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On the Set of Reachable States
in the Problem of

Controllability of Rotating Timoshenko Beams

W. Krabs, G. M. Sklyar and J. Wozniak

Abstract. This work continues the authors’ previous investigation on the control-
lability problem of a slowly rotating Timoshenko beam. We obtain conditions of
exact controllability under the assumption that the parameter γ appearing in the
model equation is rational. Our result rests on a generalization of the theorem by
Ullrich on the Riesz basis property of exponential divided differences.
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1. Introduction

In this work we continue the investigation of a linearized model [1] of a rotating
Timoshenko beam begun in [7 - 11]. Following [11: Chapter 3] we consider
the model given by two dimension-free equations

ω̈(x, t)− ω′′(x, t) + ξ′(x, t) = −θ̈(t)(r + x)

ξ̈(x, t)− γ2ξ′′(x, t) + ξ(x, t) + ω′(x, t) = θ̈(t)

}
(1.1)

for x ∈ (0, 1) and t > 0, where ω(x, t) denotes the deflection of the center
line of the beam and ξ(x, t) the rotation angle of the cross section area at the
location x ∈ [0, 1] and time t ≥ 0, respectively, ω̇ = ωt, ξ̇ = ξt and ω′ = ωx,
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ξ′ = ξx, θ is the rotation angle of the motor disk, θ̇ = dθ
dt , r is the radius of

the disk, γ2 = EA
K with K the shear modulus, E the Young’s modulus and A

the cross section area. In addition, we have boundary conditions of the form

ω(0, t) = ξ(0, t) = 0

ω′(1, t) + ξ(1, t) = 0

ξ′(1, t) = 0





(t ≥ 0). (1.2)

Our goal is to describe exactly the set of the states of the system (the beam
plus the disk) which can be reached from the position of rest

ω(x, 0) = ω̇(x, 0) = ξ(x, 0) = ξ̇(x, 0) = θ(0) = θ̇(0) = 0 (x ∈ [0, 1]) (1.3)

at the time T , for some large enough T > 0. Such a problem has been solved
in [8] for the case γ2 = 1, using a certain modification of Ullrich’s theorem
[12]. In the present work we give a solution in the case of an arbitrary rational
γ2 > 1. In Section 2 we recall the operator model equation derived in [11]
as well as spectral analysis given in that work. On this basis we formulate
our controllability problem as a special non-harmonic moment problem. Con-
ditions of solvability of this problem are obtained in Section 3 analyzing the
Riesz basis properties of the corresponding system of exponentials. In partic-
ular, we make use of some theorem from [1]. In the final Section 4 we give
a solution of the controllability problem in terms of coefficients of the model
operator. Our main result is the exact description of the reachability set for
the time T > 2 1+γ

γ . Note that in the case γ2 = 1 our result coincides with
the one given in [8].

2. A moment problem describing the conditions
of controllability

We consider the rotation of a Timoshenko beam in horizontal plane whose left
end is clamped into the disk of a driving motor. Let r be the radius of the
disk and let θ = θ(t) be the rotation angle as a function of the time t ≥ 0.
If ω(x, t) denotes the deflection of the center line of the beam at the location
x ∈ [0, 1] (the length of the beam is assumed to be 1) and the time t ≥ 0 and
ξ(x, t) denotes the rotation angle of the cross section area at x and t and if
we assume the rotation to be slow, then ω and ξ are governed by (1.1) - (1.2).
In this paper we investigate the following problem of controllability:

Given a time T > 0 and a position
(
ωT , ξT , ω̇T , ξ̇T , θT , θ̇T

)
of the beam

where ωT , ξT , ω̇T , ξ̇T are chosen in suitable function spaces and θT , θ̇T are
given real numbers, find

θ ∈ H2
0 (0, T ) =

{
θ ∈ H2(0, T )| θ(0) = θ̇(0) = 0

}
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such that
θ(T ) = θT

θ̇(T ) = θ̇T

(2.1)

and the weak solution (ω, ξ) of problem (1.1) - (1.3) satisfies the end conditions

ω(·, T ) = ωT

ξ(·, T ) = ξT

ω̇(·, T ) = ω̇T

ξ̇(·, T ) = ξ̇T .

(2.2)

Let H = L2((0, 1),R2). Then we define a linear operator A : D(A) → H by

A
(y

z

)
=

( −y′′ − z′

−γ2z′′ + z + y′

)

for
(

y
z

) ∈ D(A) where

D(A) =





(y

z

)
∈ H2((0, 1),R2)

∣∣∣∣∣

y(0) = z(0) = 0

y′(1) + z(1) = 0

z′(1) = 0





.

With this operator, equations (1.1) can be rewritten in the form

(
ω̈(·, t)
ξ̈(·, t)

)
+ A

(
ω(·, t)
ξ(·, t)

)
=

(
f1(·, t)
f2(·, t)

)
(2.3)

for t > 0 where
f1(x, t) = −θ̈(t)(r + x)

f2(x, t) = θ̈(t)

for x ∈ (0, 1) and t > 0. It is shown in [11] that A : D(A) → H is positive, self-
adjoint and has an orthonormal sequence of eigenelements

(
yj

zj

) ∈ D(A) (j ∈
N) and a corresponding sequence of eigenvalues λj ∈ R such that 1 < λj ↑ ∞
as j →∞. It is further shown that for large n the eigenvalues of A are of the
form

λn =

{
1
4

(
γ(2k − 1)π + ε2k−1

)2 for n = 2k − 1
1
4

(
(2k − 1)π + ε2k

)2 for n = 2k
(2.4)

where ε2k−1, ε2k > 0 and limn→∞ εn = 0.
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The unique weak solution of equation (2.3) corresponding to initial con-
ditions (1.3) is then given by

(ω(x, t)
ξ(x, t)

)
=

∞∑

j=1

1√
λj

∫ t

0

sin
√

λj (t− s)
〈(f1(·, t)

f2(·, t)
)
,
(yj

zj

)〉
H

ds
(yj

zj

)

for x ∈ [0, 1] and t ≥ 0 and its time derivative reads

( ω̇(x, t)
ξ̇(x, t)

)
=

∞∑

j=1

∫ t

0

cos
√

λj (t− s)
〈(f1(·, t)

f2(·, t)
)
,
(yj

zj

)〉
H

ds
(yj

zj

)
.

From these representations we infer that end conditions (2.2) are equivalent
to

aj

∫ T

0

sin
√

λj (T − t)θ̈(t) dt =
√

λj

〈(ωT

ξT

)
,
(yj

zj

)〉
H

aj

∫ T

0

cos
√

λj(T − t)θ̈(t) dt =
〈(ωT

ξT

)
,
(yj

zj

)〉
H





(j ∈ N) (2.5)

where

aj =
〈
b,

(yj

zj

)〉
H

= −
∫ 1

0

(r + x)yj(x) dx +
∫ 1

0

zj(x) dx.

Later on we will assume that aj 6= 0 (j ∈ N). Following [11] we can make
a short analysis of this assumption. The values of the disk radius such that
the equality aj = 0 is valid for some eigenvector

(
yj

zj

)
are called singular ones.

Obviously, in the case when the disk radius is of a singular value there exists
a fundamental frequency of the beam which is invariable under the influence
of the control, i.e. system (2.3) is not controllable. However the following
statement holds

Remark 2.1 (see [11]). There exists at most countable set of singular
values of the disk radius.

Example. In the case γ2 = 1 the singular values of r are of the form (see
[7 - 8])

rn =
σ

(n)
1 sin σ

(n)
1 − σ

(n)
3 sin σ

(n)
3√

λn (cos σ
(n)
3 + cosσ

(n)
1 )

where σ
(n)
1 =

√
λn −

√
λn and σ

(n)
3 =

√
λn +

√
λn with λn an eigenvalue of

A. Let us define un = σ
(n)
3 − σ

(n)
1 and vn = σ

(n)
3 + σ

(n)
1 . It was shown in [10 -

11] that
u2

n(1 + cos un) = v2
n(1 + cos vn).
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That gives

rn = −σ
(n)
3

λn

sin un

2 ± sin vn

2

cos un

2 ± cos vn

2

.

It is also proven that there exist n ∈ N such that an = 0 if and only if
π + 2nπ < vn < 2π + 2nπ. From those two facts one can derive that1

lim
n→∞

rn =





tan 1
4+1

tan 1
4−1

for n = 2k − 1

− tan 1
4+1

tan 1
4−1

for n = 2k.

Summarizing we get that beyond of any neighborhood of the point − tan 1
4+1

tan 1
4−1

there exist only a finite number of singular values of disk radius.
From this moment we will assume that r is a non-singular one. If we

define

d1
j =

√
λj

aj

〈(ωT

ξT

)
,
(yj

zj

)〉
H

d2
j =

1
aj

〈( ω̇T

ξ̇T

)
,
(yj

zj

)〉
H





(j ∈ N)

and put u(t) = θ̈(T − t) for t ∈ [0, T ], then (2.5) can be rewritten in the form

∫ T

0

sin
√

λj tu(t) dt = d1
j

∫ T

0

cos
√

λj tu(t) dt = d2
j





(j ∈ N). (2.6)

End conditions (2.1) turn out to be equivalent to

∫ T

0

tu(t) dt = θT

∫ T

0

u(t) dt = θ̇T





. (2.7)

Then the problem of controllability is equivalent to finding some u ∈ L2(0, T )
which satisfies (2.6) - (2.7). If such u has been found, then

θ(t) =
∫ t

0

(t− s)u(T − s) ds (t ∈ [0, T ])

is a solution of the problem of controllability.

1 Note that the values of limn→∞ rn correct the ones calculated in [10].
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3. The analysis of Riesz basis properties

In this section we examine the Riesz basis properties of functions arising in
the moment problem. For the purpose of this paper we assume that in (1.1)
γ = p

q ∈ Q with p > q. We consider in detail the case where p, q are odd
numbers. We also give briefly a result in the remaining case.

Let us define dj = d2
j + id1

j . Then system (2.6) is equivalent to

∫ T

0

ei
√

λjtu(t) dt = dj

∫ T

0

e−i
√

λjtu(t) dt = dj





(j ∈ N).

Let us define

√
λj =

{
γ π

2 (2n− 1) + ε2n−1 for j = 2n− 1
π
2 (2n− 1) + ε2n for j = 2n

(3.1)

µj =
{

γ π
2 (2n− 1) for j = 2n− 1

π
2 (2n− 1) for j = 2n

for j ∈ Z, where εj are defined in (2.4) for j ∈ N and for j ∈ Z \ N we put
εj = 0. Notice that

√
λj = µj + εj . Also,

µq(2m−1) =
p

q

π

2
q(2m− 1) =

π

2
(2pm− p + 1− 1) = µ2pm−p+1.

We start our analysis with the following

Lemma 3.1. The system {eiµjt}j∈Z\(2qZ−q) ∪ {teiµq(2j−1)t}j∈Z is a Riesz
basis for L2

(
0, 2 1+γ

γ

)
= L2

(
0, 2p+q

p

)
.

Proof. Let us rewrite the system in question in the form

{
eiµjt, . . . , tmj−1eiµjt

}
j∈Z\(2qZ−q)

where

mj =
{

1 for j 6= 2pm− p + 1
2 for j = 2pm− p + 1 (m ∈ Z).

Consider the sine-type function

F (z) = 4ei γ+1
γ z sin

(
z
γ + π

2

)
sin

(
z + π

2

)
.
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Then

F (z) = −2ei γ+1
γ z

(
cos

(
1+γ

γ z + π
)− cos

(
1−γ

γ z
))

= −ei γ+1
γ z

(
ei 1+γ

γ z+iπ + e−i 1+γ
γ z−iπ − ei 1−γ

γ z − ei 1−γ
γ z

)

= ei2 γ+1
γ z + 1 + ei2z + ei 2

γ z

and one can easily check that the set of zeroes of the function F is {µj}j∈Z\(2qZ−q).
Moreover, the multiplicity of the root µj equals mj . Then we can apply [1:
Theorem II.4.23], which completes the proof

Let us denote Iγ = (0, 2 1+γ
γ ). The main result of the section is

Theorem 3.1. If 1 < γ = p
q ∈ Q with p, q ∈ 2N− 1 and, for some δ > 0,

|εj | < δ (j ∈ Z), then the system
∫

Iγ

f(t)e−i
√

λjtdt = cj (j ∈ Z) (3.2)

with λj defined by (3.1) has a solution f ∈ L2(Iγ) if and only if
∞∑

j=−∞

(
|cj |2 +

∣∣∣∣
c2qj−q − c2pj−p+1√
λ2qj−q −

√
λ2pj−p+1

∣∣∣∣
2)

< ∞. (3.3)

Moreover, if system (3.2) has a solution, then it is unique.

Our proof will use the following three lemmas from [12].

Lemma 3.2. Let {xn} be a Riesz basis for a complex Hilbert space H,
i.e. there exist constants A,B > 0 such that, for any N ∈ N and any complex
a−N , . . . , aN , A2

∑N
−N |an|2 ≤

∥∥∑N
−N anxn

∥∥2 ≤ B2
∑N
−N |an|2. Further, let

0 < A′ < A and {yn} be a sequence of elements from H such that, for any
N ∈ N and any complex a−N , . . . , aN , ‖∑N

−N anyn‖2 ≤ (A′)2
∑N
−N |an|2.

Then {xn + yn} is complete in H and forms a Riesz basis.

Lemma 3.3. For every ε > 0 there exists δ > 0 such that if w0, w1 are
distinct complex numbers satisfying |w0|, |w1| < δ, then for any z ∈ C with
|z| ≤ 3π + 1 the inequalities

|1− eiw0z|,
∣∣∣iz − eiw0z − eiw1z

w0 − w1

∣∣∣ < ε

hold and imply
∣∣∣ ∂

∂z
(1− eiw0z)

∣∣∣
∣∣∣ ∂2

∂z2
(1− eiw0z)

∣∣∣





< ε and

∣∣∣ ∂

∂z

(
iz − eiw0z − eiw1z

w0 − w1

)∣∣∣
∣∣∣ ∂2

∂z2

(
iz − eiw0z − eiw1z

w0 − w1

)∣∣∣





< ε.
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Lemma 3.4. Let ϕn ∈ C2(−(K + 2)π, (K + 2)π) (n ∈ Z) satisfy the
inequalities ‖ϕn‖∞, ‖ϕ′n‖∞ ≤ ε, ‖ϕ′′n‖∞ < ε for n ∈ Z and some ε > 0. Then,
for any complex sequence {an} and any N ∈ N,

∫

IK

∣∣∣∣
N∑

−N

aneintϕn(t)
∣∣∣∣
2

dt ≤ ε2M2
N∑

−N

|an|2

where M depends on K only.

Proof of Theorem 3.1. System (3.2) is obviously equivalent to
∫

Iγ

f(t)e−i
√

λjtdt = cj

∫

Iγ

f(t)
e−i
√

λ2qj−qt − e−i
√

λ2pj−p+1 t

√
λ2qj−q −

√
λ2pj−p+1

dt =
c2qj−q − c2pj−p+1√
λ2qj−q −

√
λ2pj−p+1





.

Thus it is enough to show that the system

{
ei
√

λjt,
ei
√

λ2qj−qt − ei
√

λ2pj−p+1 t

√
λ2qj−q −

√
λ2pj−p+1

}
(j ∈ Z) (3.4)

(as a set of functions of t ∈ Iγ) forms a Riesz basis for L2(Iγ). Let us define

ϕ0
n(z) = 1− eiεnz

ϕ1
n(z) = iz − e−iεnz − e

−iε 2p−1
2q

n+p+ 1
2

z

√
λn −

√
λ 2p−1

2q n+p+ 1
2

.

Then

eiµjtϕ0
j (t) = eiµjt − ei

√
λjt

eiµ2qj−qtϕ1
2qj−q(t) = iteiµ2qj−qt − ei

√
λ2qj−q t − ei

√
λ2pj−p+1 t

√
λ2qj−q −

√
λ2pj−p+1

.

Using Lemmas 3.3 and 3.4 we obtain that for any ε > 0 there exists δ > 0
such that, if a0

−N , a1
−N , . . . , a0

N , a1
N are any complex numbers, then

∫

Iγ

∣∣∣∣
N∑

−N

a0
j

(
eiµjt − ei

√
λjt

)∣∣∣∣
2

dt

=
∫

Iγ

∣∣∣∣
N∑

−N

a0
je

iµjtϕ0
j (t)

∣∣∣∣
2

dt



On the Set of Reachable States 223

≤ 2
∫

Iγ

∣∣∣∣
N∑

j=−N
j∈2Z−1

a0
je

iπγnte−i π
2 γtϕ0

j (t)
∣∣∣∣
2

dt + 2
∫

Iγ

∣∣∣∣
N∑

j=−N
j∈2Z

a0
je

iπnte−i π
2 tϕ0

j (t)
∣∣∣∣
2

dt

= 2
∫

Iγ

∣∣∣∣
N∑

j=−N
j∈2Z−1

a0
je

iπγntϕ0
j (t)

∣∣∣∣
2

dt + 2
∫

Iγ

∣∣∣∣
N∑

j=−N
j∈2Z

a0
je

iπntϕ0
j (t)

∣∣∣∣
2

dt (3.5)a

=
2

πγ

∫ 2π(1+γ)

0

∣∣∣∣
N∑

j=−N
j∈2Z−1

a0
je

intϕ0
j

( t

πγ

)∣∣∣∣
2

dt +
2
π

∫ 2π 1+γ
γ

0

∣∣∣∣
N∑

j=−N
j∈2Z

a0
je

intϕ0
j

( t

π

)∣∣∣∣
2

dt

≤ 2
π

(
1 +

1
γ

)
M2ε2

N∑

−N

|a0
j |2

and

∫

Iγ

∣∣∣∣
N∑

−N

a1
j

(
iteiµ2qj−qt − ei

√
λ2qj−qt − ei

√
λ2pj−p+1 t

√
λ2qj−q −

√
λ2pj−p+1

)
∣∣∣∣
2

dt

=
∫

Iγ

∣∣∣∣
N∑

−N

a1
je

iµ2qj−qtϕ1
2qj−q(t)

∣∣∣∣
2

dt

=
∫

Iγ

∣∣∣∣
N∑

−N

a1
je

iπpjte−ip π
2 tϕ1

2qj−q(t)
∣∣∣∣
2

dt

=
∫

Iγ

∣∣∣∣
N∑

−N

a1
je

iπpjtϕ1
2qj−q(t)

∣∣∣∣
2

dt

=
∫ 2π(p+q)

0

∣∣∣∣
N∑

−N

a1
je

ijtϕ1
2qj−q

( t

πp

)∣∣∣∣
2

dt

≤ 1
πp

M2ε2
N∑

−N

|a1
j |2

(3.5)b

where M depends on γ only. From (3.5) it follows that for any a0
j and a1

j (j ∈
Z)

∫

Iγ

∣∣∣∣
N∑

−N

a0
j

(
eiµjt − ei

√
λj t

)
+

N∑

−N

a1
j

(
iteiµ2qj−qt − ei

√
λ2qj−q t − ei

√
λ2pj−p+1 t

√
λ2qj−q −

√
λ2pj−p+1

)∣∣∣∣
2

dt

≤ 2(p + q) + 1
πp

M2ε2
N∑

−N

(|a0
j |2 + |a1

j |2
)

(3.6)
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where M depends on γ only. Since the set {eiµjt}j∈Z\(2qZ−q)∪{teiµq(2j−1)t}j∈Z
forms a Riesz basis for L2(Iγ) by Lemma 3.1, then due to Lemma 3.2 there
exists a constant A > 0 such that, for any complex a0

j and a1
j (j ∈ Z),

A2
N∑

−N

(|a0
j |2 + |a1

j |2
) ≤

∫

Iγ

∣∣∣∣
N∑

−N

a0
je

iµjt +
N∑

−N

a1
j ite

iµ2qj−qt

∣∣∣∣
2

dt.

If M is as in (3.5), pick ε > 0 so that 2(p+q)+1
πp M2ε2 < A2. Now choose δ so

that (3.5) holds with this ε, for |εj | < δ. Then (3.6) shows that the hypotheses
of Lemma 3.2 are satisfied, so that set (3.4) is a Riesz basis for L2(Iγ), which
completes the proof

Remark to Theorem 3.1. The above theorem is a theorem of Ullrich-
type [12]. Recently there has appeared a number of works considering some
generalizations of Ullrich theorem and its application for specific parameter
distributed systems [2 - 5]. Apparently the most essential progress in this
direction is made in [2], where a fairly powerful theorem of Ullrich-type is
obtained. In this context let us notice that in our case this theorem cannot
be applied directly, because a function which one can naturally consider as a
generating one for moment problem (2.6) - (2.7) doesn’t have zeroes in

√
λj ,

but in some close points µj . Moreover, we do not know the exact values
of

√
λj , only their asymptotic behavior. Theorem 3.1 just overcomes this

difficulty in our particular case. It seems that the further progress in this
field may be connected with obtaining an Ullrich-type theorem considering
the stability of basis property of a family with respect to perturbations of
generating functions (as it is done in [1: Theorem II.4.32] for the case of
separated exponents).

Remark 3.1. In Theorem 3.1 we can replace the interval Iγ = (0, 2γ+1
γ )

with an arbitrarily chosen interval of length 2γ+1
γ .

Remark 3.2. For any T > 2γ+1
γ the system

∫ T

0

f(t)e−i
√

λj tdt = cj (j ∈ N)

has a solution if and only if condition (3.3) holds. However, this solution is
not unique.

The proof of Remarks 3.1 and 3.2 is similar to the one given in [8].
In the case when p is odd and q is even or vice versa, one can easily observe

that the sequence µj is separable, i.e. infn 6=m |µn − µm| > 0. Then instead of
Lemma 3.1 one can prove
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Lemma 3.1’. The system
{
eiµjt

}
j∈Z is a Riesz basis for L2

(
0, 21+γ

γ

)
.

As a consequence we obtain the following theorem, which replaces Theo-
rem 3.1.

Theorem 3.1’. For any 1 < γ = p
q ∈ Q such that exactly one of the

numbers p, q is even there exists δ > 0 such that if |εj | < δ for j ∈ Z, then the
system ∫

Iγ

f(t)e−i
√

λj tdt = cj (j ∈ Z)

with λj defined by (3.1) has a solution f ∈ L2(Iγ) if and only if
∑∞

j=−∞ |cj |2 <
∞. Moreover, if the system has a solution, it is unique.

4. The set of reachable states

Let us again consider the case of p, q ∈ 2N− 1, let T = 2γ+1
γ and define

cj = dj for j ∈ N
c−j = dj for j ∈ 2N− 1

c−j+2 = dj for j ∈ 2N.

According to Theorem 3.1 there exists a unique complex function u ∈ L2(0, 2γ+1
γ )

satisfying ∫ 2 γ+1
γ

0

u(t)e−i
√

λj tdt = cj (j ∈ Z) (4.1)

if and only if condition (3.3) holds. Note that the moment equalities are
equivalent to ∫ 2 γ+1

γ

0

ei
√

λj tu(t)dt = dj

∫ 2 γ+1
γ

0

e−i
√

λj tu(t)dt = dj





(j ∈ N) (4.2)

and condition (3.3) is equivalent to the condition

∞X
j=1

�
|d1

j |2 + |d2
j |2 +

����
d1
2qj−q − d1

2pj−p+1p
λ2qj−q −

p
λ2pj−p+1

����
2

+

����
d2
2qj−q − d2

2pj−p+1p
λ2qj−q −

p
λ2pj−p+1

����
2�

< ∞.

(4.3)

Now we prove
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Lemma 4.1. The only solution of system (4.2) is a real function.

Proof. Let us denote u(t) = Re u(t) + iIm u(t). We have

∫ 2 γ+1
γ

0

e−i
√

λj t
(
Re u(t) + iIm u(t)

)
dt = dj

∫ 2 γ+1
γ

0

e−i
√

λj t
(
Re u(t)− iIm u(t)

)
dt = dj





(j ∈ N).

This implies
∫ 2 γ+1

γ

0

e−i
√

λj tImu(t) dt = 0 (j ∈ N).

According to Theorem 3.1, a solution of system (3.2) is unique, which implies
Im u(t) ≡ 0. The proof is completed

Corollary 4.1. Every solution of system (4.1) is a solution of system
(4.2). Conversely, every solution of system (4.2) is real and is a solution of
system (4.1).

Applying Theorem 3.1 we obtain

Assertion 4.1. Let T = 2γ+1
γ . Then moment problem (2.6)− (2.7) has a

solution (unique) if and only if condition (4.3) holds and the unique solution
of system (4.2) satisfies (2.7).

Let T > 2γ+1
γ and let moment problem (2.6) have a solution u ∈ L2(0, T ).

This implies that u is a solution of

∫ T

0

u(t)e−i
√

λj tdt = cj (j ∈ N).

Then taking into account Remark 3.2 we conclude that condition (3.3) holds.
That yields condition (4.3).

Conversely, let condition (4.3) hold. Denote by u ∈ L2(0, 2γ+1
γ ) the unique

solution of system (4.2) and let us define u ≡ 0 on the interval (2γ+1
γ , T ). Then

u ∈ L2(0, T ) and the condition

∫ T

0

ei
√

λj tu(t) dt = dj

∫ T

0

e−i
√

λj tu(t) dt = dj





(j ∈ N)
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holds which is equivalent to
∫ T

0

sin(
√

λj t)u(t) dt = d1
j

∫ T

0

cos(
√

λj t)u(t) dt = d2
j





(j ∈ N).

Let
V =

{
1, cos

√
λj t, sin

√
λj t

∣∣∣ t ∈ [0, T ], j ∈ N
}

.

We make use of

Lemma 4.2 (see [8]). The system V ∪ {t} is minimal in L2(0, T ).

Minimality of V ∪ {t} implies that there exist functions u1, u2 ∈ L2(0, T )
such that∫ T

0

u1(t) dt = 0,

∫ T

0

tu1(t) dt = 1,

∫ T

0

u2(t) dt = 1,

∫ T

0

tu2(t) dt = 0

and ∫ T

0

u1(t) sin
√

λj t dt =
∫ T

0

u1(t) cos
√

λj t dt

=
∫ T

0

u2(t) sin
√

λj t dt

=
∫ T

0

u2(t) cos
√

λj t dt

= 0.

Define θ̃T =
∫ T

0
tu(t) dt and ˜̇

θT =
∫ T

0
u(t) dt and put

u∗(t) = u(t) + (θT − θ̃T )u1(t) + (θ̇T − ˜̇
θT )u2(t)

for t ∈ [0, T ]. Then u∗ ∈ L2(0, T ) and
∫ T

0

u∗(t) dt = θ̇T

∫ T

0

tu∗(t) dt = θT

∫ T

0

sin(
√

λj t)u∗(t) dt = d1
j

∫ T

0

cos(
√

λj t)u∗(t) dt = d2
j





(j ∈ N).

Hence u∗ ∈ L2(0, T ) is a solution of moment problem (2.6) - (2.7). So we
proved
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Assertion 4.2. Let T > 2γ+1
γ . Then moment problem (2.6) − (2.7) is

solvable if and only if condition (4.3) holds.

Summarizing Assertions 4.1 and 4.2 we obtain

Theorem 4.1. Assume that 1 < γ = p
q ∈ Q with p, q ∈ 2N − 1 and let

T > 2γ+1
γ . The state (

ωT , ξT , ω̇T , ξ̇T , θT , θ̇T

)

is null-reachable by virtue of system (2.3) if and only if condition (4.3) holds.
If T = 2γ+1

γ , then this state is null-reachable by virtue of system (2.3) if and
only if condition (4.3) and end conditions (2.7) hold.

Finally, consider the case when γ = p
q ∈ Q, where exactly one of the

numbers p, q is even. Now applying Theorem 3.1’ instead of Theorem 3.1 one
can prove the following

Theorem 4.2. Assume that 1 < γ = p
q ∈ Q, where exactly one of num-

bers p, q is even, and let T > 2γ+1
γ . The state

(
ωT , ξT , ω̇T , ξ̇T , θT , θ̇T

)

is null-reachable by virtue of system (2.3) if and only if the condition

∞∑

j=1

(|d1
j |2 + |d2

j |2
)

< ∞ (4.4)

holds. If T = 2γ+1
γ , then this state is null-reachable by virtue of system (2.3)

if and only if condition (4.4) and end condition (2.7) hold.

Note that this result gives a more precise estimation of the time of con-
trollability compared with [6].

Final Remark. It should be interesting to obtain conditions of control-
lability of the beam in the case where γ is irrational. To this end it seems
to be natural to make a passage to the limit as rational γ’s tend to some
irrational number. It turns out that such a passage is hard to be made be-
cause the change of γ means not only the change of eigenvalues but also the
change of eigenvectors. That, in turn, leads to a change of the right-hand side
in the moment problem. Another way for examining the case of irrational γ
can be found in [2] where some generalizations of Ullrich’s theorem are given.
Although, as we have noticed before, this theorem cannot be applied to our
case, one can expect the following analogue of Theorems 4.1 and 4.2:
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Supposition 4.3. Assume that 1 < γ ∈ R \ Q. Let T > 2γ+1
γ , r < π

4

and let {λ̃} be a set of eigenvalues ordered in a way to form an increasing
sequence. The state (

ωT , ξT , ω̇T , ξ̇T , θT , θ̇T

)

is null-reachable by virtue of system (2.3) if and only if

∞∑

j=1

(
|d1

j |2 + |d2
j |2 + χr,j

∣∣d1
j+1 − d1

j |2 + |d2
j+1 − d2

j

∣∣2
∣∣∣
√

λ̃j+1 −
√

λ̃j

∣∣∣
2

)
< ∞

where χr,j =





1 if
√

λ̃j+1 −
√

λ̃j < r

0 if
√

λ̃j+1 −
√

λ̃j ≥ r.
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