every element x ∈ X is periodic starting
with some place. Now, if x ∈ χ ∩ cNp and M =

∑
k pk, then there exists

N ∈ N, N > k1, such that
∣∣ [Npx]m − [Npx]n

∣∣ <
p1

8M
and pn|[Npx]n−1| < p1

8
for all m,n ≥ N . Hence∣∣∣∣∣

k1∑

k=1

pkxn+1−k −
k1∑

k=1

pkxn−k

∣∣∣∣∣

≤ Pn

∣∣ [Npx]n − [Npx]n−1

∣∣ + pn|[Npx]n−1|+ 2
∞∑

k=k1+1

pk <
p1

2

for each n > N . So χ ∩ cNp ⊂ ϕ + X.

Let x(1), . . . , x(n0) be elements of X and let ν0 ∈ N, ν0 ≤ n0, be the
maximal integer such that N := ∩{

supp x(i)| i = 1, . . . , ν0

}
is infinite. Let

(ki) be the index sequence of all elements in N . We consider the matrix
A = (ank) with

ank =

{
n if k = k2n

−n if k = k2n−1

0 otherwise
(n, k ∈ N).

It is easy to see that ϕ + X ⊂ cA. So χ ∩ cNp ⊂ cA. On the other hand, A is
not conservative, so that `∞ ∩ cNp 6⊂ cA. Thus Np is not potent
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Now, for instance, bs ⊂ `∞ ∩ cRp
implies that `∞ ∩ cRp

has the Hahn
property. So in a first step on the way to the goal aimed at we give a char-
acterization of those potent regular Riesz matrices fulfilling this sufficient
condition.

Proposition 3.4. Let (in addition) p = (pk) /∈ `1 and
(

pn

Pn

) ∈ c0. Then
the following statements are equivalent:

(a) bs ⊂ cRp

(b) bs ⊂ cNp

(c) bs ⊂ c0Rp
∩ c0Np

q

(d) limn
1

Pn

∑n−1
k=1 |pk − pk+1| = 0.

Proof. This is an obvious consequence of [3: Exercise 2.4.19]

Examples 3.5.
(a) Let p = (pn) := (n). Obviously, (pn) is monotonically increasing,(

Pn

pn

) 6∈ `∞,
(

pn

Pn

) ∈ c0 and
(

n pn

Pn

) ∈ `∞. Therefore, c ( `∞∩cRp = `∞∩cC1 (
cRp = cC1 and Rp is potent (cf. Remark 3.1(b) and (c)). In particular, `∞∩cRp

has the Hahn property since `∞ ∩ cC1 has (because bs ⊕ Sp {e} ⊂ `∞ ∩ cC1 ,
cf. [1: Theorem 3.4]).

We should note that `∞Σp
⊕ Sp {e} ⊂ `∞ ∩ cRp ⊃ bs ⊕ Sp {e} and that

`∞Σp
⊕ Sp {e} does not have the matrix Hahn property (cf. Example 2.9)

whereas both `∞ ∩ cRp and bs⊕ Sp {e} have the Hahn property.
(b) If p ∈ c\c0, then the assumptions and assertion (d) of Proposition

3.4 are fulfilled, thus bs ⊂ c0Rp ∩ c0Np , and consequently both `∞ ∩ cRp and
`∞ ∩ cNp have the Hahn property.

(c) If pn ∈ Nr (n ∈ N) for some r ∈ N, then `∞ ∩ cRp has the Hahn
property by Proposition 2.8 since `∞Σp

⊕ Sp{e} ⊂ `∞ ∩ cRp . Note, in this
case we have p /∈ `1 and

(
pn

Pn

) ∈ c0, but p fails in general the condition of
Proposition 3.4(d) as, for instance, p = (1, 2, 1, 2, . . .) shows.

For the proof of the promised main result we need two lemmas.

Lemma 3.6. Let n ∈ N and let p1, . . . , pn be a (finite) sequence of
numbers. Then there exists a partition (M1, . . . ,Mt) of {1, . . . , n} such that
t ≤ 2

√
n and (pi)i∈Mj (j ∈ Nt) is monotone.

Proof. A non-decreasing subsequence of (pi)n
i=1 is temporarily called a

chain and an r-chain when its length is r. Let s ∈ N be the maximal length
of all chains of (pi)n

i=1.
First we suppose s ≤ √

n. We choose all possible indices n1
1, . . . , n

1
k1

with n1
1 < n1

2 < . . . < n1
k1

such that pn1
j

is the beginning of some s-chain
(j = 1, . . . , k1). Note that for every j = 1, . . . , k1 − 1 we have pn1

j
> pn1

j+1
.
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(Otherwise, pn1
j
, pn1

j+1
would be the beginning of an (s+1)-chain.) So (pn1

j
)k1
j=1

is decreasing.

Now, we exclude all the elements pn1
j

(j ∈ Nk1) from the sequence (pi)n
i=1

and consider all the remaining elements in the original order with the original
indices. The maximal length of all sorts of chains is now s − 1. We pick out
all possible indices n2

1, . . . , n
2
k2

with n2
1 < n2

2 < . . . < n2
k2

such that pn2
j

is the

beginning of some (s− 1)-chain (j = 1, . . . , k2). Again, the sequence (pn2
j
)k2
j=1

is decreasing.

We now exclude from the (already reduced) sequence (pi)n
i=1 also all the

elements pn2
j

(j ∈ Nk2) and consider the remaining sequence where the ele-
ments are listed in the original order with the original indices.

Continuing this procedure, we get s− 2 decreasing subsequences (pni
j
)ki
j=1

(i ∈ Ns−2) of (pi)n
i=1. We now exclude from the sequence (pi)n

i=1 all the
elements pni

j
(i ∈ Ns−2, j ∈ Nki) and consider the remaining sequence where

the elements are listed in the original order with original indices. Let t1, . . . , tν
(with t1 < t2 < . . . < tν) be the indices of it. The maximal length of its chains
is obviously 2. Let l1 be the minimal index such that ptl1

is the beginning
of some 2-chain and let m1 > l1 be the minimal index such that ptl1

≤ ptm1
.

Now we choose the minimal index l2 with l2 > m1 such that ptl2
is the

beginning of some 2-chain and pick out the minimal index m2 with m2 > l2
such that ptl2

≤ ptm2
. Continuing this procedure we obtain the minimal index

lks−1 with lks−1 > mks−1−1 such that ptlks−1
is the beginning of some 2-chain

and we may pick out the minimal index mks−1 with mks−1 > lks−1 such that
ptlks−1

≤ ptmks−1
.

Note that ptlj−1 > ptmj
: Namely, if lj − 1 > mj−1 (m0 := 0), this

statement follows since lj is the minimal index greater than mj−1 such that
ptlj

is the beginning of some 2-chain, and if lj − 1 = mj−1 it follows since
otherwise we would obtain the 3-chains ptlj−1

≤ ptmj−1
≤ ptmj

(j ∈ Nks−1).
We also have ptmj−1−1 > ptlj

because otherwise ptmj−1−1 ≤ ptlj
≤ ptmj

(j =
2, . . . , ks−1) would be 3-chains.

Evidently, ptα > ptα+1 for every j ∈ {1, . . . , ks−1 − 1}, α ∈ {mj−1 +
1, . . . , lj − 2} and α ∈ {mks−1 , . . . , ν}. Moreover, we have in fact ptα > ptα+1

for every j ∈ Nks−1 and α ∈ {lj + 1, . . . , mj − 2}. Namely, if j ∈ Nks−1

and α ∈ {lj + 1, . . . ,mj − 2} is the minimal integer such that ptα ≤ ptα+1 ,
then ptα+1 > ptmj

(otherwise ptα ≤ ptα+1 ≤ ptmj
would be a 3-chain); hence

ptlj
> ptα+1 > ptmj

, yielding a contradiction.
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Summarizing, we constructed two increasing sequences

ptl1
> ptl1+1 > . . . > ptm1−1 > ptl2

>

. . . > ptm2−1 > . . . > ptlks−1
> . . . > ptmks−1

−1

pt1 > pt2 > . . . > ptl1−1 > ptm1
>

. . . > ptl2−1 > . . . > ptmks−1
> . . . > ptν

.

Altogether we divided the sequence (pi)n
i=1 into s, s ≤ √

n, monotone (de-
creasing) subsequences.

Now, we suppose s >
√

n. We extract from (pi)n
i=1 some s-chain (ex-

cluding the referring elements from (pi)n
i=1). If the maximal length s1 of the

new sequence is greater than
√

n, we extract from (pi)n
i=1 some s1-chain. We

continue this procedure until the maximal length sk of the chain is less than
or equal to

√
n. The number k of extracted chains is less than or equal to

√
n.

Now in the same way as in the first part of the proof we divide the remaining
sequence into sk, sk ≤

√
n, decreasing subsequences. Altogether, we divided

the sequence (pi)n
i=1 into k + sk, k + sk ≤ 2

√
n monotone subsequences

Lemma 3.7. If

1
Pn

∑
s∈I

Ns∩[1,n] 6=∅

( ∑
j∈N

ns,j+1≤n

|pnsj − pns,j+1 |+
∑
j∈N

nsj≤n<ns,j+1

pnsj

)
→ 0 (3.2)

as n → ∞ holds for some partition N = (Ni| i ∈ I) , then bs(N) ⊂ c0Rp ∩
c0Np ⊂ cRp ∩ cNp .

Proof. Let x ∈ bs(N) be fixed. For any fixed n ∈ N we get

1
Pn

∣∣∣∣∣
n∑

k=1

pkxk

∣∣∣∣∣

=
1

Pn

∣∣∣∣∣
∑
s∈I

Ns∩[1,n]6=∅

∑
j∈N

nsj≤n

pnsj xnsj

∣∣∣∣∣

≤ 1
Pn

∑
s∈I

Ns∩[1,n]6=∅

‖(xnsj )j‖bs

( ∑
j∈N

ns,j+1≤n

|pnsj − pns,j+1 |+
∑
j∈N

nsj≤n<ns,j+1

pnsj

)

≤ ‖x‖bs(N)

Pn

∑
s∈I

Ns∩[1,n]6=∅

( ∑
j∈N

ns,j+1≤n

|pnsj − pns,j+1 |+
∑
j∈N

nsj≤n<ns,j+1

pnsj

)
.
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Hence Rpx ∈ c0. Considering the Nörlund method for a fixed n ∈ N we get

1
Pn

∣∣∣∣∣
n∑

k=1

pn−k+1xk

∣∣∣∣∣

=
1

Pn

∣∣∣∣∣
∑
s∈I

Ns∩[1,n]6=∅

∑
j∈N

nsj≤n

pn−nsj+1xnsj

∣∣∣∣∣

=
1

Pn

∣∣∣∣∣
∑
s∈I

Ns∩[1,n]6=∅

∑
j∈N

nsj≤n

pnsj xn−nsj+1

∣∣∣∣∣

≤ 1
Pn

∑
s∈I

Ns∩[1,n] 6=∅

sup
j

∣∣∣∣∣
j∑

k=1

xn−nsk+1

∣∣∣∣∣

×
( ∑

j∈N
ns,j+1≤n

|pnsj − pns,j+1 |+
∑
j∈N

nsj≤n<ns,j+1

pnsj

)

≤ 1
Pn

∑
s∈I

Ns∩[1,n] 6=∅

2 ‖(xnsj )j‖bs

×
( ∑

j∈N
ns,j+1≤n

|pnsj − pns,j+1 |+
∑
j∈N

nsj≤n<ns,j+1

pnsj

)

≤ 2‖x‖bs(N)

Pn

×
∑
s∈I

Ns∩[1,n]6=∅

( ∑
j∈N

ns,j+1≤n

|pnsj − pns,j+1 |+
∑
j∈N

nsj≤n<ns,j+1

pnsj

)
.

Thus Npx ∈ c0

Theorem 3.8. If p /∈ `1 and Rp is a potent matrix, then there exists a
partition N = (Ni| i ∈ I) of N satisfying (2.1) and bs(N) ⊂ `∞ ∩ cRp ∩ cNp .
In particular, by Theorem 2.6, `∞ ∩ cRp

∩ cNp
, `∞ ∩ cRp

and `∞ ∩ cNp
have

the Hahn property.

As an immediate consequence, we get the following extension of the char-
acterization of the potency of weighted means due to Kuttner and Parameswa-
ran (cf. [6] and also [3, 4]).

Corollary 3.9.
(i) If Rp is conservative and non-regular, that is p ∈ `1, then `∞ ∩ cRp

has the Hahn property (and Rp is potent).
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(ii) If Rp is regular, that is p /∈ `1, then the following statements are
equivalent:

(a) Rp is potent, that is `∞ ∩ cRp
has the matrix Hahn property.

(b)
(

pn

Pn

) ∈ c0.

(c)
(

1
Pn

maxk≤n pk

) ∈ c0.
(d) Rp ∈ KG, that is each matrix A with χ(`∞∩cRp) ⊂ cA is conservative.
(e) `∞ ∩ cRp has the separable Hahn property.
(f) `∞ ∩ cRp

has the Hahn property.

By Remark 3.2, Theorem 3.3 and Theorem 3.8 we also have a full charac-
terization of the potent conservative Nörlund matrices.

Corollary 3.10.

(i) If Np is conservative and non-regular, that is ( pn

Pn
) ∈ c \ c0, then

`∞ ∩ cNp has the Hahn property (and Np is potent).

(ii) If Np is regular, that is ( pn

Pn
) ∈ c0, then the following statements are

equivalent:
(a) Np is potent, that is `∞ ∩ cNp has the matrix Hahn property.
(b) p /∈ `1.
(c) `∞ ∩ cNp has the separable Hahn property.
(d) `∞ ∩ cNp has the Hahn property.

Proof of Theorem 3.8. Aiming to a partition N = (Ni| i ∈ I) of N
satisfying (2.1) and bs(N) ⊂ cRp ∩cNp , it is sufficient to find a partition which
fulfils condition (3.2) in Lemma 3.7.

Since ( pn

Pn
) ∈ c0 (see Remark 3.1(c)), we may choose m0 ∈ N such that

pn < 1
2Pn = 1

2Pn−1 + 1
2pn or, equivalently, pn < Pn−1, for each n ≥ m0.

Let i0 ∈ N be such that 4i0−1 ≤ Pm0 < 4i0 . For every i ≥ i0 we denote by
mi the minimal integer n such that Pn ≥ 4i. Then Pmi = Pmi−1 + pmi <
2Pmi−1 < 2 · 4i, so Pmi > 8−1Pmi+1 and Pmi < 2−1Pmi+1 (i ≥ i0). Since Rp

is potent, εi := max{pk| k≤mi}
Pmi

→ 0 (i →∞) by Remark 3.1(c). Without loss
of generality, we may assume that εi < 1 (i ≥ i0). (Otherwise, we may choose
a bigger m0.) For every i ≥ i0 we choose the minimal integer ji ∈ N such that
m

1/ji

i < ε
−1/2
i . Since εi = max{pk| k≤mi}

Pmi
≥ 1

mi
, we have mi ≥ ε−1

i (i ≥ i0).

Hence ji > 2 (i ≥ i0). Note that m
1/ji

i ≥ ε
−1/4
i (i ≥ i0). [Otherwise

m
1/[(ji+2)/2]
i ≤ m

2/ji

i < ε
−1/2
i , so ji

2 + 1 ≥ [
ji

2

]
+ 1 ≥ ji, which is equivalent

to ji ≤ 2 and contradicts ji > 2.]

Set αi =
Pmi+1
mi+1

and βi = max{pk| k ≤ mi+1} (i ∈ N). For every i ∈ N
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and s = 2, . . . , ji+1 − 2 we use the notations

Mi1 =
{

mi < k ≤ mi+1| pk ≤ m
1/ji+1
i+1 αi

}

Mis =
{

mi < k ≤ mi+1|m(s−1)/ji+1
i+1 αi < pk ≤ m

s/ji+1
i+1 αi

}

Mi,ji+1−1 =
{

mi < k ≤ mi+1|m(ji+1−2)/ji+1
i+1 αi < pk

}
.

Set νis = |Mis| (i ∈ N, s = 1, . . . , ji+1 − 1). Note,

νis ≤ mi+1

m
(s−1)/ji+1
i+1

= m
(ji+1+1−s)/ji+1
i+1

since otherwise

Pmi+1 ≥ νism
(s−1)/ji+1
i+1 αi

> m
(ji+1+1−s)/ji+1
i+1 m

(s−1)/ji+1
i+1 αi

= mi+1αi

= Pmi+1 .

By Lemma 3.6, for every i ∈ N and s = 1, . . . , ji+1 − 1 we may choose a
partition (Sis1, . . . , Siskis) of Mis with kis ≤ 2

√
νis such that (pν)ν∈Sist is

monotone (t = 1, . . . , kis). Let eisk := |Sisk| and let (ξiskl)eisk

l=1 be the finite
sequence of all elements of Sisk arranged in ascending ordering (i ∈ N, s =
1, . . . , ji+1 − 1 and k = 1, . . . , kis). Then

kis∑

k=1

(
pξisk1 +

eisk−1∑

l=1

|pξiskl
− pξi,s,k,l+1 |+ pξiskeisk

)

=
kis∑

k=1

2max
{
pξisk1 , pξiskeisk

}

≤ 2kism
s/ji+1
i+1 αi

≤ 4
√

νism
s/ji+1
i+1 αi

≤ 4m
(ji+1+1−s)/2ji+1
i+1 m

s/ji+1
i+1 αi

= 4m
(ji+1+1+s)/2ji+1
i+1 αi
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for s = 1, . . . ji+1 − 2 and

kis∑

k=1

(
pξisk1 +

eisk−1∑

l=1

|pξiskl
− pξi,s,k,l+1 |+ pξiskeisk

)

=
kis∑

k=1

2max
{
pξisk1 , pξiskeisk

}

≤ 4
√

νisβi

≤ 4m
1/ji+1
i+1 βi

for s = ji+1 − 1 (i ∈ N). Hence for every i ≥ i0 we get

1
Pmi+1

ji+1−1∑
s=1

kis∑

k=1

(
pξisk1 +

eisk−1∑

l=1

|pξiskl
− pξi,s,k,l+1 |+ pξiskeisk

)

≤ 1
Pmi+1

( ji+1−2∑
s=1

4m
(ji+1+1+s)/2ji+1
i+1 αi + 4m

1/ji+1
i+1 βi

)

= 4
m

(ji+1+1)/2ji+1
i+1 αi

mi+1αi

(
m

(ji+1−1)/2ji+1
i+1 − 1

m
1/2ji+1
i+1 − 1

− 1
)

+ 4
βim

1/ji+1
i+1

Pmi+1

≤ 4m
(−ji+1+1)/2ji+1
i+1

m
(ji+1−1)/2ji+1
i+1

4−1m
1/2ji+1
i+1

+ 4εi+1ε
−1/2
i+1

= 16m
−1/2ji+1
i+1 + 4ε

1/2
i+1

≤ 16ε
1/8
i+1 + 4ε

1/2
i+1.

Aiming to a definition of Ni (i ∈ N), for any subset N ⊂ N and n ∈ N we use
the notation

N |n = {k ∈ N | k ≤ n}.
Set

N1|mi0
= {1, . . . , mi0}

Nj |mi0
= ∅ (j > 1).

Let s0
1, . . . , s

0
t0 be all indices such that Mi0s0

t
6= ∅ (t = 1, . . . , t0). We set

Nj |mi0+1 =





Nj |mi0
∪ Si0s0

t k for j =
∑t−1

τ=1 ki0s0
τ

+ k

(t = 1, . . . , t0; k = 1, . . . , ki0s0
t
)

Nj |mi0
for j >

∑t0
τ=1 ki0s0

τ
.
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Continuing inductively for i > i0, let si−i0
1 , . . . , si−i0

ti−i0
be all indices such that

M
is

i−i0
t

6= ∅ (t = 1, . . . , ti−i0). Then we set

Nj |mi+1 =





Nj |mi
∪ S

is
i−i0
t k

for j =
∑t−1

τ=1 k
is

i−i0
τ

+ k

(t = 1, . . . , ti−i0 ; k = 1, . . . , k
is

i−i0
t

Nj |mi
for j >

∑ti−i0
τ=1 k

is
i−i0
τ

.

Let I be the set of all indices i ∈ N such that Ni 6= ∅. If I is infinite, then,
by our construction, every Ni is infinite. If I is finite, then without loss of
generality (cf. Remark 2.1(d)) we may assume that Ni is infinite (i ∈ I). Let
n ∈ N with mi < n ≤ mi+1 and i ≥ i0 be fixed. Then

Bn : =
1

Pn

∑
s∈I

Ns∩[1,n] 6=∅

( ∑
j∈N

ns,j+1≤n

|pnsj − pns,j+1 |+
∑
j∈N

nsj≤n<ns,j+1

pnsj

)

≤ 1
Pmi

(
2

mi0∑

k=1

pk

+
i∑

τ=i0

jτ+1−1∑
s=1

kτs∑

k=1

(
pξisk1 +

eτsk−1∑

l=1

|pξτskl
− pξτ,s,k,l+1 |+ pξiskeisk

))

≤ 8
Pmi+1

(
2Pmi0

+
i∑

τ=i0

(
16ε

1/8
τ+1 + 4ε

1/2
τ+1

)
Pmτ+1

)

≤ 16
2i−i0+1

+ 32
i∑

τ=i0

1
2i−τ

(
4ε

1/8
τ+1 + ε

1/2
τ+1

)
.

Consider the matrix A = (aiτ ) with aiτ = 2τ−i for τ ≤ i and aiτ = 0
otherwise. Evidently, A is regular for null sequences, so it sums the null
sequence

(
4ε

1/8
τ+i0

+ ε
1/2
τ+i0

)
τ

to zero. Thus Bn → 0 (n → ∞). Now, applying
Lemma 3.7, we get the desired inclusion bs(N) ⊂ cRp ∩ cNp

The following example shows that there exists a potent Riesz method Rp

such that bs(N) 6⊂ `∞ ∩ cRp for each finite partition N = (N1, . . . , Ns) of N.
Since Rp is potent, `∞ ∩ cRp has the Hahn property by Theorem 3.8 and, by
the proof of this theorem, we have bs(M) ⊂ `∞ ∩ cRp for a suitable partition
M = (Mi| i ∈ I) of N. This shows that, in the proof of Theorem 3.8, we
applied Theorem 2.6 in its full generality.

Example 3.11. Let k1 = 1 and ki+1 = ki +(i+1) (i ∈ N). We consider
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the Riesz method Rp with

p1 = p2 = 1, pki = pki+1 =
1

2ii

pki+j =
j−1∑

l=0

pki+l =
2j−1

2ii
=

2j−i−1

i

for i, j ∈ N, i > 1, j = 2, . . . , i. Evidently, (pn) ∈ c0. Furthermore,

Pkl−1 =
l−1∑

i=1

ki+1−1∑

j=ki

pj =
l−1∑

i=1

1
2ii

2i =
l−1∑

i=1

1
i
→∞ (l →∞),

hence p /∈ `1. Consequently, Rp is regular and potent, and `∞ ∩ cRp has the
Hahn property by Theorem 3.8.

Now, we verify that the inclusion bs(N) ⊂ `∞ ∩ cRp fails for all finite
partitions N = (N1, . . . , Ns) of N. Since `∞Σp

⊂ cRp , we get as an immediate
consequence that bs(N) 6⊂ `∞Σp

for all s ∈ N and partitions N = (N1, . . . , Ns)
of N.

Suppose, by contrast, that bs(N) ⊂ `∞∩cRp for some s ∈ N and partition
N = (N1, . . . , Ns) of N. Then, on the one hand, by Proposition 3.4 we have

Al :=
1

Pkl−1

s∑

i=1

∑

{j|ni,j+1<kl−1}
|pnij − pni,j+1 | → 0 (l →∞).

On the other hand, we get

Al ≥ 1
Pkl−1

l−1∑
ν=1

s∑

i=1

∑

{j| kν≤nij<ni,j+1<kν+1}
|pnij − pni,j+1 |

≥ 1
Pkl−1

l−1∑
ν=1

s∑

i=1

∑

{j| kν≤nij<ni,j+1<kν+1}
|pnij − pnij+1|

and, since

∣∣{(i, j)| kν ≤ nij < kν+1 ≤ ni,j+1

}∣∣ ≤ s

pk+1 − pk > pk − pk−1 > 0 for k ∈ [kν + 1, kν+1 − 2]
(ν ∈ N),
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the estimation

Al ≥ 1
Pkl−1

l−1∑
ν=1

kν+1−2−s∑

j=kν

(pj+1 − pj)

=
1

Pkl−1

l−1∑
ν=1

(pkν+1−1−s − pkν
)

=
1∑l−1

ν=1
1
ν

l−1∑
ν=1

1
ν

( 1
21+s

− 1
2ν

)

=
1

21+s
− 1∑l−1

ν=1
1
ν

l−1∑
ν=1

1
ν2ν

≥ 1
22+s

for l sufficiently large, contradicting (Al) ∈ c0.

The following example shows that there exist non-potent Riesz means Rp

fulfilling c ( `∞ ∩ cRp . In particular, the FK-space (`∞ ∩ cRp , ‖ · ‖∞) is non-
separable and does not have the matrix Hahn property (see [1: Theorems 2.5
and 5.1]), hence not any Hahn property.

Example 3.12. For any index sequence (nν) with n1 = 1 and nν + 1 <
nν+1 (ν ∈ N) we define p = (pn) inductively by

pn =





1 if n < n2

Pn−1 =
∑n−1

k=1 pk if n = nν

pnν if nν < n < nν+1

(n ∈ N, ν ≥ 2).

Using this definition of (pn) we finally define (nν): Having fixed nν for a ν ∈ N
we choose an nν+1 with nν + 1 < nν+1 such that

Pnν+1−1

pnν+1−1
> ν. Obviously,

(pn) is monotonically increasing, (Pn

pn
) /∈ `∞ and ( pn

Pn
) /∈ c0. Therefore, c (

`∞ ∩ cRp ( cRp ⊂ cC1 and Rp is not potent.

Note, `∞ ∩ cRp
does not contain any space bs(N) since otherwise it would

have the Hahn property by Theorem 2.6.

Now, we give an example showing that, in general, the bounded domains
of a potent Rp and of the corresponding Np are different.

Example 3.13.

(a) Let p = (pn) := (1, 2, 1, 2, . . .). Then, by Theorem 3.8, both `∞ ∩ cNp

and `∞ ∩ cRp have the Hahn property. Note that `∞ ∩ c0Np ( `∞ ∩ c0Rp

since x = (2,−1, 2,−1, . . .) ∈ `∞ ∩ c0Rp , but x /∈ `∞ ∩ c0Np , and since `∞ ∩
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c0Np
⊂ `∞ ∩ c0Rp

as we may easily check (note, [Rpx]2n−1 = [Npx]2n−1 and
p2n

P2n
x2n → 0 (n →∞) for every x ∈ `∞).

(b) Let p = (pn) = (2n−1). Then cRp
= c since (Pn

pn
) ∈ `∞ (cf. Remark

3.1(b)). In particular, Rp is not potent. By contrast, Np is coercive by the
Schur Theorem (cf. [3: Theorem 2.4.1]), so that `∞ ∩ cNp

has obviously the
Hahn property. More generally, we may assume that p satisfies (3.1) and
( pn

Pn
) ∈ c \ c0. Then Rp is not potent, but Np is coercive (cf. Remark 3.2).

4. Intersection of Hahn spaces

In [1: Problem 7.1] the question is posed whether the intersection of Hahn
spaces is also a Hahn space. In the first step we give positive results by
presenting big classes of Hahn spaces such that the finite intersection of some
of their members is also a Hahn space. These results prove the power of
Theorem 2.6.

Remark 4.1.
(a) If E and F are spaces lying between bs(N)⊕ Sp{e} and `∞ for some

partition N of N, then E, F and also E ∩ F have the Hahn property by
Theorem 2.6.

(b) If (pn) satisfies the conditions in Theorem 3.8, then the bounded
domains `∞∩ cRp and `∞∩ cNp and their intersection `∞∩ cRp ∩ cNp have the
Hahn property.

In the following theorem we give a negative answer to [1: Problem 7.1] by
presenting a big class of such examples. For that, we consider the set T of
all thin sequences: A sequence is called thin if there exists an index sequence
(kν) with kν+1 − kν → ∞ such that xk = 1 if k = kν and xk = 0 otherwise
(k, ν ∈ N).

Theorem 4.2. The intersection of Hahn spaces does not necessarily have
any of the Hahn properties. In particular, we have the following results:

(a) (bs⊕Sp{e})∩(`∞·SpT ) does not have the matrix Hahn property (which
is necessary for both the separable Hahn property and the Hahn property).

(b) If N = (Ni| i ∈ I) is a finite partition of N satisfying (2.1), then
(bs(N)⊕ Sp {e}) ∩ (`∞ · SpT ) does not have any Hahn property.

Proof.
(a) bs ⊕ Sp {e} and `∞ · SpT have the Hahn property (cf. [1: Theorem

3.4] and [1: (4.6) in the proof of Theorem 4.1], respectively).
Now, we set G = (bs⊕Sp {e})∩ (`∞ ·Sp T ) and prove χ(G) = ϕ. Then we

can conclude that G does not enjoy the matrix Hahn property: If I denotes
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the identity matrix, then obviously χ(G) = ϕ ⊂ c = cI , but y = (yk) ∈ G \ cI

where

yk =

{
1 if k = 2n (n ∈ N)
−1 if k = 2n + 1 (n ∈ N)
0 otherwise.

Note, y ∈ Sp T since y takes only finitely many positive values and the length
of the ‘zero-gaps’ of y tends monotonically to infinity.

The inclusion ϕ ⊂ χ(G) is obvious since ϕ ⊂ G. For a proof of the
contrary inclusion we consider an arbitrary x ∈ χ ∩ (G \ ϕ). Then

x = y ·
N∑

i=1

αix
(i) with

{
N ∈ N
αi 6= 0, x(i) ∈ T (i = 1, . . . , N)
y ∈ `∞.

First we estimate the least number of zeros and the utmost number of
ones which xν takes for ν ≤ k (k ∈ N). By Sx, Sy and Sx(i) we denote the
support of x, y and x(i), respectively. Thus Sx ⊂ Sy ∩

⋃N
i=1 Sx(i) =: Sy ∩ S.

So, x takes the value 1 at most for k ∈ S (and the value 0 outside of S). Let
α ∈ (0, 1) be given and j ∈ N, j > 2, be chosen such that

1
j

< α, that is (1− α)− α(j − 1) < 0. (4.1)

Because x(i) ∈ T (i = 1, . . . , N), for M := jN there exists a k0 ∈ N such
that for every i ∈ NN the sequence x(i) takes at most once the value 1 in each
interval [k, k + M) (k ≥ k0). Thus x takes the value 1 at most N times in
each such interval. Let kν := k0 + νM (ν ∈ N). Now, for k ∈ N we set

g(k) =
∣∣{ν ≤ k|xν = 1}∣∣

f(k) = k − g(k) =
∣∣{ν ≤ k|xν = 0}

∣∣
a = g(k0)

b = f(k0) = k0 − a.

With that, for ν ∈ N we get g(kν) ≤ a + νN and therefore

f(kν) = kν − g(kν) ≥ k0 + jνN − a− νN = k0 − a + (j − 1)νN.

Aiming to a contradiction we use that x is assumed to be a member of
bs ⊕ Sp {e}, that is x = y + αe where y ∈ bs and α ∈ R are suitably chosen.
Considering the special cases α = 0, α = 1, α > 1, α < 0 and 0 < α < 1 we
get the contradiction y /∈ bs as follows:

The case α = 0: yk = xk − α = xk, thus y is a 0-1-sequence which takes
the value 1 at infinitely many positions since x /∈ ϕ.
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The case α = 1: Then we have

yk = xk − 1 =
{

0 if xk = 1
−1 if xk = 0

(k ∈ N),

thus y is a −1-0-sequence which takes the value −1 at infinitely many positions
by the foregoing considerations.

The case α > 1: Here, y takes only the negative values 1− α and −α.

The case α < 0: In this case y takes only the positive values 1 − α and
−α.

The case 0 < α < 1: We have

yk = xk − α =
{

1− α > 0 if xk = 1
−α < 0 if xk = 0.

Using the notation in the foregoing (preparing) considerations we get

kν∑

k=1

yk ≤ (1− α)(a + νN)− α(k0 − a + (j − 1)νN)

= (1− α)a− α(k0 − a) +
(
(1− α)− α(j − 1)

)
νN

→ −∞ (ν →∞)

(see (4.1)). Therefore y /∈ bs which contradicts x ∈ bs⊕ Sp {e}.
(b) We set

F = (bs(N)⊕ Sp {e}) ∩ (`∞ · Sp T )

G = (bs⊕ Sp {e}) ∩ (`∞ · Sp T ).

Obviously, we have F ⊂ G (since I is assumed to be finite), thus χ(F ) ⊂
χ(G) = ϕ where the last identity has been proved in part (a). Now we proceed
analogously to the beginning of the proof of assertion (a): We consider the
identity matrix I and get obviously χ(F ) = ϕ ⊂ c = cI , but y = (yk) ∈ F \ cI

where

yk =

{
1 if k = k1,2ν (ν ∈ N)
−1 if k = k1,2ν+1 (ν ∈ N)
0 otherwise

(k ∈ N)

and (k1ν) is the sequence of all members of N1 arranged in the ascending
order. Note that here y ∈ bs(N) is obvious and y ∈ Sp T since y may easily
be represented as difference of thin sequences
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Problems. In addition to the problems in [1: Section 7] we pose the
following:

1. Still we do not know whether there exists a bounded domain of a matrix
having the matrix Hahn property but not the (separable) Hahn property.

2. Find a bounded domain `∞ ∩ cA having any Hahn property and a
sequence space E with `∞∩ cA ⊂ E ⊂ `∞ and having not this Hahn property.
(Note, in this situation we have necessarily E 6= `∞ ∩ cA + χ(E).)

Acknowledgements. The authors wish to thank the referees for very
helpful hints.
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