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Fixed Point Theorems
for a Class of Mixed Monotone Operators

Liang Zhandong, Zhang Lingling and Li Shengjia

Abstract. In this paper we study a class of mixed monotone operators with convex-
ity and concavity. In particular, we give conditions, both necessary and sufficient,
for the existence and uniqueness of fixed points. Moreover, we sketch a simple
application of our main theorem and generalize some previous results.
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1. Introduction

It is well known that mixed monotone operators are important for studying
positive solutions of nonlinear differential and integral equations. In applica-
tions, in order to prove existence or uniqueness for solution of such equations,
one usually considers the fixed points of some related operators. More infor-
mation about mixed monotone operators may be found in [6]. There are many
useful results about mixed monotone operators with convexity and concavity
properties (see [1 - 5, 7 - 12]). In this paper, we study this class of operators
and give sufficient and necessary conditions for the existence and uniqueness
of fixed points without assuming the operators to be continuous or compact.
In this way, we generalize and extend similar results from [2, 4, 6, 10 - 12].

Suppose that E is a real Banach space which is partially ordered by a cone
P ⊂ E, i.e. x ≤ y if and only if y − x ∈ P . By θ we denote the zero element
of E. Recall that a non-empty closed convex set P ⊂ E is a cone if it satisfies

x ∈ P, λ ≥ 0 ⇒ λx ∈ P

x,−x ∈ P ⇒ x = θ.
(1)
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Putting
P ◦ =

{
x ∈ P : x is an interior point of P

}
,

a cone P is said to be solid if its interior P ◦ is non-empty. Moreover, P is
called normal if there exists a constant N > 0 such that, for all x, y ∈ E,
θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖; in this case N is called the normality constant
of P . In the case y − x ∈ P ◦ we write x ¿ y.

For instance, the usual cones of non-negative elements in RN , lp, l∞, C, Lp,
L∞ and C are normal, the cone of non–negative functions in C1 is not. On
the other hand, the cone of non-negative functions in C and C1 is solid, but
in LP it is not.

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and
µ > 0 such that λx ≤ y ≤ µx. Clearly, ∼ is an equivalence relation. Given
h > θ (i.e. h ≥ θ and h 6= θ), we denote by Ph the set

Ph =
{

x ∈ E

∣∣∣∣
there exist λ(x), µ(x) > 0 such

that λ(x)h ≤ x ≤ µ(x)h

}
.

It is easy to see that Ph ⊂ P .

Recall that A : Ph × Ph → Ph is a mixed monotone operator, if A(x, y) is
non-decreasing in x and non-increasing in y, i.e. for all x1, x2, y1, y2 ∈ Ph,

x1 ≤ x2, y2 ≤ y1 ⇒ A(x1, y1) ≤ A(x2, y2).

A point (x∗, y∗) ∈ Ph×Ph is called a coupled fixed point of A if A(x∗, y∗) = x∗

and A(y∗, x∗) = y∗. Finally, an element x∗ ∈ Ph is called a fixed point of A if
A(x∗, x∗) = x∗.

All the concepts discussed above can be found in [3]. Our paper is orga-
nized as follows. In the Section 2 we discuss mixed monotone operators with
convexity and concavity properties in a simple special case. Afterwards, in
Section 3, we pass to mixed monotone operators with convexity and concavity
in the general case. A certain application of our results will be given in Section
4.

2. A special case

In this section, we give necessary and sufficient conditions for the existence
and uniqueness of fixed points on mixed monotone operators with convexity
and concavity in a special case. Let us begin with the following lemma.
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Lemma 2.1. Suppose that E is a real Banach space, P is a cone in
E, h > θ and A : Ph × Ph → Ph. Then the following two statements are
equivalent:

(a) For all 0 < t < 1 there exists 0 < α = α(t) < 1 such that

A
(
tu,

1
t
v
)
≥ tα(t)A(u, v) (u, v ∈ Ph, u ≤ v).

(b) For all 0 < t < 1 there exists η = η(t) > 0 such that

A
(
tu,

v

t

)
≥ t[1 + η(t)]A(u, v) (u, v ∈ Ph, u ≤ v)

where t[1 + η(t)] < 1.

Proof. If assertion (a) holds, we take η(t) = tα(t)−1− 1 and get assertion
(b). Conversely, if assertion (b) holds, we take α(t) = ln[t(1+η(t))]

ln t ; since
0 < t[1 + η(t)] < 1, we easily get assertion (a)

Theorem 2.1. Suppose that E is a real Banach space, P is a normal cone
in E, h > θ, and A : Ph × Ph → Ph is a mixed monotone operator. Assume
property (a) of Lemma 2.1 is fulfilled. Then A has exactly one fixed point x∗

in Ph if and only if, for some u0, v0 ∈ Ph with u0 ≤ v0, u0 ≤ A(u0, v0) and
A(v0, u0) ≤ v0. Moreover, constructing successively the sequences

xn = A(xn−1, yn−1)

yn = A(yn−1, xn−1)
(n ≥ 1), (2)

for any initial value (x0, y0) ∈ [u0, v0] we have limn→∞ xn = limn→∞ yn = x∗.

Proof. Firstly we prove that, if A has a fixed point in Ph, then this fixed
point is unique. In fact, if x∗, y∗ ∈ Ph are such that A(x∗, x∗) = x∗ and
A(y∗, y∗) = y∗, then denote

a0 = sup
{

a > 0
∣∣∣ ay∗ ≤ x∗ ≤ 1

a
y∗

}
.

Then 0 < a0 ≤ 1; we claim that a0 = 1. In fact, 0 < a0 < 1 would imply that

x∗ = A(x∗, x∗) ≥ A
(
a0y

∗,
1
a0

y∗
)
≥ a

α(a0)
0 A(y∗, y∗) = a

α(a0)
0 y∗.

But 0 < α(a0) < 1 and a
α(a0)
0 > a0, contradicting the definition of a0. We

conclude that x∗ = y∗.
Proof of necessity: Assume that x∗ is a fixed point of A in Ph. Let

u0 = v0 = x∗. Then u0 ≤ A(u0, v0) and A(v0, u0) ≤ v0.
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Proof of sufficiency: Let un+1, vn+1 (n ≥ 0) be as in (2). It is clear
that

u0 ≤ u1 ≤ ...un ≤ ... ≤ vn ≤ ... ≤ v1 ≤ v0

and {un}, {vn} ⊂ Ph. In what follows we prove that {un} and {vn} are Cauchy
sequences. For any n ∈ N, there exists µ > 0 such that µvn ≤ un ≤ vn.
Putting

tn = sup{µ > 0 : un ≥ µvn}
we see that 0 < tn ≤ 1 and tn is non-decreasing. So limn→∞ tn = t for some
0 < t ≤ 1. We show that t = 1. In fact, otherwise it follows from 0 < t < 1,
un ≥ tnvn, vn ≤ 1

tn
un and tn ≤ t that

un+1 = A(un, vn)

≥ A
(
tnvn,

1
tn

un

)

= A
[ tn

t
(tvn),

t

tn
(
1
t
un)

]

≥ tn
t

[
1 + η(

tn
t

)
]
A

(
tvn,

1
t
un

)

≥ tn
t

A
(
tvn,

1
t
un

)

≥ tn[1 + η(t)]A(vn, un)

= tn[1 + η(t)]vn+1

where η = η( tn

t ) > 0 is that from Lemma 2.1/(b). By the definition of tn+1

we get tn+1 ≥ tn[1 + η(t)]. Letting n → ∞ we obtain t ≥ t[1 + η(t)]. But
η(t) > 0, by Lemma 2.1, which is a contradiction. So we conclude that t = 1
as claimed.

For any natural number p we have

0 ≤ un+p − un ≤ vn − un ≤ vn − tnvn ≤ (1− tn)v0.

From the normality of P it follows that ||un+p−un|| ≤ N(1− tn)||v0|| → 0 as
n → ∞. So {un} is a Cauchy sequence; the same reasoning shows that {vn}
is also a Cauchy sequence.

Now we prove that A has a fixed point x∗ ∈ Ph. Because E is complete,
there exist u∗, v∗ ∈ E such that un → u∗ and vn → v∗. From the fact that
{un} ↑, {vn} ↓, un ≤ vn and from the normality of P it follows that un ≤
u∗ ≤ v∗ ≤ vn. Consequently, u∗, v∗ ∈ Ph and v∗ − u∗ ≤ vn − un ≤ (1− tn)v0,
and so ‖v∗ − u∗‖ → 0, i.e. u∗ = v∗ =: x∗. We know that

un+1 = A(un, vn) ≤ A(u∗, v∗) = A(x∗, x∗) ≤ A(vn, un) = vn+1.
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So letting n →∞ yields A(x∗, x∗) = x∗.

Finally, if the sufficient condition holds, then for arbitrary x0, y0 ∈ [u0, v0]
and xn, yn as in (2) we get un ≤ xn ≤ vn and un ≤ yn ≤ vn. Taking into
account that P is normal we conclude that limn→∞ xn = limn→∞ yn = x∗

which completes the proof

Theorem 2.2. Suppose that E is a real Banach space, P is a normal
cone in E, h > θ and A : Ph × Ph → Ph is a mixed monotone operator.
Assume property (a) of Lemma 2.1 holds for u = v =: x. Then A has exactly
one fixed point x∗ in Ph if and only if there exist x0 ∈ Ph and t0 ∈ (0, 1) such
that t0x0 ≤ A

(
t0x0,

x0
t0

)
and A

(
x0
t0

, t0x0

) ≤ x0
t .

Proof. Set u0 = t0x0 and v0 = x0
t0

. Then A(u0, v0) = A
(
t0x0,

x0
t0

) ≥ u0

and A(v0, u0) = A
(

x0
t0

, t0x0

) ≤ v0. Choosing un+1, vn+1 as in (2) we can
complete the proof by the same reasoning as in the proof of Theorem 2.1

Remark 1. A comparison with the corresponding results in the literature
([2: Theorem 3.1], [4] and [11: Theorem 1]) shows that our hypotheses are
simpler and weaker, while our assertions are stronger in the following sense:

- Only sufficient conditions were given in those papers, but we get conditions
which are both sufficient and necessary.

- Tools used in those papers were the Hilbert metric, the Thompson met-
ric, and the fixed point index; these methods cannot be used under the
hypotheses of our theorems.

- We widen the range of α from α = const or α = α(a, b) to α = α(t) for
t ∈ (0, 1).

- The corresponding theorems of [2, 4, 5] are corollaries of our Theorems
2.1 and 2.2.

Remark 2. The conclusion of Theorem 2.1 also holds when (1) is satisfied
in [u0, v0] only.

Corollary 2.1 (see [2]). Suppose that E is a real Banach space, P is a
normal cone in E, and A : P ◦×P ◦ → P ◦ is a mixed monotone operator such
that for all 0 < t < 1 there exists 0 < β < 1 with A

(
tx, 1

t y
) ≥ tβA(x, y) (x, y ∈

P ◦). Then A has exactly one fixed point x∗ in P ◦ and, for all x0, y0 ∈ P ◦,
limn→∞ xn = limn→∞ yn = x∗ where xn, yn (n ≥ 1) are as in (2).

Proof. Choose a sufficiently small number t0 such that t0x0 ≤ x0 ≤ 1
t0

x0,

t0x0 ≤ y0 ≤ 1
t0

x0 and t1−β
0 x0 ≤ A(x0, x0) ≤

(
1
t0

)1−β
x0. Putting u0 = t0x0

and v0 = 1
t0

x0 we get u0 ≤ A(u0, v0) and A(v0, u0) ≤ v0. So the hypotheses
of Theorem 2.1 are satisfied and the conclusion follows

Remember that an operator A : x → Ax is called
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- concave if A(tx1 + (1− t)x2) ≥ tA(x1) + (1− t)A(x2)
- (−α)-convex if A(tx) ≤ t−αA(x)

for all 0 < t < 1 and all x.

Corollary 2.2 (see [4]). Suppose that E is a real Banach space, P is a
normal cone in E, and A : P ◦ × P ◦ → P ◦ is a mixed monotone operator
which satisfies the following assumptions:

(a) For fixed y, the operator A(·, y) : P ◦ → P ◦ is concave while for fixed
x the operator A(x, ·) : P ◦ → P ◦ is (−α)-convex.

(b) There exist u0, v0 ∈ P and ε ≥ α > 0 such that θ ¿ u0 ≤ v0,
u0 ≤ A(u0, v0), A(v0, u0) ≤ v0 and A(θ, v0) ≥ εA(u0, v0).

Then A has exactly one fixed point x∗ in [u0, v0]. Moreover, for all x0, y0 ∈
[u0, v0] one has ‖xn−x∗‖ → 0 and ‖yn−x∗‖ → 0 (n →∞), where xn, yn (n ≥
o) are as in (2).

Proof. It is easy to see that, if A has a fixed point in P ◦ × P ◦, then
this fixed point is unique. So we only have to prove existence. In fact, for
all h ∈ P ◦ we have Ph = P ◦. For A : Ph × Ph → Ph, condition (b) ensures
that there exist u0, v0 ∈ Ph such that u0 ≤ A(u0, v0) and A(v0, u0) ≤ v0.
We can prove that, for all t ∈ (0, 1), one can find 0 < α(t) < 1 such that
A

(
tu, 1

t v
) ≥ tα(t)A(u, v) for all u, v ∈ [u0, v0]. Indeed,

A
(
tu,

1
t
v
)
≥ tαA(tu, v)

≥ tα
[
tA(u, v) + (1− t)A(θ, v)

]

≥ tα+1A(u, v) + tα(1− t)εA(u, v)

=
[
tα+1 + tα(1− t)ε

]
A(u, v)

≥ [
tα+1 + tα(1− t)α

]
A(u, v)

= tα(t)A(u, v),

where α(t) = ln(tα+1+tα(1−t)α)
ln t , implies 0 < α(t) < 1. So all conditions of

Theorem 2.1 are satisfied, and the assertion follows

Corollary 2.3 (see [5]). Suppose that E is a real Banach space, P is
a normal cone in E, and A : P ◦ × P ◦ → P ◦ is a mixed monotone operator
such that for all [a, b] ⊂ (0, 1) one can find α = α(a, b) ∈ (0, 1) such that
A

(
tx, 1

t x
) ≥ tαA(x, x) (x ∈ P ◦). Then A has exactly one fixed point x∗

in P ◦ and An(x0, x0) → x∗ = A(x∗, x∗) for all x0 ∈ P ◦ where An(x0, x0) =
A(xn−1, xn−1) (n ≥ 1).

Proof. Firstly, for all x0 ∈ P ◦ there exists 0 < b < 1 satisfying bx0 ≤
A(x0, x0) ≤ 1

b x0. Secondly, by assumption we know that, for all t0 ∈ [a, b] ⊂
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(0, 1), there is a 0 < β = β(a, b) < 1 such that A(t0x0,
1
t0

x0) ≥ tβ0A(x0, x0).
Moreover,

A(t0x0, t0x0) ≥ tβ0A(x0, x0)

A
( 1

t0
x0,

1
t0

x0

)
≤ t−β

0 A(x0, x0).

For all sequences {ai}i≥1 satisfying 0 < ai < 1 and a1 > a2 > . . . > an >
. . . > 0 we denote for i ≥ 1

βi = inf
{

β ∈ (0, 1) : A(tx, tx) ≥ tβA(x, x) ∀ t ∈ [ai, b), x ∈ P ◦
}

.

Then β1 < β2 < . . . βn < . . . < 1. It is clear that there exists 0 < β ≤ 1 such
that limn→∞ βn = β.

Finally, if b
1

1−β1 > a1, we choose t0 ∈ (a1, b
1

1−β1 ) ⊂ [a, b] and write
u0 = t0x0 and v0 = 1

t0
x0. By assumption, we have then u0 ≤ A(u0, v0)

and A(v0, u0) ≤ v0, which shows that all conditions of Theorem 2.2 hold.
On the other hand, in the case b

1
1−β1 ≤ a1 we can choose an in the form

an = a1b
1/(1−βn−1) (n ≥ 2). This implies that an > 0 and the sequence {an}

is decreasing. It is easy to prove that there exists N0 such that, for N ≥ N0,

aN = a1b
1

1−βN−1 < b
1

1−βN < b.

So choosing t0 ∈ (aN0 , b
1/(1−βN0 )) ⊂ (aN0 , b) and denoting u0 = t0x0 and

v0 = 1
t0

x0, we see that all conditions of Theorem 2.2 are satisfied as well. This
completes the proof

3. The general case

In order to study mixed monotone operators with convexity and concavity in
the general case, we introduce the concept of an ”adjoint sequence” and give
necessary and sufficient conditions for the existence and uniqueness of fixed
points.

Lemma 3.1. Suppose that E is a real Banach space, P is a normal cone
in E, h > θ, and A : Ph × Ph → Ph. Then the following two statements are
equivalent:

(a) For all 0 < t < 1 and u, v ∈ Ph there exists 0 < t = α(t, u, v) ≤ 1 such
that A

(
tu, 1

t v
) ≥ tα(t,u,v)A(u, v).

(b) For all 0 < t < 1 and u, v ∈ Ph there exists η = η(t, u, v) > 0 such
that A

(
tu, 1

t v
) ≥ t[1 + η(t, u, v)]A(u, v) where t[1 + η(t, u, v)] < 1.

The method of proof is similar to that of Lemma 2.1 and therefore omitted.
For further reference we recall the concept of “adjoint sequence” in the

following
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Definition 3.1. Suppose that E is a real Banach space, P is a normal
cone in E, h > θ, A : Ph × Ph → Ph is an operator, and u0, v0 ∈ Ph. If there
exists 0 < λ0 < 1 such that λ0v0 ≤ u0 ≤ v0, we define un+1, vn+1 (n ≥ 0) as
in (2). Then, if {ηn} is a sequence which satisfies 0 < λn = λ0(1 + ηn)n < 1
for λnvn ≤ un ≤ vn (n ≥ 0), we call {ηn} an adjoint sequence of A with
respect to λ0, u0, v0.

Suppose A is a mixed monotone operator, and for all 0 < t < 1 and u, v ∈
Ph we can find 0 < t = α(t, u, v) < 1 such that A

(
tu, 1

t v
) ≥ tα(t,u,v)A(u, v).

In this case we may choose u0, v0 ∈ Ph with u0 ≤ v0 and 0 < λ0 < 1 such that
u0 ≥ λ0v0. Then A must have an adjoint sequence with respect to λ0, u0, v0.
In fact, by Lemma 3.2 there exists η′1 = η′1(λ0, u0, v0) satisfying

A(u0, v0) ≥ A
(
λ0v0,

1
λ0

u0

)
≥ λ0

[
1 + η′1(λ0, u0, v0)

]
A(v0, u0)

and λ0(1 + η1) ∈ (0, 1). Choosing η1 ≤ η′1 yields

A(u0, v0) ≥ λ0

[
1 + η1(λ0, u0, v0)

]
A(v0, u0),

hence
λ1v1 ≤ u1 ≤ v1

0 < λ1 = λ0(1 + η1) < 1.
(3)

By (3) there exists η′2 = η′2(λ0, u0, v0) such that

A(u1, v1) ≥ A
(
λ1v1,

1
λ1

u1

)
≥ λ1(1 + η′2)A(v1, u1)

and 0 < λ1(1 + η′2) < 1. Choosing now η2 = min(η1, η
′
2) we get

λ2v2 ≤ u2 ≤ v2

0 < λ2 = λ0(1 + η2)2 < 1.

By induction we get for all natural numbers n

λnvn ≤ un ≤ vn

0 < λn = λ0(1 + ηn)n < 1.

We conclude that {ηn} is an adjoint sequence of A with respect to λ0, u0, v0

as claimed.
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Theorem 3.1. Suppose that E is a real Banach space, P is a normal cone
in E, h > θ, and A : Ph × Ph → Ph is a mixed monotone operator. Assume
that property (a) of Lemma 3.1 is fulfilled for some α(t, u, v). Then A has
exactly one fixed point x∗ in Ph if and only if there exist u0, v0 satisfying:

(a) u0 ≤ A(u0, v0) and A(v0, u0) ≤ v0.
(b) If there exists λ0 > 0 such that u0 ≥ λ0v0, then one can find an adjoint

sequence {ηn} of A with respect to λ0, u0, v0 such that limn→∞ nηn = ln 1
λ0

.
Moreover, if A has a fixed point x∗ in Ph, then for all x0, y0 ∈ Ph one has

limn→∞ xn = x∗ and limn→∞ yn = x∗ where xn, yn (n ≥ 1) are as in (2).

Proof. Sufficiency: Let un+1, vn+1 (n ≥ 0) as in Definition 3.1. Be-
cause A is a mixed monotone operator and assertion (a) holds, we have

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0.

Furthermore, by assertion (b), the existence of λ0 > 0 satisfying u0 ≥ λ0v0

implies the existence of an adjoint sequence {ηn} of A with respect to λ0, u0, v0

such that nηn → ln 1
λ0

as n →∞ and un ≥ λ0(1 + ηn)nvn. Therefore

vn − un ≤ vn − λ0(1 + ηn)nvn ≤
[
1− λ0(1 + ηn)n

]
v0.

Consequently,
‖vn − un‖ ≤ N

[
1− λ0(1 + ηn)n

]‖v0‖
where N is the normality constant of P . Taking into account that ηn → 0 as
n →∞ and

λ0(1 + ηn)n = λ0

[
(1 + ηn)

1
ηn

]nηn → λ0
1
λ0

= 1 (n →∞),

it follows that ‖vn − un‖ → 0 as n →∞. This shows that {un} and {vn} are
Cauchy sequences.

Since E is complete, Ph is closed, un ↑, vn ↓, and un ≤ vn, we find u∗, v∗ ∈
Ph such that un → u∗, vn → v∗ (n → ∞) and un ≤ u∗ ≤ v∗ ≤ vn (n ≥ 0).
This implies u∗ = v∗ =: x∗. We have

un+1 = A(un, vn) ≤ A(u∗, v∗) ≤ A(vn, un) = vn+1.

Moreover, x∗ ≤ A(x∗, x∗) ≤ x∗, and so x∗ is a fixed point of A. The proof of
uniqueness is similar to that given in Theorem 2.1.

Necessity: Firstly, let x∗ be a fixed point of A. For all 0 < t0 < 1 denote
u0 = t0x

∗ and v0 = 1
t0

x∗. Then there exists 0 < α(t0, x∗) < 1 such that

A(u0, v0) = A
(
t0x

∗,
1
t0

x∗
)
≥ t

α(t0,x∗)
0 A(x∗, x∗) = t

α(t0,x∗)
0 x∗ ≥ t0x

∗ = u0

A(v0, u0) = A
( 1

t0
x∗, t0x∗

)
≤

( 1
t0

)α(t0,x∗)
A(x∗, x∗) =

1
t0

x∗ = v0.
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This shows that assertion (a) holds.
Secondly, letting un+1, vn+1 (n ≥ 0) as in Definition 3.1 we have

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0.

It is not hard to prove that there exists x∗ ∈ Ph such that un → x∗ and
vn → x∗ (n →∞). In fact, let us denote

ξn = sup
{

t > 0 : tx∗ ≤ un, vn ≤ 1
t
x∗

}
.

Then 0 < ξn ≤ 1 and ξn ↑, and therefore we find ξ such that limn→∞ ξn = ξ.
Obviously, 0 < ξ ≤ 1; we claim that ξ = 1. Indeed, assuming 0 < ξ < 1 we
get

un+1 = A(un, vn)

≥ A
(
ξnx∗,

1
ξn

x∗
)

= A
(ξn

ξ
ξnx∗,

ξ

ξn

1
ξn

x∗
)

≥ ξn

ξ
A

(
ξx∗,

1
ξ
x∗

)

≥ ξn

[
1 + η(ξ, x∗)

]
x∗.

Therefore, ξn+1 ≥ ξn[1 + η(ξ, x∗)]. This leads to ξ ≥ ξ[1 + η(ξ, x∗)], a contra-
diction.

Our result implies that

‖vn − un‖ ≤ N
∥∥∥
( 1

ξn
− ξn

)
x∗

∥∥∥ → 0 (n →∞).

So we get limn→∞ un = limn→∞ vn = x∗. Moreover, from u0 ≤ x∗ ≤ v0

we have un ≤ vn (n ≥ 1). We may also easily prove that there exists cn

with 0 ≤ cn ≤ 1 and cn → 1 as n → ∞ such that un ≥ cnvn. In fact, from
un ≥ ξnx∗ and vn ≤ 1

ξn
x∗ we deduce that un ≥ ξ2

nvn. So letting cn = ξ2
n

proves the statement.

Let cn = λ0(1 + η̃n)n where η̃n =
(

cn

λ0

) 1
n − 1. Then un ≥ λ0(1 + η̃n)nvn

which shows that {η̃n} is an adjoint sequence of A with respect to λ0, u0, v0.
Furthermore, nη̃n → ln 1

λ0
as n →∞. In fact,

cn = λ0(1 + η̃n)n = λ0

[
(1 + η̃n)

1
η̃n

]nη̃n

and
ln cn = ln λ0 + nη̃n ln

[
(1 + η̃n)

1
η̃n

] ⇒ lim
n→∞

nη̃n = ln
1
λ0

.

Finally, for all x0, y0 ∈ Ph we choose a sufficiently small number t0 and set
u0 = t0x

∗ and v0 = 1
t0

x∗, where x0, y0 ∈ [u0, v0]. Then we get limn→∞ xn = x∗

and limn→∞ yn = x∗. This completes the proof
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Remark 3. Theorem 2.1 is a special case of Theorem 3.1.

Theorem 3.2. Suppose that E is a Banach space, P is a normal cone
in E, h > θ, and A : Ph × Ph → Ph is a mixed monotone operator. Assume
that property (a) of Lemma 2.1 with α(t) = 1 is fulfilled for all u, v ∈ Ph (in
this case A is called sublinear). Then A has exactly one fixed point x∗ in Ph

if and only if there exist sequences {uk,0}∞0 , {vk,0}∞0 ⊂ Ph such that
(a) uk,0 ≤ A(uk,0, vk,0) and vk,0 ≥ A(vk,0, uk,0)
(b) uk,0 ≤ uk+1,0 and vk+1,0 ≤ vk,0

(c) λkvk,0 ≤ uk,0 ≤ vk,0 and λk → 1 as k →∞.

Proof. Sufficiency: Note that

uk,l+1 = A(uk,l, vk,l)

vk,l+1 = A(vk,l, uk,l)
(k, l ≥ 0).

By assertion (a), for k we have

uk,1 = A(uk,0, vk,0) ≥ uk,0

vk,1 = A(vk,0, uk,0) ≤ vk,0

uk,2 = A(uk,1, vk,1) ≥ A(uk,0, vk,0) = uk,1

vk,2 = A(vk,1, uk,1) ≤ A(vk,0, uk,0) = vk,1

...

and so on, i.e. uk,l ≤ uk,l+1, vk,l ≥ vk,l+1 while assertion (b) for l implies
uk+1,l ≥ uk,l; vk+1,l ≤ vk,l. We have the inequalities

u0,0 ≤ u0,1 ≤ u0,2 ≤ . . . ≤ u0,k ≤ . . . v0,k ≤ . . . v0,2 ≤ v0,1 ≤ v0,0

u1,0 ≤ u1,1 ≤ u1,2 ≤ . . . u1,k ≤ . . . ≤ v1,k ≤ . . . v1,2 ≤ v1,1 ≤ v1,0

...

uk,0 ≤ uk,1 ≤ uk,2 ≤ . . . uk,k ≤ . . . ≤ vk,k ≤ . . . vk,2 ≤ vk,1 ≤ vk,0

and so on which in turn imply

u0,0 ≤ u1,1 ≤ . . . ≤ uk,k ≤ . . . ≤ vk,k ≤ . . . v1,1 ≤ v0,0.

Moreover, by assertion (c), uk,0 ≥ λkvk,0 and

uk,1 = A(uk,0, vk,0) ≥ A(λkvk,0, vk,0) = A
(
λkvk,0,

1
λk

λkvk,0

)

≥ λkA(vk,0, λkvk,0) ≥ λkA(vk,0, uk,0) = λkvk,1
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and so on, i.e. uk,k ≥ λkvk,k, we get

vk,k − uk,k ≤ vk,k − λkvk,k = (1− λk)vk,k ≤ (1− λk)v0,0.

Since λk → 1 and P is normal, using a similar reasoning as in Theorem 2.1
we see that there exists x∗ ∈ P such that A(x∗, x∗) = x∗.

Necessity: Assume that x∗ is a fixed point of A, i.e. A(x∗, x∗) = x∗.
Denoting uk,0 = k+1

k+2x∗ and vk,0 = k+2
k+1x∗ we get

A(uk,0, vk,0) = A
(k + 1

k + 2
x∗,

k + 2
k + 1

x∗
)
≥ k + 1

k + 2
A(x∗, x∗) = uk,0

vk,0 =
k + 2
k + 1

x∗ =
k + 2
k + 1

A(x∗, x∗) =
k + 2
k + 1

A
(k + 1

k + 2
vk,0,

k + 2
k + 1

uk,0

)

≥ k + 2
k + 1

× k + 1
k + 2

A(vk,0, uk,0) = A(vk,0, uk,0)

uk,0 =
k + 1
k + 2

x∗ ≤ k + 2
k + 3

x∗ = uk+1,0

vk,0 =
k + 2
k + 1

x∗ ≥ k + 3
k + 2

x∗ = vk+1,0

uk,0 =
k + 1
k + 2

x∗ =
k + 1
k + 2

× k + 1
k + 2

vk,0 ≥ k + 1
k + 2

× k

k + 2
vk,0.

Thus, if we choose λk = k(k+1)
(k+2)2 , then uk,0 ≥ λkvk,0 and λk → 1 as k → ∞.

This completes the proof

Remark 4. According to the best of our knowledge, for sublinear oper-
ators A, sufficient and necessary conditions for the existence and uniqueness
of fixed points have not been given in the literature so far.

4. Example

Let E = CB(RN ) denote the set of all bounded continuous functions on RN .
Equipped with the natural norm ‖x‖ = sup{|x(t)| : t ∈ RN}, E is a real
Banach space. The set P = C+

B (RN ) of non-negative functions in CB(RN ) is
a normal and solid cone in CB(RN ). We choose h ≡ 1 ∈ E and consider the
integral equation

x(t) = (Ax)(t) =
∫

RN

k(t, s)
[
2 + x(s)α(‖x‖) + x(s)−α(‖x‖)

]
ds (4)

where α : (0, +∞) → (0, 1) is non-decreasing.
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Proposition 4.1. Assume that k : RN × RN → R is continuous with
k(t, s) ≥ 0 and 1

31 ≤ ∫
RN k(t, s) ds ≤ 9

130 (t ∈ RN ). Then equation (4)
has exactly one positive solution x∗ satisfying 0.1 ≤ x∗(t) ≤ 0.9 (t ∈ RN ).
Moreover, starting from (x0(t), y0(t)) ∈ [0.1, 0.9] × [0.1, 0.9] and constructing
successively the sequence (2), the corresponding results hold.

Proof. Equation (4) can be written in the form x = A(x, x), where
A(x, y) = A1x + A2y with

(A1x)(t) =
∫

RN

k(t, s)
[
2 + x(s)α(‖x‖)]ds

(A2y)(t) =
∫

RN

k(t, s)y(s)−α(‖y‖)ds

(t ∈ RN ).

Let u0 = 0.1 and v0 = 0.9. Since A : Ph × Ph → Ph is non-decreasing in x
and non-increasing in y, for all 0 < t < 1 and u, v ∈ Ph we get

A
(
tu,

v

t

)
=

∫

RN

k(t, s)
[
2 + tα(t‖u‖)uα(t‖u‖) + tα( 1

t ‖v‖)v−α( 1
t ‖v‖)

]
ds

≥
∫

RN

k(t, s)
[
2tα( 1

t ) + tα(t)uα(||u||) + tα( 1
t )v−α(‖v‖)

]
ds

≥ tα( 1
t )

∫

RN

k(t, s)
[
2 + uα(‖u‖) + v−α(‖v‖)

]
ds

= tα( 1
t )A(u, v)

= tβ(t)A(u, v),

and
A(u0, v0) =

∫

RN

k(t, s)
[
2 + 0.1α(0.1) + 0.9−α(0.1)

]
ds

≥
∫

RN

k(t, s)
[
2 + 0.1 + 1

]
ds

≥ 0.1 = u0

A(v0, u0) =
∫

RN

k(t, s)
[
2 + 0.9α(0.9) + 0.1−α(0.1)

]
ds

≤
∫

RN

k(t, s)
[
2 + 10 + 1]ds

≤ 0.9 = v0.

So all conditions of Theorem 2.1 are satisfied. Consequently, A has exactly one
fixed point x∗ in [0.1, 0.9], and this fixed point is the unique positive solution
of equation (4) in [0.1, 0.9].
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