Solvability of
Two-Point Boundary Value Problems
for Fourth-Order
Nonlinear Differential Equations at Resonance

Yuji Liu and Weigao Ge

Abstract. Under a resonance condition involving a two-point boundary value problem for a fourth-order nonlinear differential equation, we show its solvability.

Keywords: Fourth-order differential equation, two-point boundary value problem, solvability of boundary value problem, resonance

AMS subject classification: Primary 34K20, secondary 92D25

1. Introduction

Let $f : [0, 1] \times \mathbb{R}^4$ be a continuous function and $e \in L^1[0, 1]$. We consider the fourth-order differential equation

$$x^{(4)}(t) = f(t, x(t), x'(t), x''(t), x'''(t)) + e(t) \quad (0 < t < 1)$$

subject to the boundary value conditions

$$x'(0) = x'(1) = x'''(0) = x'''(1) = 0.$$

Boundary value problems of this form were used to understand the static equilibrium of an elastic beam supported by sliding clamps. We refer the
reader to [11, 12] and the references therein. For example, Gupta [12] studied the solvability of the boundary value problem
\[
\begin{align*}
- y^{(4)} + g(t, y(t)) &= e(t) \quad (0 < t < 1) \\
y'(0) &= y'(\pi) = y'''(0) = y'''(\pi) = 0
\end{align*}
\]
Since (2) implies that the linear operator \(Lx = x^{(4)} \) defined in a suitable Banach space is not invertible, we call (2) a resonance boundary value condition.

There are many other papers concerning the existence of solutions or positive solutions of fourth-order differential equations subjected to different kind of non-resonance boundary value conditions (see [1 - 6, 8, 10, 13, 14, 16] and the references therein).

To the best of our knowledge, the solvability of boundary value problem (1) - (2) has not been studied till now. The purpose of this paper is to establish an existence result for problem (1) - (2). Our method is based on the coincidence degree theory of Mawhin.

Now, we briefly recall some notations and an abstract existence result. Let \(X \) and \(Y \) be Banach spaces, \(L : \text{dom} \ L \subset X \to Y \) be a Fredholm operator of index zero, \(P : X \to X \) and \(Q : Y \to Y \) be projectors such that
\[
\begin{align*}
\text{Im} \ P &= \text{Ker} \ L \\
\text{Ker} \ Q &= \text{Im} \ L \\
X &= \text{Ker} \ L + \text{Ker} \ P \\
Y &= \text{Im} \ L + \text{Im} \ Q.
\end{align*}
\]
It follows that the reduced operator
\[L|_{\text{dom} \ L \cap \text{Ker} \ P} : \text{dom} \ L \cap \text{Ker} \ P \to \text{Im} \ L \]
is invertible. We denote the inverse of that map by \(K_p \).

If \(\Omega \) is an open bounded subset of \(X \) and \(\text{dom} \ L \cap \Omega \neq \emptyset \), where \(\emptyset \) denotes the empty set, the map \(N : X \to Y \) will be called \(L \)-compact on \(\overline{\Omega} \) if \(QN(\overline{\Omega}) \) is bounded and the product map \(K_p(I - Q)N : \overline{\Omega} \to X \) is compact. The facts we use are [15: Theorem 2.4] and [7: Theorem IV.13].

Theorem 1. Let \(L \) be a Fredholm operator of index zero and let \(N \) be \(L \)-compact on \(\Omega \). Assume that the following conditions are satisfied:

(i) \(Lx \neq \lambda Nx \) for every \((x, \lambda) \in [(\text{dom} \ L/\text{Ker} \ L) \cap \partial \Omega] \times (0, 1) \).

(ii) \(Nx \notin \text{Im} \ L \) for every \(x \in \text{Ker} \ L \cap \partial \Omega \).

(iii) \(\deg(\Lambda QN|_{\text{Ker} \ L}, \Omega \cap \text{Ker} \ L, 0) \neq 0 \), where \(\Lambda : \text{Im} \ L \to \text{Ker} \ L \) is some isomorphism.
Then the equation \(Lx = Nx \) has at least one solution in \(\text{dom } L \cap \Omega \).

We use the classical spaces \(C^3[0,1] \) and \(L^1[0,1] \). For \(x \in C^3[0,1] \), we use the norms \(\|x\|_\infty = \max_{t \in [0,1]} |x(t)| \) and

\[
\|x\| = \max \{ \|x\|_\infty, \|x'\|_\infty, \|x''\|_\infty, \|x'''\|_\infty \}
\]

and denote the norm in \(L^1[0,1] \) by \(\|x\|_1 \). We also use the Sobolev space \(W^{4,1}(0,1) \) defined by

\[
W^{4,1} = \left\{ x : [0,1] \to \mathbb{R} \mid x, x', x'', x''' \text{ abs. cont.}, x^{(4)} \in L^1[0,1] \right\}
\]

with its usual norm.

2. Main results

In this section, we shall prove the existence result for problem (1) - (2). Let \(X = C^3[0,1] \) and \(Y = L^1[0,1] \). Define \(L \) to be the linear operator from \(\text{dom } L \subset X \) to \(Y \) with

\[
\text{dom } L = \left\{ x \in W^{4,1}(0,1) \mid x'(0) = x'(1) = x''(0) = x'''(1) = 0 \right\}
\]

and \((Lx)(t) = x^{(4)}(t) \) for \(x \in \text{dom } L \cap X \), and we define \(N \) to be the nonlinear operator from \(X \) to \(Y \) with

\[
(Nx)(t) = f(t, x(t), x'(t), x''(t), x'''(t)) + e(t) \quad (0 < t < 1)
\]

for \(x \in X \). Thus problem (1) - (2) can be written as \(Lx = Nx \). We note that if \(x \in \text{dom } L \), then \(\|x\| = \max\{\|x\|_\infty, \|x''\|_\infty\} \), since \(\|x'\|_\infty \leq \|x''\|_\infty \leq \|x'''\|_\infty \).

Lemma 1. The following results hold:

(i) \(\ker L = \{ x \in X : x(t) = c \text{ for } 0 \leq t \leq 1 \text{ for some } c \in \mathbb{R} \} \).

(ii) \(\text{Im } L = \{ y \in Y : \int_0^1 y(s) \, ds = 0 \} \).

(iii) \(L \) is a Fredholm operator of index zero.

(iv) If \(\Omega \) is an open bounded subset such that \(\text{dom } L \cap \Omega \neq \emptyset \), then \(N \) is \(L \)-compact on \(\Omega \).

Proof. (i): For \(x \in \ker L \) we have \(x^{(4)}(t) = 0 \), thus \(x(t) = at^3 + bt^2 + ct + d \). On the other hand, \(x'(0) = x'(1) = x''(0) = x'''(1) = 0 \) implies that \(a = b = c = 0 \). So \(x(t) = d \) for \(t \in [0,1] \). Again, if \(x = d \), then \(x \in \ker L \). This completes the proof of assertion (i).
(ii): For \(y \in \operatorname{Im} L \) there is \(x \in \operatorname{dom} L \) such that \(x^{(4)} = y \). So
\[
x(t) = \int_0^t \frac{(t-s)^3}{6} y(s) \, ds + at^3 + bt^2 + ct + d.
\]
Since \(x'(0) = x'(1) = x''(1) = x'''(0) = 0 \), we get \(c = a = 0 \) and \(\int_0^1 y(s) \, ds = 0 \). Thus \(y \in \{ y \in Y : \int_0^1 y(s) \, ds = 0 \} \). On the other hand, if \(y \in Y \) and \(\int_0^1 y(s) \, ds = 0 \), let
\[
x(t) = \int_0^t \frac{(t-s)^3}{6} y(s) \, ds - \frac{t^2}{2} \int_0^1 \frac{(1-s)^2}{2} y(s) \, ds.
\]
Then \(x \in X \) and \(x'(0) = x'(1) = x''(0) = x'''(1) = 0 \). This implies \(y \in \operatorname{Im} L \), so assertion (ii) is valid.

(iii): Define the projector \(Q : Y \to Y \) by
\[
Qy(t) = \int_0^1 y(s) \, ds \quad (y \in Y).
\]
It is easy to check that, for \(y \in Y \), \(y - Qy \in \operatorname{Im} L \). So \(y = \operatorname{Im} L + R \), again \(\operatorname{Im} L \cap R = \{0\} \), hence \(Y = \operatorname{Im} L \oplus R \). Together with that \(\operatorname{Im} L \) is closed, thus \(L \) is a Fredholm operator of index zero.

(iv) Let \(\Omega \) be an open bounded subset in \(X \) such that \(\Omega \cap \operatorname{dom} L \neq \emptyset \). Define the projector \(P : X \to X \) by \(P(x) = x(0) \). Then the generalized inverse \(K_p : \operatorname{Im} L \to \operatorname{dom} L \cap \operatorname{Ker} P \) of \(L \) can be written as
\[
(K_p y)(t) = \int_0^t \frac{(t-s)^3}{6} y(s) \, ds - \frac{t^2}{2} \int_0^1 \frac{(1-s)^2}{2} y(s) \, ds.
\]
In fact, for \(y \in \operatorname{Im} L \) we have
\[
(LK_p) y(t) = L \left(\int_0^t \frac{(t-s)^3}{6} y(s) \, ds - \frac{t^2}{2} \int_0^1 \frac{(1-s)^2}{2} y(s) \, ds \right) = y(t).
\]
Further, for \(x \in \operatorname{dom} L \cap \operatorname{Ker} P \) we have
\[
(K_p L x)(t) = K_p(x^{(4)}(t))
= \int_0^t \frac{(t-s)^3}{6} x^{(4)}(s) \, ds - \frac{t^2}{2} \int_0^1 \frac{(1-s)^2}{2} x^{(4)}(s) \, ds
= \frac{t^3}{6} x'''(0) + \frac{t^2}{2} x''(0) + tx'(0) + x(t) - x(0) - \frac{t^2}{2} x''(0)
= x(t).
\]
This shows $K_p = (L_{dom \cap Ker})^{-1}$. Furthermore, $X = Ker L \oplus Ker P$. In fact, for $x \in X$, $x(t) - x(0) \in Ker P$, so $X = Ker P + Ker L$, and again $Ker L \cap Ker P = \{0\}$. Then $X = Ker L \oplus Ker P$. From (4) we find

$$\|K_p y\|_\infty \leq \frac{1}{6} \|y\|_1 + \frac{1}{4} \|y\|_1 = \frac{5}{12} \|y\|_1$$

$$\|(K_p y)'\|_\infty \leq \frac{1}{2} \|y\|_1 + \frac{1}{2} \|y\|_1 = \|y\|_1$$

$$\|(K_p y)''\|_\infty = \left\| \int_0^t y(s) \, ds \right\|_\infty \leq \|y\|_1.$$

Since $(K_p y)'(0) = (K_p y)'(1) = 0$, there is $\xi \in (0, 1)$ such that $(K_p y)''(\xi) = 0$. Hence for $t \in (01)$ we have

$$|(K_p y)''(t)| = |(K_p y)''(t) - (K_p y)''(\xi)|$$

$$= |(K_p y)'''(\eta)(t - \xi)|$$

$$\leq |(K_p y)'''(\eta)|$$

for $\eta \in (t, \xi)$ or $\eta \in (\xi, t)$. So

$$\|(K_p y)''\|_\infty \leq \|(K_p y)'''\|_\infty \leq \|y\|_1.$$

It follows that $\|K_p y\| \leq \|y\|_1$ for $y \in Y$. It is easy to see that

$$(QN x)(t) = \int_0^1 \left(f(s, x(s), x'(s), x''(s), x'''(s)) + e(s) \right) \, ds$$

and

$$K_p(I - Q)Nx(t)$$

$$= \int_0^t \frac{(t - s)^3}{6} \left(f(s, x(s), x'(s), x''(s), x'''(s)) \bigg| s \right) \, ds$$

$$- \frac{t^2}{2} \int_0^t \frac{(1 - s)^2}{2} \left(f(s, x(s), x'(s), x''(s), x'''(s)) + e(s) \right) \, ds$$

$$- \left(\frac{t^4}{24} + \frac{t^2}{12} \right) \int_0^1 \left(f(s, x(s), x'(s), x''(s), x'''(s)) + e(s) \right) \, ds.$$

By using the Ascoli-Arzela theorem, we can prove that $QN(\bar{\Omega})$ is bounded and $K_p(I - Q)N : \bar{\Omega} \to X$ is compact. So N is L-compact on Ω. □
Theorem 2. Let \(f : [0, 1] \times \mathbb{R}^4 \to \mathbb{R} \) be a continuous function. Assume the following:

(A1) There exist functions \(a, b, c, d, g : [0, 1] \to \mathbb{R} \) and \(r \in L^1[0, 1] \) and a constant \(\theta \in [0, 1) \) such that

\[
|f(t, x, y, z, w)| \leq a(t)|x| + b(t)|y| + c(t)|z| + d(t)|w| + g(t)|w|^\theta + r(t);
\]

for all \(t \in [0, 1] \).

(A2) There exists a constant \(M > 0 \) such that if \(|w| > M \), then

\[
|f(t, x, y, z, w)| > -\alpha|x| + \beta|w| - L_1
\]

for all \(x, y, z \in \mathbb{R} \) and \(t \in [0, 1] \), where \(\beta > \alpha > 0 \) and \(L_1 > 0 \) are some constants.

(A3) There is a constant \(M_1 > 0 \) such that if \(|x(t)| > M_1 \) for all \(t \in [0, 1] \), then

\[
\int_0^1 \left(f(s, x(s), x'(s), x''(s), x'''(s)) + e(s) \right) ds \neq 0.
\]

(A4) \(\lim_{|c| \to \infty} \frac{|f(t, c, 0, 0, 0)|}{|c|} \in (0, +\infty) \).

(A5) There is a constant \(M_2 > 0 \) such that if \(|c| > M_2 \), then

\[
cf(t, c, 0, 0, 0) \begin{cases}
\leq 0 & (0 \leq t \leq 1) \\
g\geq 0 & (0 \leq t \leq 1).
\end{cases}
\]

(A6) \(\|a\|_1 + \|b\|_1 + \|c\|_1 + \|d\|_1 < \frac{1}{2} (1 - \frac{\alpha}{\beta}) \).

Then for every \(e \in L^1[0, 1] \) problem (1) – (2) has at least one solution in \(C^3[0, 1] \).

Proof. Let

\[
\Omega_1 = \left\{ x \in \text{dom } L/\text{Ker } L : Lx = \lambda Nx \text{ for some } \lambda \in (0, 1) \right\}.
\]

If \(x \in \Omega_1 \), then \(x \notin \text{Ker } L, \lambda \neq 0 \) and \(Nx \in \text{Im } L \), thus \(QNx = 0 \), i.e.

\[
x^{(4)}(t) = \lambda f \left(t, x(t), x'(t), x''(t), x'''(t) \right) + e(t) \ (t \in [0, 1])
\]

\[
x'(0) = x'(1) = x'''(0) = x'''(1) = 0
\]

\[
\int_0^1 \left(f(s, x(s), x'(s), x''(s), x'''(s)) + e(s) \right) ds = 0.
\]
So there is $t_1 \in (0, 1)$ such that
\[f(t_1, x(t_1), x'(t_1), x''(t_1), x'''(t_1)) = - \int_0^1 e(s) \, ds. \]
This yields
\[|f(t_1, x(t_1), x'(t_1), x''(t_1), x'''(t_1))| \leq \|e\|_1. \]
Again, if $x \in \text{dom } L$, then $(I - P)x \in \text{dom } L \cap \text{Ker } P$ and $LPx = 0$. Thus, from Lemma 1,
\[\|(I - P)x\| = \|K_P(I - P)x\| \leq \|L(I - P)x\|_1 = \|Lx\|_1 \leq \|Nx\|_1. \]
We consider two cases.

Case 1: $|x'''(t^*)| \leq M$ for some $t^* \in [0, 1]$. In this case we have
\[|x'''(t)| = |x'''(t^*)| + \left| \int_t^{t^*} x^{(4)}(s) \, ds \right| \leq M + \|Lx\|_1 \leq M + \|Nx\|_1. \]
Since $x'(0) = x'(1) = x'''(0) = x'''(1) = 0$, there is $\xi \in (0, 1)$ such that $x''(\xi) = 0$, thus
\[|x''(t)| = |x''(t) - x''(\xi)| = |x'''(\eta)(t - \xi)| \leq M + \|Nx\|_1. \]
Also, there is $\eta_1 \in [0, 1]$ such that
\[|x'(t)| = |x'(t) - x'(0)| = |x''(\eta_1)t| \leq M + \|Nx\|_1. \]
We claim that there is a $t^{**} \in (0, 1)$ such that $|x(t^{**})| \leq M_1$. Otherwise, if $|x(t)| > M_1$ for all $t \in [0, 1]$, condition (A3) implies
\[\int_0^1 \left(f(s, x(s), x'(s), x''(s), x'''(s)) + e(s) \right) ds \neq 0. \]
On the other hand, since $Lx \in \text{Im } L$, we have
\[\int_0^1 \left(f(s, x(s), x'(s), x''(s), x'''(s)) + e(s) \right) ds = 0, \]
which is a contradiction. Thus
\[|x(0)| = |x(t^{**})| + \left| \int_0^{t^{**}} x'(s) \, ds \right| \leq M_1 + M + \|Nx\|_1. \]
Hence
\[\|Px\| = |x(0)| \leq \frac{\bar{a}}{\beta} \|x\|_{\infty} + \|Nx\|_{1} + c_1 \]

where
\[c_1 = \max \left\{ M_1 + M, M_1 + \frac{1}{\beta} (L_1 + \|e\|_1) \right\}. \]

Thus we get
\[\|x\| \leq \|Px\| + \|(I - P)x\| \leq \frac{\alpha}{\beta} \|x\|_{\infty} + 2 \|Nx\|_{1} + c_1. \]

From Property (A_1) we get
\[\|x\| \leq \frac{\alpha}{\beta} \|x\|_{\infty} + 2 |a|_1 \|x\|_{\infty} + 2 |b|_1 \|x'\|_{\infty} + 2 |c|_1 \|x''\|_{\infty} \]
\[+ 2 |d|_1 \|x'''\|_{\infty} + 2 |g|_1 \|x''''\|_{\infty} + 2 |r|_1 + 2 |e|_1 + c_1 \]
\[= \left(2 |a|_1 + \frac{\alpha}{\beta} \right) \|x\|_{\infty} + 2 |b|_1 \|x'\|_{\infty} + 2 |c|_1 \|x''\|_{\infty} \]
\[+ 2 |d|_1 \|x'''\|_{\infty} + 2 |g|_1 \|x''''\|_{\infty} + 2 |r|_1 + 2 |e|_1 + c_1 \]
\[\leq \left(2 |a|_1 + \frac{\alpha}{\beta} \right) \|x\|_{\infty} + (2 |b|_1 + 2 |c|_1 + 2 |d|_1) \|x'''\|_{\infty} \]
\[+ 2 |g|_1 \|x''''\|_{\infty} + 2 |r|_1 + 2 |e|_1 + c_1. \]

i.e.
\[\|x\| \leq \left(2 |a|_1 + \frac{\alpha}{\beta} \right) \|x\|_{\infty} + (2 |b|_1 + 2 |c|_1 + 2 |d|_1) \|x'''\|_{\infty} \]
\[+ 2 |g|_1 \|x''''\|_{\infty} + 2 |r|_1 + 2 |e|_1 + c_1. \]

It is easy to check that \(\|x'\|_{\infty} \leq \|x''\|_{\infty} \leq \|x'''\|_{\infty} \). Together with \(\|x\|_{\infty} \leq \|x\| \), it follows from the above inequality that
\[\|x\|_{\infty} \leq \frac{1}{1 - 2 |a|_1 - \frac{\alpha}{\beta}} \left[2 |b|_1 \|x'\|_{\infty} + 2 |c|_1 \|x''\|_{\infty} \right. \]
\[+ 2 |d|_1 \|x'''\|_{\infty} + 2 |g|_1 \|x''''\|_{\infty} + 2 |r|_1 + 2 |e|_1 + c_1 \left. \right] \]
\[\leq \frac{1}{1 - 2 |a|_1 - \frac{\alpha}{\beta}} \left[(2 |b|_1 + 2 |c|_1 + 2 |d|_1) \|x''\|_{\infty} \right. \]
\[+ 2 |g|_1 \|x''''\|_{\infty} + 2 |r|_1 + 2 |e|_1 + c_1 \left. \right]. \] (5)

Case 2. \(|x''(t)| > M \) for all \(t \in [0, 1] \). In this case from property (A_2) we obtain
\[|x''(t_1)| \leq \frac{\bar{a}}{\beta} |x(t_1)| + \frac{L_1}{\beta} + \frac{1}{\beta} \left| f(t_1, x(t_1), x'(t_1), x''(t_1), x'''(t_1)) \right| \]
\[\leq \frac{\bar{a}}{\beta} \|x\|_{\infty} + \frac{L_1}{\beta} (L_1 + \|e\|_1) \]
so that
\[|x'''(t)| \leq |x'''(t_1)| + \left| \int_{t_1}^{t} x^{(4)}(s) \, ds \right| \]
\[\leq \frac{\bar{\alpha}}{\beta} \|x\|_\infty + \frac{1}{\beta} (L_1 + \|e\|_1) + \|Nx\|_1. \]

Thus similarly to the above discussion, one has a \(\xi \in (0, 1) \) such that
\[x''(\xi) = 0 \] and there is an \(\eta \in (0, 1) \) such that
\[|x''(t)| = |x''(t) - x''(\xi)| \]
\[= |x'''(\eta)(t - \eta)| \]
\[\leq \frac{\bar{\alpha}}{\beta} \|x\|_\infty + \frac{1}{\beta} (L_1 + \|e\|_1) + \|Nx\|_1. \]

So we get
\[|x'(t)| = |x'(t) - x'(0)| \]
\[\leq |x''(\xi)| \]
\[\leq \frac{\bar{\alpha}}{\beta} \|x\|_\infty + \frac{1}{\beta} (L_1 + \|e\|_1) + \|Nx\|_1. \]

From property \((A_3)\), there is a \(t^{**} \in (0, 1) \) such that \(|x(t^{**})| \leq M_1 \). Then, together with (5),
\[\|Px\| = |x(0)| \]
\[= \left| x(t^{**}) - \int_{0}^{t^{**}} x'(t) \, dt \right| \]
\[\leq M_1 + \frac{\bar{\alpha}}{\beta} \|x\|_\infty + \frac{1}{\beta} (L_1 + \|e\|_1) + \|Nx\|_1 \]
\[\leq \frac{\bar{\alpha}}{\beta} \|x\|_\infty + \|Nx\|_1 + c_1. \]

Thus
\[\|x\| \leq \|Px\| + \|(I - P)x\| \leq \frac{\bar{\alpha}}{\beta} \|x\|_\infty + 2 \|Nx\|_1 + c_1. \]

So property \((A_1)\) implies
\[\|x''\|_\infty \leq \|x\| \]
\[\leq \frac{2\|a\|_1 + \frac{\bar{\alpha}}{\beta}}{1 - 2\|a\|_1 - \frac{\bar{\alpha}}{\beta}} \left[(2\|b\|_1 + 2\|c\|_1 + 2\|d\|_1) \|x''\|_\infty \right. \]
\[+ 2\|g\|_1 \|x''\|_\infty^\theta + 2\|r\|_1 + 2\|e\|_1 + c_1 \right] \]
\[+ \left[(2\|b\|_1 + 2\|c\|_1 + 2\|d\|_1) \|x''\|_\infty \right. \]
\[+ 2\|g\|_1 \|x''\|_\infty^\theta + 2\|r\|_1 + 2\|e\|_1 + c_1 \right] \]}
\[
\begin{align*}
= & \frac{1}{1 - 2\|a\|_1 - \frac{\alpha}{\beta}} \left[(2\|b\|_1 + 2\|c\|_1 + 2\|d\|_1) \|x''\|_\infty \\
& + 2\|g\|_1 \|x''\|_\infty^\theta + 2\|r\|_1 + 2\|e\|_1 + c_1 \right].
\end{align*}
\]

We get (5). From (5) it follows that
\[
\|x''\|_\infty \leq \frac{2\|g\|_1 \|x''\|_\infty^\theta + c_1 + 2\|r\|_1 + 2\|e\|_1}{1 - 2\|a\|_1 - \frac{\alpha}{\beta}} (1 - 2\|a\|_1 - \frac{\alpha}{\beta}).
\]

Since \(\theta \in [0, 1]\), there is \(M_1^* > 0\) such that
\[
\|x''\|_\infty \leq M_1^*.
\]

Again, it is easy to prove that
\[
\|x''\|_\infty \leq \|x''\|_\infty \leq \|x''\|_\infty \leq \|x''\|_\infty \leq M_1^*.
\]

From property (A_3) we claim that there is \(t^{**} \in (0, 1)\) such that \(|x(t^{**})| \leq M_1\). Thus
\[
|x(t)| \leq \left| x(t^{**}) - \int_{t}^{t^{**}} x'(s) \, ds \right| \leq M_1 + \|x'||_\infty.
\]

Hence there is \(M_2^* > 0\) such that \(\|x\|_\infty \leq M_2^*\). Hence
\[
\|x\| \leq \max \{\|x\|_\infty, \|x'||_\infty, \|x''\|_\infty, \|x''''\|_\infty \} \leq \max \{M_1^*, M_2^*\}.
\]

Thus \(\Omega_1\) is bounded. Let
\[
\Omega_2 = \{x \in \text{Ker} \, L : Nx \in \text{Im} \, L\}.
\]

For \(x \in \Omega_2\), \(x \in \text{Ker} \, L\) and \(QNx = 0\), thus
\[
\int_{0}^{1} (f(s, c, 0, 0, 0) + e(s)) \, ds = 0, \quad \text{i.e.} \quad \int_{0}^{1} f(s, c, 0, 0, 0) \, ds = - \int_{0}^{1} e(s) \, ds.
\]

Thus there is \(t_0 \in (0, 1)\) such that
\[
f(t_0, c, 0, 0, 0) = - \int_{0}^{1} e(s) \, ds, \quad \text{so} \quad |f(t_0, c, 0, 0, 0)| \leq \|e\|_1.
\]

From property (A_4) we see that there is \(M^* > 0\) such that \(|c| \leq M^*\). Thus \(\Omega_2\) is bounded. Next, according condition (A_5), we have the following two cases.
Case 1. Suppose for any \(c \in R \), if \(|c| > M_2\), then \(cf(t, c, 0, 0, 0) \leq 0 \) for \(t \in [0, 1] \). Let

\[
\Omega_3 = \left\{ x \in \text{Ker} L : -\lambda x + (1 - \lambda)QN x = 0, \lambda \in [0, 1] \right\}.
\]

Now, similar to the proof of [6: Lemma 2.12], we prove that \(\Omega_3 \) is bounded. Suppose \(x_n(t) = c_n \in \Omega_3 \) and \(|c_n| \to \infty \) as \(n \to \infty \). Without loss of generality, suppose that \(c_n > M_2 \) for all \(n \). Then there is \(\lambda_n \in [0, 1] \) such that

\[
\lambda_n c_n = (1 - \lambda_n)QN(c_n), \quad \text{or} \quad \lambda_n = (1 - \lambda_n) \frac{QN(c_n)}{c_n}.
\]

Without loss of generality, suppose \(\lambda_n \to \lambda_0 \) as \(n \to \infty \). Then

\[
\left| \frac{QN(c_n)}{c_n} \right| = \frac{1}{|c_n|} \left| \int_0^1 \left(f(s, c_n, 0, 0, 0) + e(s) \right) ds \right|
\leq \frac{1}{|c_n|} \left[\|e\|_1 + \|a\|_1 |c_n| + \|r\|_1 \right]
= \|a\|_1 + \frac{\|e\|_1 + \|r\|_1}{|c_n|}.
\]

Thus \(\frac{QN(c_n)}{c_n} \) is bounded. So \(\lambda_n \to \lambda_0 \neq 1 \) by (6). Thus, for sufficiently large \(n \), \(\lambda_n \neq 1 \). Then

\[
\frac{\lambda_n}{1 - \lambda_n} = \frac{1}{c_n} \left(\int_0^1 \left(f(s, c_n, 0, 0, 0) + e(s) \right) ds \right).
\]

From property (A4), for sufficiently large \(n \), \(|f(t, c_n, 0, 0, 0)| \geq \alpha |c_n| \) for some \(\alpha > 0 \). Then property (A5) implies \(f(t, c_n, 0, 0, 0) < -\alpha c_n \). Thus, by Fatou’s Lemma,

\[
\limsup \left(\frac{1}{c_n} \int_0^1 f(s, c_n, 0, 0, 0) ds + \frac{1}{c_n} \int_0^1 e(s) ds \right)
\leq \limsup \frac{1}{c_n} \int_0^1 f(s, c_n, 0, 0, 0) ds
\leq \int_0^1 \limsup \frac{f(s, c_n, 0, 0, 0)}{c_n} ds
\leq -\alpha
< 0.
\]

This contradicts \(\frac{\lambda_n}{1 - \lambda_n} \geq 0 \). Then \(\Omega_3 \) is bounded.
Case 2. Suppose $|c| > M_2$. Then $cf(t, c, 0, 0, 0) \geq 0$ for $t \in [0, 1]$. Indeed, set
\[
\Omega_3 = \left\{ x \in \text{Ker} L : \lambda x + (1 - \lambda)QN x = 0 \text{ for all } \lambda \in (0, 1) \right\}.
\]
Like in the above argument, we can prove that Ω_3 is bounded. In the following, we shall prove that all conditions of Theorem 1 are satisfied. Let Ω be a bounded open subset of X such that
\[
\bigcup_{i=1}^{3} \overline{\Omega}_i \subset \Omega.
\]
By Lemma 1, L is a Fredholm operator of index zero and N is L-compact on $\overline{\Omega}$. By the above argument and the definition of Ω, we have:
(i) $Lx \neq \lambda Nx$ for $(\lambda, x) \in [(\text{dom } L/\text{Ker } L) \cap \partial \Omega] \times (0, 1)$
(ii) $Nx \notin \text{Im } L$ for $x \in \text{Ker } L \cap \partial \Omega$.
At last, we prove that condition (iii) of Theorem M is satisfied. Let
\[
H(x, \lambda) = \pm \lambda x + (1 - \lambda)QN x.
\]
By the definition of Ω, we see that $H(x, \lambda) \neq 0$ for $x \in \partial \Omega \cap \text{Ker } L$. Thus, by the homotopy property of degree, we have
\[
\deg(QN_{\text{Ker } L}, \Omega \cap \text{Ker } L, 0) = \deg(H(\cdot, 0), \Omega \cap \text{Ker } L, 0)
= \deg(H(\cdot, 1), \Omega \cap \text{Ker } L, 0)
= \deg(\pm \lambda I, \Omega \cap \text{Ker } L, 0)
\neq 0.
\]
Thus by Theorem 1, the equation $Lx = Nx$ has at least one solution in $\text{dom } L \cap \overline{\Omega}$. So problem (1) - (2) has at least one solution \blacksquare

References

Solvability of Two-Point Boundary Value Problems

Received 14.05.2003