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A Wave Equation
with Fractional Damping

N.-e. Tatar

Abstract. We consider a wave equation with an internal damping represented by a
fractional derivative of lower order than one. An exponential growth result is proved
in presence of a source of polynomial type. This result improves an earlier one where
the initial data are supposed to be very large in some norm. A new argument based
on a new functional is proposed.
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1. Introduction

We are interested in the fractional differential problem

utt + ∂1+α
t u = ∆u + |u|p−1u

u(x, t) = 0

u(x, 0) = u0(x), ut(x, 0) = u1(x)

(x ∈ Ω, t > 0)

(x ∈ Γ, t > 0)

(x ∈ Ω)





(1)

where p > 1, −1 < α < 1, u0 and u1 are given functions, Ω is a bounded do-
main of RN with smooth boundary Γ and ∂1+α

t is Caputo’s fractional deriva-
tive of order 1 + α (see [18: Chapter 2.4.1]) defined by

∂1+α
t w(t) =

{
I−α d

dtw(t) if −1 < α < 0
I1−α d2

dt2 w(t) if 0 < α < 1
(2)

where Iβ (β > 0) is the fractional integral

Iβw(t) =
1

Γ(β)

∫ t

0

(t− s)β−1w(s) ds. (3)
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See also [4, 17, 18, 20] for more on fractional derivatives and applications.In
particular, in Control theory, it is known that noise is amplified by the dif-
ferentiation process. To attenuate this noise one is lead to use derivatives of
lower order.

Problem (1) was first studied for α = 1
2 by Lokshin in [11] and Lokshin

and Rok in [12]. Then, it has been considered for −1 < α < 1 by Matignon et
al. [13]. The authors have managed to replace the hereditary equation by a
non-hereditary system for which the standard methods, such as the Galerkin
method and LaSalle’s invariance principle, apply. For the well posedness we
refer the reader to this reference (see also [8] for more on existence results).

Let us mention here that the case α = 0 corresponds to an internal damp-
ing. This damping competes with the polynomial source. As a result, it was
proved (see [5, 14, 16, 19]) that solutions exist globally in time when the initial
data are in a stable set and blow up in a finite time when the initial data are
in an unstable set. It is also known that in the linear case (p = 1), we have
global existence even without any type of dissipation.

The wave equation without damping corresponds to the case where α =
−1. This case has been extensively studied by many authors (see, for instance
[1 - 3, 7, 7, 10, 21]). It has been proved, in particular, that solutions blow
up in finite time for sufficiently large initial data (in some sense) and also for
small initial data provided that the exponent p lies in some critical range.

In this paper we improve an earlier result by the present author with M.
Kirane in [9]. There, for sufficiently large initial data (in some sense), it has
been shown that the solution is unbounded provided that the initial data are
very large in some norm. In fact, an exponential growth result was proved.
Here we relax considerably this condition on the initial data. So the space of
initial data is enlarged. To this end we present a different argument based on
a new functional while the previous proof makes use of the Hardy-Littlewood-
Sobolev inequality and some ”convolution” inequalities.

2. Exponential growth

Let us define the classical energy by

E(t) =
∫

Ω

{1
2
u2

t +
1
2
|∇u|2 − 1

p + 1
|u|p+1

}
dx

and the modified energy by

Eε(t) =
∫

Ω

{1
2
u2

t +
1
2
|∇u|2 − εuut − 1

p + 1
|u|p+1

}
dx (4)
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for some ε > 0. Theorem. Let u = u(x, t) be a regular solution of problem
(1) with −1 < α < 0 and p > 1. If the initial data u0 and u1 are such that
Eε(0) < 0, then u(x, t) grows up exponentially in the Lp+1-norm.

Proof. Let us multiply (1)1 by ut − εu and integrate over Ω. We get
d

dt

∫

Ω

{1
2
u2

t +
1
2
|∇u|2 − εuut − 1

p + 1
|u|p+1

}
dx

+
1

Γ(−α)

∫

Ω

ut

∫ t

0

(t− s)−(α+1)ut(s) dsdx

= ε

∫

Ω

|∇u|2dx +
ε

Γ(−α)

∫

Ω

u

∫ t

0

(t− s)−(α+1)ut(s) dsdx

− ε

∫

Ω

u2
t dx− ε

∫

Ω

|u|p+1dx.

Recalling definition (4) of Eε, we see that

dEε(t)
dt

+
1

Γ(−α)

∫

Ω

ut

∫ t

0

(t− s)−(α+1)ut(s) dsdx

= ε

∫

Ω

|∇u|2dx

+
ε

Γ(−α)

∫

Ω

u

∫ t

0

(t− s)−(α+1)ut(s) dsdx

− ε

∫

Ω

u2
t dx− ε

∫

Ω

|u|p+1dx.

(5)

Next, we define the auxiliary functional F = Fα,β,σ by

F =
∫ t

0

∫

Ω

Gα,β(t− s)e−σεs|ut|2dxds (6)

with

Gα,β(t) = eβt

∫ +∞

t

e−βss−(2α+3)ds (7)

where β > 0 and ε > 0 are constants which will be precised later on. Since
there is no risk of confusion in the notation, we will drop the subscripts of F
and G for convenience.

The differentiation of F (t) in (6) with respect to t gives

dF (t)
dt

=
∫

Ω

Gβ(0)e−σεt|ut|2dx

+
∫ t

0

∫

Ω

{
− (t− s)−(2α+3)

+ βeβ(t−s)

∫ +∞

t−s

e−βzz−(2α+3)dz

}
e−σεs|ut|2dxds.

(8)
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Observe that

G(0) =
∫ +∞

0

e−βss−(2α+3)ds = β2(α+1)Γ(2α + 4).

Then relation (8) becomes
dF (t)

dt
= β2(α+1)Γ(2α + 4)e−σεt

∫

Ω

|ut|2dx

−
∫ t

0

∫

Ω

(t− s)−(2α+3)e−σεs|ut|2dxds + βF (t).
(9)

Now, we consider the functional

H(t) = e−σεtEε(t) + µF (t) (t ≥ 0) (10)

for some µ > 0 to be determined. Its derivative with respect to t is, according
to (5) and (9), equal to

dH(t)
dt

= −σεe−σεtEε(t)

+ e−σεt

{
− 1

Γ(−α)

∫

Ω

ut

∫ t

0

(t− s)−(α+1)ut(s) dsdx

+ ε

∫

Ω

|∇u|2dx− ε

∫

Ω

|ut|2dx

+
ε

Γ(−α)

∫

Ω

u

∫ t

0

(t− s)−(α+1)ut(s) dsdx− ε

∫

Ω

|u|p+1dx

}

+ µ

{
β2(α+1)Γ(2α + 4)e−σεt

∫

Ω

|ut|2dx

−
∫ t

0

∫

Ω

(t− s)−(2α+3)e−σεs|ut|2dxds + βF (t)
}

.

Using definition (4) of Eε, we may write
dH(t)

dt
= −

(σε

2
+ ε− µβ2(α+1)Γ(2α + 4)

)
e−σεt

∫

Ω

|ut|2dx

−
(σε

2
− ε

)
e−σεt

∫

Ω

|∇u|2dx + σε2e−σεt

∫

Ω

utu dx

−
(
ε− σε

p + 1

)
e−σεt

∫

Ω

|u|p+1dx

− µ

∫ t

0

∫

Ω

(t− s)−(2α+3)e−σεs|ut|2dxds

+
εe−σεt

Γ(−α)

∫

Ω

u

∫ t

0

(t− s)−(α+1)ut(s) dsdx

− e−σεt

Γ(−α)

∫

Ω

ut

∫ t

0

(t− s)−(α+1)ut(s) dsdx + µβF (t).

(11)
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By the generalized Young inequality and the Poincaré inequality, we clearly
have ∫

Ω

utu dx ≤ 1
4ε

∫

Ω

|ut|2dx + εCp

∫

Ω

|∇u|2dx (12)

where Cp is the Poincaré constant. The seventh term in the right-hand side
of (11) may be handled in the following manner. First note that

e−σεt

∫

Ω

ut

∫ t

0

(t− s)−(α+1)ut(s) dsdx

= e−
σε
2 t

∫

Ω

ut

∫ t

0

(t− s)−(α+1)e−
σε
2 (t−s)e−

σε
2 sut(s) dsdx.

Then, by the generalized Young inequality, we find

e−σεt

∫

Ω

ut

∫ t

0

(t− s)−(α+1)ut(s) dsdx

≤ εΓ(−α)
2

e−σεt

∫

Ω

|ut|2dx

+
1

2εΓ(−α)

∫

Ω

( ∫ t

0

(t− s)−(α+1)e−
σε
2 (t−s)e−

σε
2 sut(s) ds

)2

dx.

Here we have multiplied as in [15] by e−
σε
2 se

σε
2 s. Using the decomposition

α + 1 = − 1
2 + (α + 3

2 ), we obtain by the Hölder inequality

e−σεt

∫

Ω

ut

∫ t

0

(t− s)−(α+1)ut(s) dsdx

≤ εΓ(−α)
2

e−σεt

∫

Ω

|ut|2dx

+
1

2Γ(−α)σε3

∫

Ω

∫ t

0

(t− s)−(2α+3)e−σεs|ut|2dsdx.

(13)

Similarly, we obtain for the sixth term in the right-hand side of (11)

e−σεt

∫

Ω

u

∫ t

0

(t− s)−(α+1)ut(s) dsdx

≤ δCpe
−σεt

∫

Ω

|∇u|2dx

+
1

4δσε2

∫

Ω

∫ t

0

(t− s)−(2α+3)e−σεs|ut|2dsdx (δ > 0).

(14)
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Taking into account (12) - (14) in (11), we infer that
dH(t)

dt
≤ −

[σε

2
+ ε− µβ2(α+1)Γ(2α + 4)− 1

4
σε− ε

2

]
e−σεt

∫

Ω

|ut|2dx

− ε
[σ

2
− ε

(
1 + σε2Cp +

Cpδ

Γ(−α)

)]
e−σεt

∫

Ω

|∇u|2dx

−
[
µ− 1

4σ2ε2Γ(−α)

( 2
εΓ(−α)

+
ε

δ

)]

×
∫ t

0

∫

Ω

(t− s)−(2α+3)e−σεs|ut|2dxds

− ε
(
1− σ

p + 1

)
e−σεt

∫

Ω

|u|p+1dx + µβF (t).

This inequality may also be written as
dH(t)

dt
≤ σεH(t)− ε

[
σ − (1 + σε2Cp +

Cpδ

Γ(−α)

)]
e−σεt

∫

Ω

|∇u|2dx

−
[
σε + ε− µβ2(α+1)Γ(2α + 4)− 1

4
σε− ε

2

]
e−σεt

∫

Ω

|ut|2dx

−
[
µ− 1

4σ2ε2Γ(−α)

( 2
εΓ(−α)

+
ε

δ

)]

×
∫ t

0

∫

Ω

(t− s)−(2α+3)e−σεs|ut|2dxds

− ε
(
1− 2σ

p + 1

)
e−σεt

∫

Ω

|u|p+1dx + σε2e−σεt

∫

Ω

utu dx

+ µ(β − σε)F (t).

(15)

To get (15), we have added and subtracted σεH(t) in the right-hand side of
the previous inequality.

Finally, we apply (12) to the term
∫
Ω

utu dx in (15) to obtain
dH(t)

dt
≤ σεH(t)

− ε
[
σ −

(
1 + 2σε2Cp +

Cpδ

Γ(−α)

)]
e−σεt

∫

Ω

|∇u|2dx

− 1
2

[
σε + ε− 2µβ2(α+1)Γ(2α + 4)

]
e−σεt

∫

Ω

|ut|2dx

−
[
µ− 1

4σ2ε2Γ(−α)

( 2
εΓ(−α)

+
ε

δ

)]

×
∫ t

0

∫

Ω

(t− s)−(2α+3)e−σεs|ut|2dxds

− ε
(
1− 2σ

p + 1

)
e−σεt

∫

Ω

|u|p+1dx + µ(β − σε)F (t).

(16)
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Choosing δ = (p− 1)Γ(−α)
4Cp

, inequality (16) reduces to

dH(t)
dt

≤ σεH(t)− ε
[
σ − (2σε2Cp +

p + 3
4

)]
e−σεt

∫

Ω

|∇u|2dx

− 1
2

[
σε + ε− 2µβ2(α+1)Γ(2α + 4)

]
e−σεt

∫

Ω

|ut|2dx

−
[
µ− 1

2σ2ε2Γ2(−α)

(1
ε

+
2εCp

p− 1

)]

×
∫ t

0

∫

Ω

(t− s)−(2α+3)e−σεs|ut|2dxds

− ε
(
1− 2σ

p + 1

)
e−σεt

∫

Ω

|u|p+1dx + µ(β − σε)F (t).

(17)

If we choose

ε < min
{

1,
1

Cp
,
[ p− 1
2(p + 1)Cp

]1/2}
,

then it is possible to select σ such that

p + 3
4(1− 2Cpε2)

< σ <
p + 1

2
.

This ensures the negativity of the coefficients of
∫
Ω
|∇u|2dx and

∫
Ω
|u|p+1dx.

Next, assuming µ large enough, namely

µ ≥ 1
2σ2ε3Γ2(−α)

(
1 +

2ε2Cp

p− 1

)

and

β ≤ min
{

σε,
[ ε

2µΓ(2α + 4)

] 1
2(α+1)

}
,

the remaining coefficients are also negative. Therefore (17) reduces to

dH(t)
dt

≤ σεH(t) (t ≥ 0). (18)

We assume that

H(0) = Eε(0) =
∫

Ω

{1
2
u2

1 +
1
2
|∇u0|2 − εu0u1 − 1

p + 1
|u0|p+1

}
dx

is negative. By the Gronwall inequality it is easy to see from (18) that

H(t) ≤ H(0)eσεt (t ≥ 0). (19)
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On the other hand, from the definition of H(t) and (12) (with ε = 1
2 ) we

obtain

H(t) ≥ −e−σεt

p + 1

∫

Ω

|u|p+1dx +
e−σεt

2

∫

Ω

|ut|2dx +
e−σεt

2

∫

Ω

|∇u|2dx

− εe−σεt

2

∫

Ω

|ut|2dx− εCpe
−σεt

2

∫

Ω

|∇u|2dx

or, for t ≥ 0,

H(t) ≥ −e−σεt

p + 1

∫

Ω

|u|p+1dx

+
e−σεt

2

∫

Ω

[(1− ε)|ut|2 + (1− εCp)|∇u|2]dx.

From our choice of ε, it is clear that

H(t) ≥ −e−σεt

p + 1

∫

Ω

|u|p+1dx. (20)

Relations (19) and (20) imply that

∫

Ω

|u|p+1dx ≥ (p + 1)[−H(0)]e(2σε)t (t ≥ 0).

This completes the proof
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