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Some Remarks on
Complementarity Problems in a Hilbert Space

A. Carbone and P. P. Zabreiko

Abstract. We present a new approach to the analysis of solvability properties for com-
plementarity problems in a Hilbert space. This approach is based on the Skrypnik degree
which, in the case of mappings in a Hilbert space, is essentially more general in comparison
with the classical Leray-Schauder degree. Namely, the Skrypnik degree allows us to obtain
some new results about solvability of complementarity problems in the infinite-dimensional
case. The case of generalized solutions is also considered.
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This article deals with some topological properties of the classical complementarity
problem (more exactly, explicit complementarity problem) in a Hilbert space with
a completely continuous operator f . It is proved that the natural linear homotopy
between the original complementary problem for the operator f and the trivial one
for the zero operator possesses a standard alternative property:

For each bounded domain Ω containing 0, under some additional conditions, ei-
ther every mapping of this homotopy has a zero on the boundary ∂Ω of the domain
Ω or there exists a zero of the limit operator which defines a solution in Ω to the
complementarity problem under consideration.

This alternative property implies the corresponding alternative property for the
complementarity problem under consideration:

For each r, 0 < r < ∞, under some natural conditions, either every complemen-
tarity problem with the operator (1− λ)I + λf (0 < λ < 1) has a solution in the set
{u : ‖u‖ = r} or the complementarity problem with the operator f has a solution in
the set {u : ‖u‖ ≤ r}.

Results presented in this article are close to those from [5] (see also [1, 4]).
However, we do note use exceptional families of elements which are essential for
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considerations and constructions in [5]. We prefer more standard terminology of
the homotopy theory. Moreover, the basic difference between our approach and the
approach in [5] is based on the utilization of the Skrypnik degree whereas in [5] the
authors use the Leray-Schauder degree. Of course, in the finite-dimensional case
our results are equivalent to the results of [5]. We remark also that results of this
article give a partial solution to complementarity problems in Hilbert space which
were stated in [5].

1. Let X be a Hilbert space, K a closed cone in X, and K∗ its dual wedge which
is defined by the formula

K∗ =
{
x ∈ X : (x, ξ) ≥ 0 (ξ ∈ K)

}
;

this is a cone if and only if K −K = X. Further, let PK be the operator of the best
approximation onto K; this operator is defined by the equation

‖x− PKx‖ = inf
u∈K

‖x− u‖.

The operator PK has been studied in detail by many authors (see, e.g., [6, 8]). The
following lemma collects all properties of PK which will be used in this article.

Lemma 1. The operator PK has the following properties:
(a) PK is a non-expansive operator, i.e. ‖PKx′ − PKx′′‖ ≤ ‖x′ − x′′‖ (x′, x′′ ∈

X).
(b) PK satisfies ‖PKx′ − PKx′′‖2 ≤ (x′ − x′′, PKx′ − PKx′′) (x′, x′′ ∈ X).
(c) The equality u = PKx (x ∈ X, u ∈ K) holds if and only if (x − u, v) ≤

0 (v ∈ K) and (x − u, u) = 0. In particular, (x − PKx, v) ≤ 0 (v ∈ K) and
(x− PKx, PKx) = 0 for any x ∈ X.

(d) The equation PK + P(−K∗) = I holds; moreover, the equality x = u + v (u ∈
K, v ∈ K∗) with (u, v) = 0) holds if and only if u = PKx and v = P(−K∗)x where
P(−K∗) is the operator of the best approximation onto −K∗.

Observe that the operator PK in general is not weakly sequentially continuous.
In the most important case when X = L2(Ω,A, µ) (here Ω is a set, A a σ-algebra of
subsets and µ is a σ-finite measure) and K is the cone of non-negative functions from
X, the operator PK coincides with the operator x → x+ = max{x, 0} and all state-
ments of Lemma 1 are trivial. The corresponding abstract situation is considered,
e.g., in [8, 9].

Let F be a operator defined on K and taking its values in X. Recall [3] that the
classical complementarity problem for F is the problem of finding elements u such
that

u ∈ K, −F (u) ∈ K∗, −(u, F (u)) = 0. (1)

This problem can easily be reduced to the fixed point problem for the operator

Ax = PKx− F (PKx). (2)

More precisely, the following lemma holds [2].
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Lemma 2. Let F be an operator from K into X and A = PK −FPK . Then the
complementarity problem with F is solvable if and only if the operator A has a fixed
point in X. Furthermore, if x∗ is a fixed point of A, then u∗ = PKx∗ is a solution
to the complementarity problem under consideration.

Note that, if u∗ ∈ K is a solution of the complementarity problem with the
operator F , then x∗ = u∗ − F (u∗) is a fixed point of the corresponding operator A.

2. Let f be a completely continuous operator from K into X. Consider the
family of vector fields in X

Φ(λ)x = x− λ(PKx− f(PKx)) (0 ≤ λ ≤ 1, x ∈ X). (3)
This is a linear deformation connecting the vector field Φ = I −A whose zeros define
solutions to the complementarity problem under consideration and the trivial field
Φ0 = I. In what follows we are interested in zeros of the vector fields Φ(λ) (0 ≤ λ ≤
1) in the interior and on the boundary of special domains.

Consider the family of sets
Ωr,ρ =

{
x : ‖x‖ ≤ ρ, ‖PKx‖ ≤ r

}
(0 < r < ρ < ∞). (4)

Figure 1

It is evident that Ωr,ρ is a bounded domain in X, and 0 is its interior point. The
boundary ∂Ωr,ρ of this domain is

∂Ωr,ρ =
{
x : ‖x‖ < ρ, ‖PKx‖ = r

} ∪ {
x : ‖x‖ = ρ, ‖PKx‖ ≤ r

}
. (5)

Let
∂Ω◦r,ρ =

{
x : ‖x‖ < ρ, ‖PKx‖ = r

}
. (6)

We need a special simple a priori estimate for values of the vector fields Φ(λ) (0 ≤
λ ≤ 1) which shows that the part ∂Ω◦r,ρ of the boundary ∂Ωr,ρ is fundamental in our
constructions. Let

µ(r) = sup
‖u‖≤r,u∈K

‖u− f(u)‖.

The following evident lemma is a modification of the corresponding statement from
[5].
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Lemma 3. Let ρ > µ(r). Then ‖Φ(λ)x‖ ≥ ρ − µ(r) (x ∈ ∂Ωr,ρ \ ∂Ω◦r,ρ). In
particular, the zeros of the fields Φ(λ) (0 ≤ λ ≤ 1) which are situated on the boundary
∂Ωr,ρ lie on ∂Ω◦r,ρ.

Proof. It is evident that

‖Φ(λ)x‖ ≥ ‖x‖ − ‖PKx− f(PKx)‖ ≥ ρ− µ(r) > 0 (x ∈ ∂Ωr,ρ \ ∂Ω◦r,ρ)

and the statement is proved

We point out that the statement of this lemma means: if the inequality ρ > µ(r)
holds, then the zero of Φ(λ) (0 ≤ λ ≤ 1) situated on the boundary ∂Ωr,ρ really lie on
its part ∂Ω◦r,ρ. Figure 2 illustrates the situation of the zero x∗ ∈ ∂Ω◦r,ρ.

Figure 2

Let us consider now the family of complementarity problems

u ∈ K, (1− λ)u + λf(u) ∈ K∗,
(
u, (1− λ)u + λf(u)

)
= 0 (0 ≤ λ ≤ 1) (7)

which corresponds to the family of the operators (1−λ)I +λf (0 ≤ λ ≤ 1). Lemma
2 can be reformulated in the following form:

Lemma 4. Let f be an operator from K into X and A(λ) = λ(PK−fPK) (0 ≤
λ ≤ 1). Then the complementarity problem with (1− λ)I + λf is solvable if and only
if the operator A(λ) has a fixed point in X. Furthermore, if x∗ is a fixed point of
A(λ), then u∗ = PKx∗ is a solution to the complementarity problem with the operator
(1− λ)I + λf .

Let u∗ be a solution to the complementarity problem (7) for λ∗ ∈ [0, 1] and x∗ a
fixed point of the operator A(λ∗), i.e.

x∗ = λ∗(PKx∗ − f(PKx∗))

or
x∗ − PKx∗ = −((1− λ∗)x∗ + λ∗f(PKx∗)).

Then
f(PKx∗) = − 1−λ∗

λ∗
PKx∗ − 1

λ∗
(x∗ − PKx∗).
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This equation can be written in the form

f(u∗) = −µu∗ + v∗ (8)

with
u∗ = PKx∗ ∈ K, v∗ = − 1

λ∗
(x∗ − PKx∗) ∈ K∗, µ = 1−λ∗

λ∗
.

This means that u∗ is an exceptional element in the sense of [5]. (In [5] the cor-
responding definition is given for the finite-dimensional case; in the general case an
element u∗ ∈ K is called exceptional if (8) holds with v∗ ∈ K∗ satisfying the equation
(u, v∗) = 0 (u ∈ Π(u∗)) where Π(u∗) =

{
u ∈ K : `(u) = 0 (` ∈ K∗, `(u∗) = 0)

}
.)

As we remarked above, in what follows we do not use the notion of exceptional
elements and families but prefer to formulate our basic results in terms of comple-
mentarity problems. Passing to formulations with families of exceptional elements is
trivial.

3. Now we return to the family of vector fields (3). Recall that a vector field Φ
in a Hilbert space X is called of class S+ if each sequence (xn) from X, which weakly
converges to x∗ and satisfies the condition

lim sup
n→∞

(Φxn, xn − x∗) ≤ 0,

converges to x∗ in norm. A vector field Φ in a Hilbert space X is called quasi-
monotone if each sequence (xn) from X, which weakly converges to x∗, satisfies the
condition

lim inf
n→∞

(Φxn, xn − x∗) ≥ 0.

Each vector field of class S+ is quasi-monotone; the converse is not true.
The mappings of class S+ and quasi-monotone mappings were introduced and

studied in detail by F. Browder, H. Brézis, I. V. Skrypnik and others; here we follow
I. V. Skrypnik (see [10]; see also [7]).

Lemma 5. Let f be a completely continuous operator from K into X. Then the
vector field Φ(λ) (0 ≤ λ < 1) is of class S+; the vector field Φ(1) is only quasi-
monotone.

Proof. Let 0 ≤ λ < 1, (xn) weakly convergent to x∗, and

lim sup
n→∞

(
Φ(λ)xn, xn − x∗

) ≤ 0.

Then (see Lemma 1)

(1− λ)
(
xn − x∗, xn − x∗

)

≤ (
xn − x∗ − PKxn + PKx∗, xn − x∗

)

=
(
Φ(λ)xn, xn − x∗

)− (
x∗ − λPKx∗, xn − x∗

)− λ
(
f(PKxn), xn − x∗

)
.

Without loss of generality, we can assume that the first summand in the right-hand
side of this chain, as n →∞, has a non-positive limit by the properties of the sequence
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(xn). The second summand tends to 0 as n → ∞ by the weak convergence of (xn)
to 0. The third summand also tends to 0 as n → ∞ since f is a compact operator
and, therefore, the sequence (f(PKxn)) is compact. Thus,

lim sup
n→∞

(1− λ)
(
xn − x∗, xn − x∗

) ≤ 0

and, since 0 ≤ λ < 1, the sequence (xn) tends to x∗ in norm.
Now let λ = 1 and (xn) weakly converge to x∗. Then (see Lemma 1 again)

(
Φ(1)xn, xn − x∗

)

=
(
xn − x∗ − PKxn + PKx∗, xn − x∗

)

+
(
f(PKxn), xn − x∗

)
+

(
x∗ − PKx∗, xn − x∗

)

≥ (
f(PKxn), xn − x∗

)
+

(
x∗ − PKx∗, xn − x∗

)
.

Both summands in the right-hand side of this chain tend to 0 as n → ∞ by the
properties of the sequence (xn) and the operator f . Thus,

lim inf
n→∞

(
Φ(1)xn, xn − x∗

) ≥ 0

as claimed

In general the vector field Φ(1) is not of class S+. In what follows we can use a
special property of Φ(1), which can be called zero-closedness of Φ(1). More precisely,
we say that Φ is zero-closed if the convergence in norm of (Φxn) to 0 implies that
there exists a point x∗ ∈ co {xn} such that the equality Φx∗ = 0 holds. Vector fields
of class S+ are zero-closed.

We call an operator f : K → X regular, if for each sequence (un), un ∈ K (n ≥
1), weakly convergent to u∗ and such that the sequence (f(un)) converges to v∗ ∈ K∗

in norm, the equation f(u∗) = v∗ holds.
The following statement gives only a sufficient condition for a vector field to be

zero-closed.

Lemma 6. Let f be a regular completely continuous operator from K into X.
Then the vector field Φ(1) is zero-closed.

Proof. Let the sequence (Φ(1)xn) converge in norm to 0 as n →∞; without loss
of generality one can assume that the sequence (xn) weakly converges to an element
x∗ and the sequence (f(PKxn)) converges in norm to v∗. In this case the sequence
(xn−PKxn) converges in norm to−v∗, since xn−PKxn = f(PKxn)+Φ(1)xn (n ≥ 1).
By Lemma 1 we have

(
xn − PKxn − x + PKx, xn − x

) ≥ 0 (x ∈ X, n ≥ 1).

Passing to the limit in these inequalities as n →∞ we get

(− v∗ − x + PKx, x∗ − x
) ≥ 0 (x ∈ X).
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Putting x = x∗ + th (h ∈ X, 0 < t < ∞) and dividing by t we have

(− v∗ − x∗ − th + PK(x∗ + th), h
) ≤ 0 (h ∈ X, 0 < t < ∞).

Passing to the limit as t → 0 and using Lemma 1 we obtain

(− v∗ − x∗ + PKx∗, h
) ≤ 0 (h ∈ X

Since h ∈ X is an arbitrary element in X this means that v∗ = −(x∗ −PKx∗) ∈ K∗.
Furthermore, the sequence (un), un = PKxn (n ≥ 1) weakly converges to u∗ = PKx∗
since

PKxn = xn − (xn − PKxn) −→ x∗ + v∗ = x∗ − x∗ + PKx∗ = PKx∗.

Thus, the sequence (un) weakly converges to u∗ and the sequence (f(un)) converges
in norm to v∗ ∈ K∗. By the regularity of f we have f(u∗) = v∗. Therefore,

Φ(1)x∗ = x∗ − PKx∗ + f(PKx∗) = x∗ − PKx∗ + v∗ = 0

and the lemma is proved

In particular, the vector field Φ(1) is zero-closed if the operator f is weakly-
strongly continuous (i.e., maps weakly convergent sequences into strongly convergent
ones).

4. All operators considered below are demicontinuous, i.e. map strongly (in
norm) convergent sequences into weakly convergent sequences.

The Skrypnik theory [10] (see also [7]) states that for each field Φ of class S+

(and even zero-closed and quasi-monotone field Φ) defined on a bounded domain Ω
and being without zero on the boundary ∂Ω of the domain Ω there is defined an
integer γ(Φ, Ω) (the degree of the field Φ on the boundary ∂Ω of the domain Ω), and
the function

(Φ,Ω) → γ(Φ,Ω)

has the usual properties of Brouwer-Hopf and Leray-Schauder degree. More precisely,
this function has the following properties:

I. γ(I, Ω) = 1 if 0 ∈ Ω.
II. If Ω = Ω1 ∪ Ω2 and Φ has no zero on the set ∂Ω1 ∪ ∂Ω2 ∪ (Ω1 ∩ Ω2), then

γ(Φ,Ω) = γ(Φ,Ω1) + γ(Φ,Ω2).
III. If Φ0 and Φ1 are homotopic on Ω, then γ(Φ0,Ω) = γ(Φ1,Ω) (vector fields Φ0

and Φ1 are homotopic on Ω if there exists a family Φ(λ, ·) (0 ≤ λ ≤ 1) of class S+

(or zero-closed and quasi-monotone), defined on Ω and demicontinuous with respect
to both variables such that Φ(0, ·) = Φ0, Φ(1, ·) = Φ1, Φ(λ, x) 6= 0 (0 ≤ λ ≤ 1, x ∈
∂Ω)).

Furthermore, as in the usual degree theory, in the theory of Skrypnik degree the
following analogue of the basic existence principle holds:
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If Φ has no zero on the boundary ∂Ω of the domain Ω and the degree γ(Φ, Ω) of
this vector field on the boundary ∂Ω of Ω is non-zero, then there exists at least one
zero x∗ of Φ in Ω.

As was proved above, the vector fields Φ(λ) (0 ≤ λ < 1) defined by (3) are of
class S+ and the field Φ(1) is quasi-monotone; moreover, the field Φ(1) is zero-closed
if f is regular. This means that we can apply the Skrypnik theory for studying fixed
points of these fields.

Consider the family of vector fields Φ(λ) (0 ≤ λ < 1) on the domain Ωr,ρ; we
will assume that ρ and r are fixed positive reals and ρ > µ(r). It is evident that the
family under our assumptions is demicontinuous with respect to both variables and
Φ(0) = Φ0, Φ(1) = Φ1.

We have two possibilities:
First, there exist λ∗ ∈ (0, 1) and x∗ ∈ ∂Ωr,ρ (really x∗ ∈ ∂Ω◦r,ρ) such that

Φ(λ∗)x∗ = 0. In this case u∗ = PKx∗ is a solution of the complementarity problem
with the operator (1 − λ∗)I + λ∗f , and this solution is situated on the set Sr ∩ K
with Sr = {u : ‖u‖ = r}.

Second, for all λ ∈ (0, 1) the inequalities

Φ(λ)x 6= 0 (x ∈ ∂Ωr,ρ)

hold. In this case all vector fields Φ(λ) (0 ≤ λ < 1) are homotopic on Ωr,ρ and,
therefore, they have the same degree γ(Φ(λ), Ωr,ρ) on the boundary ∂Ωr,ρ of the
domain Ωr,ρ. But γ(Φ(0), Ωr,ρ) = 1 since Φ(0) = I and 0 ∈ Ωr,ρ. Thus, in the second
case we have

γ(Φ(λ), Ωr,ρ) = 1 (0 ≤ λ < 1). (9)

Moreover, if the vector field Φ(1) is zero-closed and has no zero on ∂Ωr,ρ, then we
have

γ(Φ(λ), Ωr,ρ) = 1 (0 ≤ λ ≤ 1). (10)

If the vector field Φ(1) is zero-closed, then equation (10) implies the existence of a
zero of Φ(1) in the domain Ωr,ρ and, therefore, the solvability of the complementarity
problem with the operator f in the set Br ∩ K with Br = {u : ‖u‖ ≤ r}. In the
general case equation (9) implies that each vector field Φ(λ) (0 ≤ λ < 1) has at least
one zero xλ ∈ Ωr,ρ:

xλ = λ
(
PKxλ − f(PKxλ)

)
;

this implies the solvability of all complementarity problems with operators (1−λ)I +
λf (0 ≤ λ < 1) in the set Br ∩K. Since Br ∩K is bounded there exists a sequence
(λn) convergent to 1 such that the sequence (xn), xn = xλn , is weakly convergent to
an element x∗. It is evident that

xn = λn

(
PKxn − f(PKxn)

)

or
Φ(1)xn = −(1− λn)

(
PKxn − f(PKxn)

)
.
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This equation implies that ‖Φ(1)xn‖ → 0.
If the vector field Φ(1) is zero-closed we can pass to the limit and again get the

solvability of the complementarity problem under consideration. In the other case we
only have the weakly convergent sequence xn → x∗ for which the sequence Φ(1)xn

converges to 0 in norm and, moreover, the equalities

f(PKxn) = −(xn − PKxn)− 1−λn

λn
xn (n ≥ 1)

hold which imply the inequalities
(
f(PKxn), PKxn

)
= − 1−λn

λn

(
PKxn, PKxn

) ≤ 0 (n ≥ 1).

Since Φ(1)x = x−PKx + f(PKx) and f is compact, we can repeat all corresponding
considerations from the proof of Lemma 6. As a result, we obtain that the sequence
(un), un = PKxn ∈ K, converges weakly to u∗ = PKx∗ and the sequence f(PKxn)
converges in norm to φ∗ = −(x∗ − PKx∗) ∈ K∗.

In order to formulate clearer the situation described above we introduce a special
closure of the operator f . Namely, for each u ∈ K denote by Q(u) the set of sequences
(un), un ∈ K, which weakly converge to u, for which the sequence (f(un)) converges
in norm to an element from K∗, and which satisfy the inequalities (f(un), un) ≤ 0.
Let

f̃(u) =
{

lim
n→∞

f(un) : (un) ∈ Q(u)
}

; (11)

the multi-valued operator f̃ will be called the special closure of the (single-valued)
operator f . In terms of f̃ the general situation considered above can be formulated
in the following manner:

There exist an element u∗ ∈ K and a value φ∗ ∈ f̃(u∗)∩K∗ such that (u∗, φ∗) = 0.

In other words, in the general case our arguments prove the solvability of the gener-
alized (and multi-valued) complementarity problem

u ∈ K, −f̃(u) ∩K∗ 6= ∅, −(u, φ) = 0 (φ ∈ f̃(u) ∩K∗). (12)

We summarize all statements obtained as a result of these considerations in the
form of the following two theorems.

Theorem 1. Let f be a regular completely continuous operator from K into X,
and 0 < r < ∞. Then

• either for some λ ∈ (0, 1) the complementarity problem with the operator (1−
λ)I + λf has a solution in the set Sr ∩K

• or the complementarity problem with the operator f has a solution in the set
Br ∩K.

Theorem 2. Let f be a completely continuous operator from K into X, and
0 < r < ∞. Then

• either for some λ ∈ (0, 1) the complementarity problem with the operator (1−
λ)I + λf has a solution in the set Sr ∩K
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• or the generalized complementarity problem with the special closure f̃ of the
operator f has a solution in the set Br ∩K.

5. This article is devoted to the case when the operator f is completely contin-
uous. But this assumption is not natural for the general theory of complementarity
problems. Here we restrict ourselves only to a simple remark that both theorems
hold if f is assumed to be demicontinuous and either of class S+ or zero-closed and
quasi-monotone; moreover, these assumptions seem to more natural. We omit for-
mulations of the corresponding analogues of Theorems 1 and 2. We also point out
that some of our constructions can be generalized to the case when X is a Banach
space and f is an operator from X into X∗.

The complementarity problem considered in this article is close to some similar
problems in which the disjointness property instead of orthogonality is considered;
both classes of problems intersect in the case when X = L2(Ω,A, µ).

Finally, here we do not study so-called implicit complementarity problems and
some other kinds of them. The simplest results on the base of the Skrypnik degree
can be formulated without any difficulties; we are going to consider this problem in
a separate article.
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